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Abstract

We present a new unified kernel regression framework on manifolds. Starting with a symmetric 

positive definite kernel, we formulate a new bivariate kernel regression framework that is related 

to heat diffusion, kernel smoothing and recently popular diffusion wavelets. Various properties 

and performance of the proposed kernel regression framework are demonstrated. The method is 

subsequently applied in investigating the influence of age and gender on the human amygdala and 

hippocampus shapes. We detected a significant age effect on the posterior regions of hippocampi 

while there is no gender effect present.

1 Introduction

The end results of many existing surface-based anatomical studies are statistical parametric 

maps (SPM) that show statistical significance at each mesh vertex. To obtain stable and 

robust SPM, various methods have been proposed. Among them, diffusion, kernel, and 

wavelet-based approaches are probably most popular. Diffusion equations have been widely 

used in image processing as a form of noise reduction starting with Perona and Malik in 

1990’s [1]. Although numerous techniques have been developed for performing diffusion 

along surfaces, most approaches require numerical schemes which are known to suffer 

various numerical instabilities [2, 3]. Kernel based models have been also proposed for 

surface and manifolds data [4, 3, 5]. The kernel approaches basically regress data as the 

weighted average of neighboring data using mostly a Gaussian kernel and its iterative 

application can approximates the diffusion process. Recently, wavelets have been 

popularized for surface and graph data [6, 7]. Although diffusion-, kernel- and wavelet-

based methods all look different from each other, it is possible to develop a unified kernel 

regression framework that relates all of them in a coherent mathematical fashion for the first 

time.

The focus of this paper is on the unification of diffusion-, kernel- and wavelet-based 

techniques as a simpler kernel regression problem on manifolds for the first time. The 

contributions of this paper are as follows. (i) We show how the proposed kernel regression is 
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related to diffusion-like equations. (ii) We establish the equivalence between the kernel 

regression and recently popular diffusion wavelet transform for the first time. This 

mathematical equivalence bypasses a need for constructing wavelets on manifolds using a 

complicated machinery employed in previous studies [6, 7]. Although there have been 

kernel methods in machine learning [4], they mainly deal with a linear combination of 

kernels as a solution to penalized regressions, which significantly differ from our framework 

that does not have any penalty term. The kernel method in the log-Euclidean framework [5] 

deals with regressing over manifold data. In this study, we are not dealing with manifold 

data but a scalar data defined on a manifold.

As an application, we illustrate how the kernel regression procedure can be used to localize 

anatomical signal within the multiple subcortical structures of the human brain. The 

proposed surface-based morphometric technique is a substantial improvement over the 

voxel-based morphometry study on hippocampus [8] that projects the statistical results to a 

surface for interpretation.

2 Kernel Regression and Wavelets on Manifolds

SPD Kernels

Consider a functional measurement f defined on a manifold ℳ ⊂ ℝd. We assume the 

following additive model:

(1)

where h is the unknown signal and ε is a zero-mean random field, possibly Gaussian. We 

further assume f ∈ L2(ℳ), the space of square integrable functions on ℳ with the inner 

product 〈f, g〉 = ∫ℳ f(p)g(p) dμ(p), where μ is the Lebesgue measure. Consider a self-adjoint 

operator ℒ satisfying 〈g1, ℒg2〉 = 〉 ℒg1, g2〉 for all g1, g2 ε L2(ℳ). The operator ℳ induces 

the orthonormal eigenvalues λj and eigenfunctions ψj on ℳ: ℒψj = λjψj. Without loss of 

generality, we can order the eigenvalues 0 = λ0 ≤ λ1 ≤ ⋯. The eigenfunctions ψj can be 

numerically computed by solving the generalized eigenvalue problem [9]. Then any 

symmetric positive definite (SPD) kernel can be written as  for 

some τj (Mercer’s theorem). The kernel convolution K*ψj(p) = ∫ℳ K(p, q)ψj(q) dμ(q) can be 

written as K*ψj(p) = τjψj(p). Therefore, τj and ψj must be the eigenvalues and eigenfunctions 

of the convolution. For given kernel K, Galerkins method can be used to compute τj.

Kernel Regression

The unknown signal h can be estimated in the subspace ℋk ⊂ L2(ℳ) spanned by the 

orthonormal basis {ψj}, i.e. . Instead of estimating the 

function h by finding the closest function in ℋk, which results in the usual Fourier series, we 

weight the distance with a positive definite symmetric kernel K:

(2)

Chung et al. Page 2

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2015 February 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Without loss of generality, we will assume the kernel to be a probability distribution so that 

∫ℳ K(p, q) dμ(q) = 1 for all p ε ℳ. If the kernel is a Dirac-delta function, the kernel 

regression simply collapses to the usual Fourier series expansion. We can show that the 

solution to optimization (2) is analytically given as

(3)

(3) generalizes the case of spherical harmonics on a sphere [3] to an arbitrary manifold. (3) 

implies that the kernel regression can be done by simply computing the Fourier coefficients 

fj = 〈f, ψj〉 without doing messy numerical optimization. As k → ∞, the kernel regression 

 converges to convolution K*f establishing the connection to the kernel 

smoothing framework [4, 3]. Hence, asymptotically kernel regression should inherit many 

statistical properties of kernel smoothing on manifolds.

Heat Diffusion

For an arbitrary self-adjoint differential operator ℒ, the proposed kernel regression can be 

shown to be related to the following diffusion-like Cauchy problem

(4)

where the unique solution is given by . If we let τj = e−λjt, the 

proposed kernel regression  converges to the solution of diffusion-like 

equation (4). Further, if we let ℒ be the Laplace-Beltrami (LB) operator, (4) becomes the 

isotropic diffusion equation as a special case and the kernel becomes the heat kernel 

. Figure 1 shows diffusion like property of the proposed 

kernel regression with 1000 LB-eigenfunctions and t = 1.

Wavelet Transform

In order to construct wavelets on an arbitrary graph and mesh, diffusion wavelets have been 

proposed recently [6, 7]. The diffusion wavelet construction has been fairly complicated. 

However, it can be shown to be a special case of the proposed kernel regression. Thus its 

construction is straightforward than previous thought. For some scale function g that 

satisfies the admissibility conditions, diffusion wavelet Wt,p(p) at position p and scale t is 

given by . If we let τj = g(λjt), the diffusion wavelet 

transform, or wavelet coefficients, can be written as
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which is the exactly kernel regression we introduced. Hence, diffusion wavelet transform 

can be simply obtained by doing the kernel regression without a complicated wavelet 

machinery [7]. Further, if we let , we have Wt,p(q) = Ht(p, q), a heat kernel. 

The bandwidth t of heat kernel controls resolution while the translation is done by shifting 

one argument in the kernel.

Although the kernel regression is constructed using global basis functions, remarkably the 

kernel regression at each point p coincides with the wavelet transform at that point. Hence, it 

inherits all the localization property of wavelets. This is clearly demonstrated in an example 

given in Figure 2, where a step function of value 1 in the circular band 1/8 < θ < 1/4 (angle 

from the north pole) and of value 0 outside of the band is constructed. Then the step function 

is reconstructed using the Fourier series expansion using up to degree 78 spherical 

harmonics (SPHARM). For the kernel regression, the heat kernel with the small bandwidth t 

= 0.0001 is used. SPHARM clearly shows severe Gibbs phenomenon (ringing artifacts) 

compared to the kernel regression.

3 Statistical Inference on Manifolds

The proposed kernel regression can be naturally integrated into the random field theory 

based statistical inference [9]. Given a collection of functional measurements in (1), we are 

interested in determining the significance of h in (1), i.e.

(5)

Any point p0 that gives h(p0) > 0 is considered as signal. (5) is an infinite dimensional 

multiple comparisons problem for continuously indexed hypotheses. Given T-field T(p) as a 

test statistic, we need to compute the multiple comparison corrected type-I error of rejecting 

the null hypothesis (there is signal) when the null hypothesis is true (there is no signal). For 

sufficiently high threshold z, which corresponds to the observed maximum T-statistic value, 

the corrected type-I error is given by , where 

μd(ℳ) is the j-th Minkowski functional of ℳ and ρj is the j-th Euler characteristic (EC) 

density of T-field [9] Hippocampus and amygdala surfaces are compact with no boundary so 

the Minkowski functionals are simply μ2(ℳ) = area(ℳ)/2, μ1(ℳ) = 0 and μ0(ℳ) = χ(ℳ) 

= 4 × 2, the Euler characteristic of ℳ. The EC-densities of the T-field with ν degrees of 

freedom are

Note that EC-densities has the term 2t2 which relates the scale of wavelets to p-value 

directly. In the usual SPM framework [9], signals are usually convolved with a kernel with 

much larger bandwidth t effectively masking the smoothness of noise. Figure 3 shows the 

type-I error plot over different bandwidth t of the kernel regression. As the bandwidth t 
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decreases, the type-I error decreases. The optimal bandwidth was selected by checking if the 

decrease of the type-I error is statistically significant. Our approach differs from the usual 

effective smoothness approach [9]. When t = 0, the kernel regression collapse to the usual 

Fourier series expansion. Hence, the kernel regression can be viewed as having smaller type-

I error compared to the usual Fourier series expansion.

4 Experiments

Implementation

The LB-operator is chosen as the self-adjoint operators ℒ of choice. We discretized the 

problem ℒψj = λjψj using the Cotan formulation and solved it as a generalized eigenvalue 

problem [9]. For the LB-operator, the heat kernel is the corresponding kernel. Bandwidth t = 

1 and k = 1000 number of basis are chosen for this study. It is algebraically not possible to 

have more basis than the number of vertices in a mesh. The average numbers of mesh 

vertices are 1300 for amygdala. Hence, k = 1000 is used to account for possibly smaller 

amygdala. The number of eigenfunctions used is more than sufficient to guarantee relative 

error less than 0.3% against the ground truth. At degree 1000 expansion, the final statistical 

results are extremely stable and do not change much if we add or delete few terms.

Simulations

Simulations with the known ground truths were used to determine the performance of the 

proposed method. The type-I error (false positives) can be quantified in the real data. 

However, since there is no ground truth in the real data, the type-II error (false negatives) 

cant be quantified without additional assumptions. We performed two simulations with 

small and large signal-to-noise ratios (SNR). The both simulations were performed on a 

small T-junction shaped surface (Figure 2). Three black signal regions of different sizes 

were taken as the ground truth. 60 independent functional measurements on the T-junction 

were simulated as |N (0, γ2)|, the absolute value of Gaussian distribution with mean 0 and 

variance γ2, at each mesh vertex. Value 1 was added to the black regions in 30 of 

measurements which served as group 1 while the remaining 30 measurements were taken as 

group 2. Then the proposed method is compared against the original data without any 

smoothing and often used iterated kernel smoothing [3]. Two sample t-test with the random 

field theory based threshold was used to detect the group difference at 0.05 level.

For study I (large SNR), γ2 = 0.52 and bandwidth σ = 0.1 were used. All the methods 

correctly identified the signal regions with almost 100% accuracy as expected. However, 

due to the increased sensitivity, heat kernel regression incorrectly identified 0.9% non-signal 

regions as signal (false positives), which is negligible. So it seems for a large SNR setting, 

all the methods were reasonably able to detect the correct signal regions without significant 

error.

For study II (small SNR), γ2 = 22 and bandwidth σ = 0.5 was used. Smaller SNR requires 

larger amount of smoothing. In the small SNR setting, iterated kernel smoothing as well as 

without any smoothing (original) was not able to detect any signal regions after multiple 

comparison corrected thresholding of 4.9. However, kernel regression was able to identify 

94% of the signal regions demonstrating superior performance in extremely low SNR 
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setting. Figure 2 shows the simulation results for study II, where the T-statisic values are all 

below 4.9 in the two methods, while kernel regression was able to recover most of the signal 

regions. Due to its sensitivity, heat kernel regression incorrectly identified 0.26% non-signal 

regions as signal but this is negligible. Although we have shown two extreme cases of high 

and low SNR, the simulation results are very robust under the change of different 

parameters.

5 Application

Imaging Data

The study consists of 3T T1-weighted inverse recovery fast gradient echo anatomical 3D 

images, collected in 124 contiguous 1.2-mm axial slices (TE=1.8 ms; TR=8.9 ms; flip angle 

= 10°; FOV = 240 mm; 256 × 256 data acquisition matrix) of 69 middle age and elderly 

adults ranging between 38 to 79 years (mean age = 58.0 ± 11.3 years). There are 23 males 

and 46 females. The amygdalae and hippocampi were manually segmented by a trained 

individual rater in the native space. The segmented volumes did not yield any age or gender 

effects at 0.05 level. This gives a need for developing a sophisticated surface-based method. 

A nonlinear image registration using the diffeomorphic shape and intensity averaging 

technique with cross-correlation as similarity metric was performed [10]. The normalized 

binary masks were then averaged to produce the template. We used the length of surface 

displacement vector from the template to an individual subject as a response variable. Since 

the length on the template surface is expected to be noisy due to image acquisition, 

segmentation and image registration errors, the proposed kernel regression was performed to 

reduce the type-I error. Figure 1 shows an example of kernel regression on our data.

Results

The smoothed displacement Length is regressed over the total brain volume, age and gender: 

Length = β1 + β2 Brain + β3 Age + β4 Gender + ε, where ε is zero mean Gaussian noise. The 

Age and Gender effects are determined by testing the significance of parameters β3 and β4 at 

α = 0.05 using T-statistic and corrected for the random field based multiple comparisons. 

We found the region of significant effect of age on the posterior part of hippocampi (left: 

max. T-stat = 6.25, p-value = 0.00014; right: max. T-stat = 4.78, p-value = 0.024) (Figure 3). 

Particularly, on the caudal regions of the left and right hippocampi, we found highly 

localized age effect. Possibly due t small sample size, no age effects are detected on the 

amygdala surface at α = 0.05. No significant gender effects are detected on amygdale or 

hippocampi at 0.05 level as well.

6 Conclusion

We have developed a new kernel method that unifies kernel regression, heat diffusion and 

wavelets in a single mathematical framework. The kernel regression is both global and local 

in a sense it uses global basis functions to perform regression but locally equivalent to the 

diffusion wavelet transform. The proposed framework is demonstrated to perform better 

than existing methods.
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Fig. 1. 
The displacement length, its Fourier series expansion using the Laplace-Beltrami 

eigenfunctions and the kernel regression with t = 1 for a subject. The strip patterns visible in 

the amygdale in the original data and Fourier series are image discretization artifacts. They 

actually correspond to image slices passing through them. In the kernel regression, which is 

equivalent to diffusion wavelets, such artifacts are reduced.
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Fig. 2. 
Gibbs phenomenon is visible in the Fourier series expansion of the step function defined on 

a sphere using SPHARM. The kernel regression (wavelet coefficients) shows less visible 

artifacts.
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Fig. 3. 
Type-I error plot over bandwidth t for three different models for the study. As t increases, 

the type-I error decreases.
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Fig. 4. 
Simulation study II (small SNR) where three black signal regions of different sizes are taken 

as the ground truth. All the mesh vertices were assigned value 0. Value 1 was added to the 

black regions in 30 of measurements, which served as group 2 while the other 30 

measurements were taken as group 1. Then noise |N (0, γ2)| is added to each vertex. T-

statistics results are shown for the simulation (original) and iterated kernel smoothing [9] 

and heat kernel regression. Kernel regression performed the best.
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Fig. 5. 
T-statistic and corrected p-value maps on the amygdala/hippocampus template showing age 

effect. The posterior regions of the both left and right hippocampi show age effects at 0.05 

level. There is no gender effect present in any structure.
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