
A Neurocomputational model of tonic and phasic dopamine in 
action selection: A comparison with cognitive deficits in 
Parkinson’s disease

M. Guthrie1,3, C.E. Myers2, and M.A. Gluck1

1Center for Neuroscience, Rutgers University, Newark, NJ, USA

2Department of Psychology, Rutgers University, Newark, NJ, USA

3Basal Gang, Laboratoire Mouvement, Adaptation et Cognition, CNRS5227, Université Victor 
Segalen - Bordeaux 2, France

Abstract

The striatal dopamine signal has multiple facets; tonic level, phasic rise and fall, and variation of 

the phasic rise/fall depending on the expectation of reward/punishment. We have developed a 

network model of the striatal direct pathway using an ionic current level model of the medium 

spiny neuron that incorporates currents sensitive to changes in the tonic level of dopamine. The 

model neurons in the network learn action selection based on a novel set of mathematical rules 

that incorporate the phasic change in the dopamine signal. This network model is capable of 

learning to perform a sequence learning task that in humans is thought to be dependent on the 

basal ganglia. When both tonic and phasic levels of dopamine are decreased, as would be expected 

in unmedicated Parkinson’s disease (PD), the model reproduces the deficits seen in a human PD 

group off medication. When the tonic level is increased to normal, but with reduced phasic 

increases and decreases in response to reward and punishment respectively, as would be expected 

in PD medicated with L-Dopa, the model again reproduces the human data. These findings 

support the view that the cognitive dysfunctions seen in Parkinson’s disease are not solely due to 

either the decreased tonic level of dopamine or to the decreased responsiveness of the phasic 

dopamine signal to reward and punishment, but to a combination of the two factors that varies 

dependent on disease stage and medication status.
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Introduction

The basal ganglia (BG) are a set of interconnected, sub-cortical nuclei which form a 

complex network of loops integrating cortical, thalamic and brainstem information [1]. They 

have been primarily associated with the control of movement but recent anatomical [49] and 

neuroimaging data [19] have shown that they are also involved in higher cognitive 

functions.

Human behavioral studies have shown that subjects with Parkinson’s disease (PD) who are 

treated with dopaminergic medication are impaired on learning cognitive tasks [41, 3, 52, 

53, 67, 68, 69, 70, 11, 12, 13, 14, 22, 23]. Furthermore, PD subjects tested after a period of 

medication withdrawal show different cognitive deficits on the same tasks [13, 14, 22, 69]. 

This raises questions about the difference between the effects on learning of PD and of the 

medication used to treat PD. To understand this we need to consider how the disease process 

of PD modifies the dopamine learning signal, and how the medication leads to different 

changes in the signal.

In PD, midbrain dopamine cells are lost, but those arising in the substantia nigra pars 

compacta (SNc) are lost to a far greater degree than those arising in the ventral tegmental 

area (VTA) [37]. The outputs of both nuclei project most significantly to the striatum, the 

principal input nucleus of the basal ganglia. Figure 1 summarizes some of the key 

anatomical pathways. The SNc projects principally to the dorsal striatum, which is a key 

structure in action selection [50]. The dorsal striatum can itself be subdivided into two major 

sub-areas, one with inputs from motor related cortical areas and engaged in selecting motor 

responses and a second with inputs from associational areas of cortex and engaged in more 

cognitive aspects of behavior selection.

The best understood medication in PD is L-Dopa, a precursor of dopamine. One hypothesis 

is that the cognitive impairment in medicated PD is due to an overdose effect of the 

medication on the ventral part of the striatum where there has been less damage to the 

dopaminergic input [22]. Loss of SNc dopaminergic cells leads to a decrease of the steady-

state background level (tonic level) of dopamine in the dorsal striatum [18]. L-Dopa is 

known to raise the tonic dopamine level, which would be desirable in the depleted dorsal 

striatum, but may not be in the less affected ventral striatum.

However, learning in the medium spiny neurons (MSNs) of the striatum has been shown to 

be dependent not on tonic levels of dopamine, but on pulses of dopamine, phasic changes, 

overlying the tonic level [85]. These phasic changes in firing of dopaminergic neurons occur 

in response to unexpected rewards, cues which have been learned to reliably predict reward, 

and the omission of reward after a reward-predicting cue [64].
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The consequences of the loss of the dopaminergic cells in PD on the phasic changes, and 

therefore directly on learning, has proven difficult to investigate in both animal and human 

experiments. The use of computational modeling to simulate human learning data in PD 

therefore provides an alternative method for investigating the mechanisms that lead to 

learning impairment in PD.

There have been recent computational models of the basal ganglia that successfully simulate 

some behavioral tasks in which subjects with PD have performance deficits [21, 22, 23, 34]. 

These models have simulated the corticostriatal loops and use the phasic dopamine signal 

for learning. The model presented here attempts to account for changes to both the tonic and 

phasic aspects of the dopamine signal. The basic unit in this model is the medium spiny 

neuron (MSN), the principal neuron of the striatum, that has been hypothesized to play a key 

role in action selection [50]. This class of neuron has been shown to have currents dependent 

on the tonic dopamine level [35, 57, 76, 78, 79] as well as requiring phasic dopamine signals 

for long-term potentiation (LTP) [85]. Previous network models of the basal ganglia have 

not attempted to model the MSN at a level where the effect of changing both tonic and 

phasic dopamine can be studied. This model is therefore based on a network of MSNs that 

are simulated at the level of ionic currents in order to effectively study the impact of 

changing tonic dopamine levels occurring in PD. The learning rules in the network 

incorporate the phasic dopamine changes. Therefore the model is also able to simulate 

changes in the phasic dopamine signal that may occur in PD. This allows us simulate 

whether changing only the tonic or phasic dopamine is sufficient to replicate behavioral 

results in an action selection task, or whether a combination of tonic and changes is 

necessary to produce the changed behavior.

The most common role proposed for the dorsal striatum is action selection [50]. Many 

computational models of the striatum have used lateral inhibition to produce a ‘winner takes 

all’ action selection network [5, 28, 84, 43, 44, 73, 89]. This was based on the extensive 

recurrent dendritic field of the medium spiny neuron that potentially innervates thousands of 

other MSNs [56]. When demonstrated experimentally, recurrent inhibition was found to be 

very weak compared to feedforward inhibition [81, 42], although the absolute number of 

recurrent synapses is large [16, 32, 80] Combined with the very low firing rate of MSNs, it 

is difficult to see how lateral inhibition could be a mechanism for a “winner takes all” 

network in the striatum.

Without the use of lateral inhibition, one candidate mechanism for action selection in the 

striatum is control of the rate of change from the hyperpolarized down state to the up state of 

the MSN. In response to current injection, MSNs exhibit a rapid rise from the down state 

with a shoulder to a subthreshold plateau potential and then a gradual depolarization of the 

plateau potential. This provides a mechanism where small changes in strength of synaptic 

input could produce relatively large changes in the time that the firing threshold is crossed. 

The simulations presented investigate whether this mechanism is sufficient to learn to select 

amongst competing actions without the use of any lateral inhibition between neurons in the 

network and without competition between parallel corticostriatal loops in downstream nuclei 

of the basal ganglia.
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The simulated network of model MSNs represents direct pathway striatal neurons involved 

in action selection. As only the direct pathway is represented, only dopamine modulation at 

the D1 receptor is considered [26]. The simulated task is a human cognitive sequence 

learning task where the subject learns to navigate through a set of rooms by choosing the 

one correctly colored door out of three in each room [69]. The firing of each MSN in the 

network represents choosing an action, in this case choosing a door by color. The network of 

MSNs learns the correct door in each room using a simulated dopamine signal.

The level of modeling has been chosen to be appropriate to investigate changes in both tonic 

and phasic dopamine levels. Tonic dopamine levels modulate currents that control the 

excitability of MSNs. We therefore model the neurons at the level of the ionic currents that 

are modulated by dopamine. Phasic dopamine changes are necessary for LTP in MSNs. We 

therefore develop a set of learning rules based on spike timing dependent plasticity (STDP) 

that incorporate phasic dopamine changes to produce realistic modification of the size of 

corticostriatal synapses.

We first re-analyze some of the data from the original sequence learning task for comparison 

with certain findings of the model. We then show that the model is capable of learning to 

perform the task with the same level of accuracy as human control subjects. Next, we show 

how changing tonic and phasic dopamine, in a manner consistent with known physiological 

changes leads to error levels consistent with those seen in patient groups on and off 

medication. We then show the effect of only varying the tonic or phasic dopamine on model 

performance. Finally we discuss reasons why the model does not fit the data in all areas and 

predictions the model makes for the performance of tasks by PD patients.

Methods

MSN Model Description

The model of the MSN used in this study is derived from work of Wilson and colleagues 

showing that the hyperpolarized down state of an MSN and the transition from the down 

state to the up state are mainly under the control of a small set of potassium currents [88]. 

The hyperpolarized down state is principally determined by an inwardly rectifying 

potassium current, IKir [39, 40, 54, 48]. At hyperpolarized membrane potentials IKir provides 

a current that resists depolarization and therefore stabilizes the down state, accounting for 

approximately 50% of resting conductance [82]. IKir activates rapidly and does not 

inactivate [33].

There have been three main outward rectifying potassium currents demonstrated in MSNs 

[54]: two transient A-type currents and a non-inactivating current [74, 75, 55].

One of the A-type currents is fast inactivating and only available above spike threshold [77]. 

This current is therefore excluded from this model as it does not contribute to the transitional 

behavior of the neuron. The second A-type current is the slowly inactivating potassium 

current, IKsi. This current is available at subthreshold membrane potentials and inactivates 

over a time course of hundreds of milliseconds to seconds [25, 74, 77]. This slow 

inactivation reduces the effect of IKsi gradually while the cell is in the up state, leading to a 
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gradual ramp increase in the plateau membrane potential in the up state. . As shown by 

Mahon et al. (2000) [45], physiological inactivation of IKsi also leads to a reduced time to 

firing of the first spike if a second down to up transition occurs shortly after a first. The non-

inactivating potassium current, IKrp, is also available at subthreshold membrane potentials. 

These two outwardly rectifying currents contribute to the plateau membrane potential of the 

up state by opposing the depolarizing influence of excitatory synaptic input and inward ionic 

currents.

It has also been shown that slowly inactivating L-type calcium currents, IL-Ca, are important 

in the maintenance of the plateau potential in many neurons [65, 10, 59]. This high threshold 

calcium current, which supplies an inward, depolarizing drive current, has been shown to be 

present in MSNs [4, 71] and is therefore included in this model.

The computational design of the model is based on that of Gruber et al. (2003) [29] with the 

neuron represented as a single, isopotential point using only those currents necessary to the 

behavior under examination. This provides the computational tractability to examine the 

behavior of a network of model neurons without the requirement for high-powered 

computational facilities. The main change from the model of Gruber et al. (2003) is the 

introduction of inactivation for IKsi.

Two of the currents used in this model are modulated by tonic dopamine levels. Both IKir 

[76, 57] and IL-Ca are enhanced by D1 agonists [78, 79, 35]. Later simulations show how 

changing the tonic dopamine level changes the up and down state membrane potentials in 

the model due to the effects of these two currents.

MSN Model Equations

Modified Hodgkin-Huxley techniques are used to simulate an isopotential model of an 

MSN. The change in membrane potential is modeled as a differential equation relating the 

rate of change to the ionic currents (1). The moment-to-moment membrane potential is 

calculated by numerical integration using a fifth order Runge-Kutta algorithm with a 

maximum step size of 1 ms [60].

(1)

where C is the membrane capacitance, Vm is the membrane potential, Is is the current due to 

the synaptic input, IL is the leakage current, IKir is the inwardly rectifying potassium current, 

IL-Ca is the L-type calcium current, IKsi is the slowly inactivating A-type potassium current, 

IKrp is the non-inactivating potassium current and DTonic is the neuromodulator factor, 

representing the tonic dopamine level, which acts as a multiplier on IKir and IL-ca. Since 

there is no data on the relative modulation of IKir and IL-Ca by dopamine, we use the same 

multiplication factor for both.

Each current, except for IL-Ca, is modeled as the product of a conductance and a linear 

driving force
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(2)

where Ii is the ionic current, gi is the conductance, Vm is the membrane potential and Ei is 

the reversal potential for that ion. For the potassium currents the conductance is voltage 

dependent, and is fitted to a Boltzmann function of the form:

(3)

where gi is the maximum conductance for that current, Vh is the half-activation parameter, 

the voltage at which 50% of the current is available, and Vc controls the slope of the 

activation curve. Values of Vh and Vc for the inwardly rectifying potassium current [54, 48], 

the non-inactivating potassium current [55] and the slowly inactivating potassium current 

[25] have been obtained from electrophysiological recordings (Table 1).

Inactivation of IKsi is represented by a 0.1% decrease in gKsi at each time step when the 

membrane potential is above −60mV, and, for reactivation, a 0.1% increase when Vm is 

below −60mV.

IL-Ca is not well modeled by a linear driving force as the low level of intracellular calcium 

leads to a large concentration gradient across the membrane. This leads to a non-linearity in 

the voltage/current relationship of the open channel. Following Hille (1992) [36], this 

current has therefore, been modeled using the Goldman-Hodgkin-Katz equation.

(4)

where z = 2, F = 9.648 × l04 C mol−1, R = 8.315 V C K−1 mol−1 and T = 273.16 +37K. 

[Ca]o is the extracellular calcium concentration and [Ca]i is the intracellular calcium 

concentration. From this the current is obtained by:

(5)

where PL-Ca is the membrane permeability to calcium. Bargas et al. (1994) [4] showed that 

the membrane permeability can be represented as a Boltzmann function of the form seen in 

(6).

(6)

where P̅L–Ca is the maximum permeability to calcium. The values used by Gruber et al. 

(2003) [29] for Vh and Vc for this current differ from those found experimentally. They 

explain that they have modified the values to account for the higher concentrations of 

divalent charge carrier used in the extracellular solution in the electrophysiological 

experiments and we have followed this.
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Excitation is modeled as discrete conductance changes. Each synaptic event has a peak of 

0.4nS, a rise time of 7ms and an exponential decay with half-life of 8ms. Previous 

simulations have suggested that a single excitatory input to a distal dendritic spine produces 

a peak EPSP amplitude at the soma of approximately 20mV [87]. The starting figure used 

here for the peak conductance change of 0.4nS produces an EPSP of 15mV which allows for 

growth of the synapse during learning.

The corticostriatal excitation is modeled as separate inputs, each firing at random frequency 

with a mean of 25Hz and a standard deviation of 2Hz (SD of firing of 10Hz was used in 

some simulations, but had no demonstrable effect on outcome). The time of the first spike 

when the excitation period starts is staggered by a random number between zero and the 

period of firing of the individual neuron (mean = 40ms) to allow for variable delays in 

activation of corticostriatal neurons as the environmental context is changed. After the first 

spike, there is a random amount added or subtracted to the time of each input spike, with a 

mean of 0ms and a maximum of 5ms. This variability is introduced to simulate the noise 

seen in the up state in MSNs.

There are no sodium currents in this model, so firing is simulated by use of a probabilistic 

function when the membrane potential is above a firing threshold.

(7)

Where Vf is the firing threshold and tp is the time at which the previous action potential 

occurred. This means that the MSN will fire immediately the firing threshold is crossed as 

the rise from the down state to the up state occurs and then with a minimum refractory 

period of 20ms thereafter.

Parameter values used in the model are shown in Table 1.

Learning rules

Learning is represented as a change in synaptic weight of each corticostriatal input. This 

effectively represents a change in the maximum conductance of the synapse. There are three 

conditions under which learning occurs.

• The weight is decreased each time the neuron fires.

• The weight is increased when reward is obtained.

• The weight is decreased when an aversive event occurs.

This is equivalent to long term depression (LTD) occurring each time a neuron fires [9], or 

an aversive event occurs, and long term potentiation (LTP) occurring when reward is 

obtained [85]. The learning in both cases is based on spike timing dependent plasticity 

(STDP) rules [6, 47, 7], with a modification such that strong synapses undergo relatively 

less potentiation than weak synapses [83]. The LTD each time an MSN fires is calculated 

by:
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(8)

where W is the current synaptic weight, Cd is the average amount of depression from one 

pairing, δtInput is how long before firing an excitatory input occurred at this synapse and 

TSTDP is the decay time constant for the synaptic input. From this rule, the weight change is 

proportional to the current weight. Therefore the smaller the synaptic weight the less LTD 

will occur from one input spike-output spike pairing.

The LTP update equation (9) proposes a three factor rule for positive striatal learning after 

reward is obtained [86]. The increase in synaptic weight is related to the timing of synaptic 

input to the synapse, timing of neuronal MSN firing and the phasic change in dopamine 

levels. All 3 factors are required for LTP in the model neuron and the amount of LTP is 

determined by the temporal proximity of the 3 factors.

(9)

where ΔD is the proportional dopamine change, δtfire is the time since the MS neuron fired, 

TSTDP is the decay time constant for the synaptic input trace and TDDP is the decay time 

constant for the neuron firing. TSTDP is the trace for synaptic input in both the LTP and LTD 

rules. This represents a process such as influx of calcium into the dendritic spine occurring 

after the depolarization of the dendritic spine compartment caused by an excitatory input [8]. 

In theory this constant should be the same in both LTP and LTD. The weight change is 

independent of the current weight. Therefore a synapse with a small weight will receive the 

same amount of potentiation as a stronger synapse which had a coincident input. But this 

amount of potentiation will be a greater proportion of the original synaptic weight for the 

smaller synapse. As shown by Van Rossum et al. (2000) [83] this tends to lead to an even 

distribution of synaptic weights rather than a clustering of synaptic weights at the maximum 

and minimum possible values. This potentiation could continue with each reinforcing event 

as there is no upper bound on the synaptic strength introduced by equation (9). As there is a 

limit to how much a synapse can grow, a constant upper bound on synaptic weight of 2 is 

introduced, producing a maximum EPSP amplitude of 0.8nS.

Equation (9) defines the change in synaptic weight when an action has been selected that 

leads to reward. A similar rule is used to model disappointment or punishment. This occurs 

when an action is selected that either does not lead to an expected reward or leads to an 

outcome that is implicitly punishing. In such a situation the dopamine level is decreased 

phasically and the trough level is used to calculate amount of LTD. The update rule is a 

cross between the 3 factor LTP rule and the STDP LTD rule. The weight decrease is 

proportional to the current weight as for the LTD rule. As for the LTP rule, this is three 

factor learning using the proportional drop in dopamine level, a synaptic trace showing how 

long before the neuron fired that particular synapse had an excitatory input and a back 

propagation trace showing how long before the dopamine pulse the neuron fired.
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(10)

Again, TSTDP would seem to be implementing the same synaptic trace mechanism as in the 

earlier LTP and LTD rules, so should in theory be assigned the same value. Evidence for 

dopaminergic neuron firing decreasing in aversive situations is controversial [38], and it has 

been shown that acetylcholine levels are integral in controlling dopamine release in response 

to dopamine cell firing [15]. However, decreases in dopamine cell firing have been shown to 

lower extracellular dopamine levels in the striatum [72]. The time constant of clearance has 

been measured at 74ms [27], which is comparable to the time course of the rise in dopamine 

after burst firing that is supposedly an adequate signal for LTP. A recent model [2] of 

dopamine volumetric transmission suggests that the phasic dopamine signal does reach 

receptors very quickly. Taken together, this suggests that phasic decreases in dopamine 

neuron firing could provide an adequate signal for corticostriatal LTD.

The LTD rule (Equation 8) is applied every time an MSN fires, even when reward or 

punishment will occur. As the proportional depression from one pairing (Cd) is set to be 

very small (0.01), the comparative effect of LTD due to neuronal firing when reward or 

disappointment/punishment occurs is very small. It is included here because it is an 

important factor in stabilizing synaptic weights in simulations where one of either reward or 

disappointment/punishment do not occur at each action selection point.

Devaluation of reward/punishment signal—As has been shown by Satoh et al. (2003) 

[62], firing of dopamine neurons in choice tasks is related to the uncertainty of the choice 

leading to reward. If there are three choices and the correct choice is made on the first 

attempt (when there was only a one in three chance of being correct), the dopamine neurons 

will fire at a higher rate than when the correct choice is made on the third attempt (when the 

fact that reward is due is known with certainty in overtrained monkeys). Similarly, if the 

wrong choice is made on the first attempt, the dip in firing of dopamine neurons is less than 

when the wrong choice is made on the third attempt. We refer to this as RepeatDevaluation 

in the model (Equation 12). For the repeat devaluation, either the number of previous times 

correct is zero or the number of previous times wrong is zero. Thus the equation simulates 

the positive and negative magnitudes of the dopamine signal found when the monkey 

chooses correctly and incorrectly. It can also be seen from recordings published by Schultz’s 

group that as the response of the dopamine neurons chains back from the time of reward to 

the earliest predictor of reward, the magnitude of the dopamine cell response decreases [63]. 

We refer to this as TemporalDevaluation in the model (Equation 13). Temporal devaluation 

could also be considered as the number of decision points that any given decision is away 

from the reward/punishment when the influence of the reward/punishment on updating the 

synaptic weights that led to that decision is made.

(11)
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(12)

(13)

(14)

where DP is the proportional devaluation, ΔDmax is the maximum pulsatile dopamine level 

and DTonic is the background dopamine level. The standard level for the percentage 

devaluation used in these simulations is 30%. ΔDmax is greater than DTonic for rewarding 

events and less than DTonic for disappointing/punishing events, so producing a positive and 

negative ΔD respectively. The size of ΔD is therefore adjusted in the model to take account 

of this devaluation of the reward and punishment signal as certainty increases and as the 

current room is further from the reward.

Whilst this concept of reward devaluation can be seen from electrophysiological studies [62, 

63], it has not to our knowledge previously been applied in this manner to a computational 

model.

In modeling the PD disease process, the only factors that are changed are ΔDmax, DTonic and 

DP. All parameters in other learning equations and membrane potential equations remain the 

same.

Task Model

To test the model’s ability to learn sequences of action we simulated a chaining task where a 

subject is required to learn a sequence of choices of door colors to navigate through a set of 

rooms, eventually reaching the outside (Figure 2 and, for a full description, see [69]). This 

task was chosen because data was available for healthy controls and Parkinsonian subjects 

both on and off of L-Dopa with both similarities and differences in performance between the 

groups.

In Phase 1 the subject sees a room on the computer screen with three doors, each of a 

different color. The subject selects a door that either leads to the outside (which is 

considered rewarding) or is locked (which is considered punishing). If the subject makes an 

incorrect choice, the trial is repeated until the correct door is chosen and the outside is 

reached. Once the correct door is chosen, a new trial initiates: the display order of the three 

doors is shuffled and the subject has to choose again. When the correct door had been 

chosen five times in a row, the subject is taken to Phase 2. In this phase each trial begins in 

the second room in the chain and the subject is presented with a choice between a new set of 

doors of three different colors, all different from those seen in the first room. From the 

second room the incorrect doors are locked in the same manner as in the first room, and are 

perceived as punishing in the same manner. The correct door, selection of which is again 

considered rewarding, leads to the first room where the subject has to remember which door 

color was learned to be correct in the first phase. When the subject has selected a sequence 
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of two doors correctly five times in a row, the chain is again lengthened by one room. This 

is repeated up to a four room chain length (Phase 4).

After correct learning of the four room chain, the acquisition phases are complete and the 

subject commences an unsignaled probe phase. In the probe phase one door color in each 

room is the color that has always been correct in that room; one of the previously incorrect 

door colors is replaced with a color that was correct in another room in the acquisition 

phase; the third door is the same incorrect color as it had been in the acquisition phases. The 

subject must then navigate through the chain 6 times, starting from room 4 and choosing the 

same correct doors in the same order as in the acquisition phases. In this probe phase the 

subject shows that they have learned to select the correct door in the correct room. This is 

equated with having learned the correct sequence rather than, for instance, having learned 

“Choose red whenever you see it”.

In this task, it is not possible to learn to select by position as the doors are shuffled on each 

trial. Therefore the subject has to learn to select based on door color (which they do during a 

practice session before the testing is started). We assume that each color shown excites a 

different ensemble of cortical neurons and that there will be some differences, but some 

overlap, in the ensemble of activated neurons depending on which room the color is shown 

in (Figure 3). Since there are 3 doors in each room and 4 rooms, there are twelve possible 

cortical ensembles and we use a network of 12 model MSNs to select amongst cortical 

ensembles. In the rat barrel cortex (an area that has input to striatum) the timing of the first 

spike in a single neuron contains virtually all of the information necessary to identify the 

whisker moved [17]. We assume that, in a similar fashion, the timing of the first spike in a 

striatal MSN contains sufficient information to determine which action, and therefore which 

door color, will be chosen. The mapping from MSN to color is set at the start of the 

simulations and remains constant.

Each MSN receives an equal number of inputs from each cortical ensemble, not just from 

the ensemble that is proposing the action that the MSN selects for. Reduction in numbers of 

neurons from cortex to striatum to the output nuclei of the basal ganglia is assumed to mean 

that each MSN only then connects back to one of the ensembles innervating it. Each MSN is 

therefore a link in a corticostriatal loop and selection of that MSN represents removing 

inhibition from one cortical ensemble. Removing this inhibition selects for the action of 

choosing one color. We assume that the actual motor movement necessary to click on the 

chosen color is selected separately, possibly in a parallel, but more dorsal, corticostriatal 

loop.

The excitatory inputs to the MSNs represent the various features of the environment; the 

current room, the colors of the doors in the room and a configuration of both room and door 

color (Figure 3, illustrating the activation for one room). Each corticostriatal neuron (CSN) 

synapses with only one, randomly chosen MSN [90] and fires when the environmental 

feature that it represents is present. Approximately 120 excitatory inputs with a peak 

excitatory conductance of 0.4nS are sufficient to take the model MSN from the down state 

to the up state. To have sufficient active inputs to each MSN in each environmental state 

therefore requires modeling approximately 11500 CSNs. We appreciate that not every MSN 
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would have the required number of active inputs, but we are assuming that at least one MSN 

will in any given environmental situation, and this is the MSN that we are modeling. This 

random connection protocol makes the minimal assumptions of connectivity between 

sensory representations in the cortex and the MSNs and does not bias model MSNs for 

selecting any particular color.

At the start of the simulation all excitatory inputs have a synaptic weight of 1 (simulations 

with a SD of starting weight of 0.2 had no effect on outcome). For each trial within a room, 

all inputs associated with features in that room start to fire. As soon as one of the MSNs 

fires, the door associated with that MSN is chosen. If it is the correct door in that room, that 

is construed as obtaining reward. In that case the weights of all inputs to the neuron that 

fired are increased using the LTP learning rule in equation 9. The phasic increase in 

dopamine levels is delayed by 200ms to account for the activation time of the dopamine 

neurons after reward [51].

That trial then moves on to the next room (or outside, if it is the final room). If the door 

chosen is incorrect there is a phasic dip in dopamine and the weights of all inputs to the 

neuron that fired are decreased according to the aversive learning rule in equation 10. The 

trial is then repeated in the same room.

Dopamine profiles

Results from 3 subject groups are modeled; Healthy controls (HC), PD patients tested on 

normal dopaminergic medication (PD on) and tested after overnight withdrawal of 

medication (PD off). To simulate the three subject groups, only the tonic and phasic 

dopamine levels are changed. All other parameters are kept the same. In HC, the tonic 

dopamine level is set at 1 as a default (Figure 4A). The tonic dopamine level is decreased to 

0.8 for the PD off simulations. This is a far smaller decrease than that seen in humans in PD. 

However, long-term structural changes are likely to act to minimize the effect of the loss of 

dopaminergic neurons in humans. Modeling such changes is beyond the scope of this study, 

so we have chosen a figure for the reduced tonic dopamine level that reduces excitability of 

the model MSN, but does not make it impossible for the neuron to fire under realistic levels 

of excitation. For the PD on state, the dopamine level is increased back to 1 to reflect the 

effect of L-Dopa medication.

Studies using intracranial self stimulation (ICSS) in rats have shown that a single pairing of 

post-synaptic potential with ICSS reward can lead to increases in PSP amplitude of up to 

97% [61]. Using equation 9, with firing 200ms before reward, input to a synapse 10ms 

before firing and a phasic rise in dopamine of 1.6, gives a potentiation of 47% which would 

seem to be reasonable as opening a door would probably not be considered to be as 

rewarding as ICSS. The level of phasic dopamine is therefore set to 1.6 in the normal 

condition. In the PD off condition, the phasic rise is decreased to 1.3. This is proportionately 

similar the normal condition, but starts from a lower tonic level. For the PD on condition, 

the phasic rise in dopamine is decreased to 1.4 to reflect the decrease in the number of 

neurons contributing to the phasic rise.
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To model disappointment, the phasic level of dopamine is decreased to 0.7 in the normal 

condition. In the PD off condition, this was decreased to 0.6, again reflecting the lower tonic 

level. In the PD on condition, the phasic dip was decreased to 0.8 to simulate evidence that 

PD patients on dopaminergic medication do not learn so well from disappointment [22, 23].

Results

Additional analysis of data from Shohamy et al. (2005)

In phase 1 it is possible to make 0,1 or 2 mistakes before chancing upon the correct door. 

This gives an average of 1 error for this phase if the subject selects only by color and then 

remembers the correct door. Both healthy controls and PD on groups made about 1 error in 

the first phase and were therefore immediately selecting by color not position. This is 

reasonable as they had had a practice phase in which to learn that the significant factor was 

door color.

The main findings from Shohamy et al. (2005) [69] were presented in terms of the failure 

rates for each of the three subject groups (Figure 5A). All control subjects were able to 

complete all phases of the task. Of the 12 PD on subjects, one failed the second phase of the 

acquisition (8.5%). 4 of the 11 subjects in the PD off group (36.4%) were unable to learn the 

full sequence of rooms, 2 failing in phase 2 and 2 in phase 3. The data is re-represented here 

as the percentage failing each phase to be directly comparable to the results generated in the 

modeling studies.

Additionally error rates in each phase of the task were also measured. Due to the small 

sample size (especially in later phases for the PD off group), these results were not 

considered significant and therefore were not reported in the original paper. However, due to 

some correspondences with the model data, some additional analysis of the error rates for 

the human subjects will be given here before moving on to examine the model performance 

(Figure 5B).

In the human data any error counts for a single phase that were more than 2 standard 

deviations from the mean have been discarded. This resulted in discarding the probe error 

score for one healthy control and the removal of the phase 2 score for one PD off subject 

who then successfully completed the acquisition and probe phases.

The acquisition data were analyzed by repeated-measures ANOVA on the four learning 

stages with group as the factor. The probe data were analyzed by ANOVA.

There were no significant group differences across the four learning stages (repeated-

measures ANOVA, F(2,26)=1.10, p=.347) and no within-subject effect of stage 

(F(3,78)=1.90, p=.136). On the probe data, the groups did not differ (ANOVA, 

F(2,26)=1.05, p=.365). Further breaking down the probe errors of the PD on group (Figure 

5B) showed a bimodal distribution of errors, with 6 of the 11 subjects making less than 5 

errors and 4 of the 11 subjects making more than 10 errors (Figure 5C).
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Effect of tonic dopamine level on excitability of model neurons

Two of the currents used in the model neuron are modulated by the tonic level of dopamine, 

DTonic. The inwardly rectifying potassium current, IKir, controls the voltage of the down 

state. Increasing this current decreases the membrane potential in the hyperpolarized down 

state (Figure 6A). When the neuron is in the up state, increasing the calcium current, ICa-L, 

increases the plateau membrane potential (Figure 6B). In the classical model of Parkinson’s 

disease, MSNs of the direct pathway are expected to be less excitable under conditions of 

reduced tonic dopamine. While MSNs have been shown to be more excitable under 

conditions of reduced dopamine in some experiments [20], when direct pathway MSNs are 

specifically identified, they have been shown to be less excitable [46].

Figure 6C shows the minimum frequency of cortical inputs that leads to firing at different 

levels of tonic dopamine, with120 excitatory inputs all firing at the same mean frequency. 

The standard tonic dopamine level of 1 would require each corticostriatal input to be firing 

at approximately 24Hz to cause the model MSN to fire. When the background dopamine 

level is decreased to 0.8, as occurs in the simulations of PD off medication, the necessary 

excitatory frequency increases to 32Hz.

Errors per phase—Each model simulation consisted of 100 runs with the same 

parameters. For each run the connection of the excitatory inputs to the model MSNs, the 

colors of the doors in each room and the correct doors were randomly reassigned. Data is 

presented as errors ± SEM.

In all 3 cases the model reproduced the error rates in the probe phase but model error rates 

were generally slightly lower in the learning phases (Figure 7).

Two of the factors that lead to variations in task performance in the model are reward 

dopamine level and the reward devaluation factor. To examine the effect of these factors in 

the model each was varied independently and error rates and failures measured.

Variation of phasic reward dopamine level: A phasic dopamine level of 1.6 with a tonic 

level of 1.0 was defined as “normal” in modeling the performance of the healthy control 

subjects. Figure 8 shows the results when the phasic reward dopamine level was varied from 

1.1 to 2.0 with the tonic dopamine level remaining at 1.0. This changes the level of ΔDMax 

in equation 14.

As the phasic dopamine level was decreased the number of probe errors increased (Figure 

8B). Also, as the phasic dopamine level was decreased below 1.3, the error rate in the 

acquisition phases started to rise (Figure 8A). The rates first started to rise in the last 

acquisition phase, phase 4 and progressed to earlier phases with lower phasic dopamine 

levels. Further, as the phasic dopamine level was reduced below 1.4, the number of runs 

failing increased (Figure 8C). As with the error rates, this first became apparent in the later 

phases of acquisition. There were no failures in the probe phase.

Variation of percentage devaluation: Increasing the percentage devaluation factor over a 

range of 20% to 40% (equation 14) resulted in an increase in probe errors with little change 
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in errors in the acquisition phases until the reward devaluation rate was greater than 35% 

(Figure 9A). The increase of the probe errors as a function of reward devaluation is shown in 

Figure 9B.

Failure rates

There was a zero failure rate for both the model and the human subjects in the control 

condition. The model had a failure rate of 12% in the PD on simulation, which was higher 

than the one failure in 12 PD on subjects (8.5%).

However, all failures in the model occurred in phase 4, whereas the one failure in the human 

PD on group occurred in phase 2. The model settings that replicated the error rates for the 

PD off group produced no failures, whereas the human PD off subjects had a failure rate of 

4 out of 11 (36.4%) (Figure 5A). To examine the effect of tonic dopamine level on failure 

rate in the model, the tonic dopamine level was decreased in steps from 0.75 to 0.7. As the 

level was decreased below 0.74 there was a rapid increase in the failure rate at each step of 

the acquisition phase to reach a cumulative failure rate over the 4 acquisition phases of 62% 

at the lowest tonic dopamine level, 0.7 (Figure 10A). This can be compared to the human 

data (Figure 5A) in which the PD off group had a 36.4% cumulative failure rate over the 

acquisition phases. There were no failures in the probe phase in the human data or in the 

model data at any level of tonic dopamine examined.

Surprisingly, the average number of probe errors decreased from 3.72 at a tonic dopamine 

level of 0.75 to 1.7 at a tonic dopamine level of 0.7 (Figure 10B). This can be compared 

with the human data where PD off subjects who successfully completed the task had a trend 

towards a lower probe error rate than healthy controls (Figure 5D).

Discussion

The model presented here represents one part of the action selection circuitry of the basal 

ganglia. It does not contain complete corticostriatal loops for a full model of the actor in 

decision making. The reason for the decision to make only a partial model of the actor was 

to demonstrate more clearly the possible role of the membrane properties of the medium 

spiny neurons in action selection. In this model the steep rise from a relatively 

hyperpolarized membrane potential to a plateau membrane potential just below the firing 

threshold, coupled with a slow depolarization when the plateau membrane potential is 

reached, provides a mechanism that is sufficient to select between actions based on 

relatively small changes in the synaptic strengths of the corticostriatal afferent neurons. This 

leads to the possibility that the action selection is performed in the corticostriatal loop at the 

first possible stage, which would be the most efficient solution. This does not mean that the 

rest of the corticostriatal loop plays no part in action selection. Besides deciding which 

action to select it may be necessary to perform the action at a specific time, especially in 

sequences of actions, to adjust the intensity of the action and to terminate the action at a 

specific time. It is possible that these functions are addressed in other parts of the circuitry.

A feature of this model is the absence of lateral inhibition to produce a ‘winner takes all’ 

network. Unlike prior models [5, 28, 84, 43, 44, 73, 89] this network relies entirely on the 
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membrane characteristics of the model MSNs to give adequate differentiation in firing 

times. These simulations show that such a mechanism would seem to be adequate for 

learning to select amongst a small group of actions and to learn the correct sequence of 

actions in a set of environmental contexts.

There have been several models of the complete corticostriatal loops that have been able to 

perform action selection using different mechanisms within the loops. The model of Gurney 

et al. (2001) [31] selected actions based on the salience of the corticostriatal input. The 

strongest corticostriatal input is always selected. In our model we do not make the 

assumption that there is any initial difference in the strength of corticostriatal inputs. It has 

been shown that learning in the cortex is slower than in the basal ganglia [58, 66]. We would 

suggest that in our model action selection is an emergent property of the network of MSNs 

rather than en enhancement of a pre-existing difference in cortical ensemble activations. 

However, these two mechanisms may play roles in action selection at different stages of 

learning.

Some models have also simulated behavioral tasks in Parkinson’s disease without using 

lateral inhibition within the striatum, but using competition between pathways for selection. 

Those of Frank et al [21, 22, 23, 24] demonstrate different effects in Parkinson’s patients on 

and off medication and on deep brain stimulation. These models are at a higher level and 

perform selection through interactions of the direct and indirect pathways. The task used 

here is clearly different from the probabilistic selection task used by Frank which makes 

direct comparison of model performance difficult. However, our model shows that the 

action selection could be accomplished in the striatum and opens up the possibility of a 

different function for the interaction of direct and indirect pathways. Gruber et al. have also 

extended their original model of the MSN [30], on which our model is based, to make a 

network model of working memory. This model does not use competition amongst striatal 

units to perform action selection as this was not required in the memory task under 

consideration. It does, however, show the effect of dopamine on cortical working memory 

robustness, and this is a factor that would need to be taken into account in a full 

corticostriatal loop model. A model from Leblois et al [44] has demonstrated action 

selection as an interaction between direct and hyperdirect pathways in two parallel 

corticostriatal loops. In this model, tonic dopamine depletion causes an imbalance between 

the two pathways that leads to oscillations. The induction of oscillations in corticostriatal 

loops is clearly beyond the scope of our model, but, our proposal that action selection is 

performed at the striatal level should not change the findings of interactions between the 

direct and hyperdirect pathways in a different aspect of Parkinson’s symptomatology.

The second aspect of this model is the 3-factor learning rules that are used to adjust the 

corticostriatal synaptic weights based on feedback learning. Previous models have based 

learning solely on the magnitude of the phasic dopamine signal. The learning rules presented 

here are a first attempt at a more biophysically detailed mechanism for learning in the 

striatum.

In these simulations only two factors were changed to replicate the human behavioral data of 

control subjects and PD patients on and off medication; the tonic and phasic dopamine 
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levels. Results for the control and PD on groups fit well with the model, both in error rates 

and failure rates. For the PD off group, the model produced comparable error rates to human 

subjects, but without the high failure rate. We showed that, in the model, a further small 

decrease in the tonic dopamine level produced high failure rates, but with very low error 

rates when the task was completed successfully. This fit with the human data, where PD off 

subjects who successfully completed the task had a tendency to have lower error rates the 

control subjects (Figure 5D). This would suggest that, in Parkinson’s patients off 

medication, there is an adequate phasic dopamine signal for learning, but that, if the tonic 

dopamine level is decreased a small amount further, the acquisition phases of the task 

become increasingly difficult. As the tonic dopamine level is decreased in the model, the 

plateau membrane potential decreases (Figure 6B). Below a certain level the plateau is too 

far from the firing threshold and, even with the relatively large amounts of corticostriatal 

input noise used in the model, the MSN is very unlikely to fire. Tonic dopamine levels 

found in PD are much lower than those that cause high failure rates in the model. In humans 

there are probably compensatory mechanisms that allow the tonic level of dopamine to fall 

much further before the plateau of the MSN membrane potential is too low for the neuron to 

fire. It may be that the human data for the PD off group can be explained by a small inter-

group variation in tonic dopamine levels.

Changing the devaluation factor in the model did not reproduce patterns of errors or failure 

seen in either PD group. This would suggest that discounting of the reward is not a major 

problem in PD.

Increasing the phasic dopamine levels in the model continued to decrease the number of 

probe errors, suggesting that tasks that are more rewarding produce more rapid learning. The 

lower number of probe phase errors in PD off patients who were able to complete the task 

suggests that learning from the phasic dopamine signal is not just maintained in PD off, but 

may even be better than in controls. However, balanced against this improved signal to noise 

for learning in PD off, a small further decrease in tonic dopamine leads to high failure rates. 

Against a background of normal tonic dopamine, as in PD on, decreases in the phasic 

dopamine signal decrease learning to give an increase in probe phase errors.

This suggests that, to explain the different cognitive deficits in PD on and off medication, 

one has to take into account changes in both the tonic and phasic levels of dopamine. In PD 

off medication the deficits could be mainly due to the loss of tonic dopamine and in PD on 

medication, the deficits could be mainly due to a decrease in the phasic dopamine signal, but 

that in both cases the other aspect of the dopamine signal also plays a role.
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Figure 1. 
Some key anatomical components of the corticostriatal loops involving cognitive and motor 

areas of the dorsal striatum. Dopaminergic neurons of the SNc are lost in Parkinson’s 

disease, with relative sparing of the dopaminergic neurons of the VTA. In the model, the 

dorsal basal ganglia is represented by direct pathway medium spiny neurons. MSN – striatal 

medium spiny neuron; SNc – substantia nigra pars compacta; VTA – ventral tegmental area.
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Figure 2. 
Sample screen events for two phases as seen by a human subject. In acquisition phase 1 

(right), the subject sees 3 colored doors and chooses one by clicking with the mouse. In this 

case, the subject chooses pink and gets the reward. If the subject had chosen one of the other 

2 colors, the door would have been locked, the order of colors would have been shuffled and 

the subject would have to choose again. After choosing the correct door 5 times 

consecutively, the subject is started in phase 2 (left). Here the subject sees 3 different 

colored doors. If he chooses the wrong door, it is again locked. If, as above, he chooses the 

correct door, he sees the first room in the distance and is then moved to that room, where he 

must remember the previously learned correct door to gain the reward. After 5 consecutive 

successful 2 room navigations, the chain is lengthened to 3 and finally 4 rooms. If the 

subject learns the 4 room navigation a probe phase is started. In each room one of the 

incorrect door colors is replaced with a door color that is correct in another room. In the 

illustration above, for example, the yellow in the first room could be replaced with blue. The 

subject then has to navigate through the rooms 6 further times, choosing the colors in the 

same order as in the acquisition phases to gain the reward.
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Figure 3. 
Model neural network. Firing of one of the 12 MSNs represents selecting a particular color. 

When a subject sees a room there are 3 different colored doors and an indication of which 

room they are in. Certain model corticostriatal neurons (CSNs) fire due to the 3 colors seen. 

Each CSN is randomly connected to only 1 of the 12 MSNs. Each MSN also has inputs from 

CSNs that are activated by colors not present in the current room, so all MSNs have active 

color inputs no matter what colors are currently present. There are similar connections for 

CSNs representing the position of the room in the sequence and a configurational 

representation of both color and room position. Activated CSNs start to fire with a random 

delay after entering a room at a frequency of 25 (s.d. 2) Hz, with a jitter of s.d. 5ms between 

each firing event. The randomness in CSN firing introduces noise into the membrane 

potential of the MSN in the up state.
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Figure 4. 
Dopamine profiles used in the simulations. A). In healthy controls (HC), the background 

level is 1. The phasic rise for reward is to 1.6 and the phasic dip for disappointment is 0.7. 

B) To simulate PD Off the background level is reduced to 0.8 to reflect the reduction in 

dopaminergic neurons. The phasic rise for reward is of a similar proportion to HC, 

producing a lower absolute level of 1.3. Similarly, the phasic dip for disappointment is of a 

similar proportion, to 0.6. C). In PD On, the tonic dopamine level is restored to the HC level 

by L-Dopa. The phasic rise to reward is proportionately reduced to 1.4, simulating reduced 

capacity in the disease state. The phasic dip to disappointment is also reduced, simulating a 

decreased dopamine clearance.
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Figure 5. 
(A). Cumulative failure rates for human subjects. No control subjects failed the task. One of 

the 12 PD on subject failed the task on phase 2 (8.5%). 2 of the 11 PD off subjects failed the 

task on phase 2 and a further 2 failed on phase 3. No subjects who had completed the 

acquisition phases failed the probe phase. (B). Phase by phase error rates for healthy control 

subjects (HC), PD on and PD off subjects. Error rates in the acquisition phases do not differ 

significantly, but the PD on group show a higher rate of errors in the probe phase. (C). 

Binned error rates for the probe phase. The number of control subjects and PD off subjects 

falling into each bin decreases with number of errors. There is a bimodal distribution of PD 

on subjects, with a higher number falling into the highest probe error rate bin than into the 

middle bin. (D). Comparison of error rates across the phases of the task for control subjects 

and PD off subjects who successfully completed the task. The successful PD off subjects 

show a tend towards a lower rate of probe errors than controls.
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Figure 6. 
Effect of tonic dopamine on model MSN. (A). Increasing the tonic dopamine level further 

hyperpolarizes the membrane potential in the down state. (B). Increasing the tonic dopamine 

level increases the plateau membrane potential in the up state. The plateau membrane 

potential was measured 200ms after the start of excitation. (C). Decreasing the tonic 

dopamine level increases the minimum excitation frequency necessary to elicit an action 

potential when the neuron is in the down state.
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Figure 7. 
Comparison of human data and model error rates across the phases of the task for (A) 

healthy controls (HC), (B) Parkinson’s disease off medication and (C) Parkinson’s disease 

on L-Dopa medication. Error bars represent the standard error.
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Figure 8. 
The effect of maximum phasic dopamine reward level on model task performance. (A). As 

the phasic dopamine level at time of reward is decreased from 2.0 to 1.4, there is no change 

in the number of acquisition phase errors. As the level is decreased below 1.4, errors in the 

acquisition phases start to increase, starting first in the later phases. (B). Probe error rate is 

inversely related to phasic dopamine level. (C). Decreasing the phasic dopamine level for 

reward below 1.4 leads to an increase in the failure rates in the late acquisition phases, but 

not in the probe phase. Phasic dopamine levels above 1.4 are not shown as no failures 

occurred.
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Figure 9. 
The effect of reward devaluation level on error rates in acquisition and probe phases for the 

model. (A) Increasing the reward devaluation from 20% to 35% does not lead to an increase 

in the error rates in the acquisition phase, but does lead to an increase in probe error rates. A 

reward devaluation rate of 40% resulted in an increased error rate in phase 4. (B) Increasing 

reward devaluation rates between 22% and 35% resulted in an increase in probe errors.
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Figure 10. 
Variation of model cumulative failures (A) and error rates (B) as tonic dopamine level is 

changed. At a tonic dopamine level of 0.74, an average of 3.4 probe errors occurred, with no 

failures in 100 runs. As the tonic dopamine level was decreased to 0.7, the average number 

of probe errors decreased to 1.71 but the cumulative failure rate over the 4 acquisition 

phases increased to 62%.
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Table 1

MSN parameters used throughout these simulations.

Parameter Value

Membrane capacitance (µF/cm2) 1

Temperature (°C) 37

Excitatory reversal potential (mV) 0

Firing threshold (mV) −45

Input amplitude (µS/cm2) 0.5

Input rise time (ms) 7

Input decay time constant (ms) 8

Leakage conductance (mS/cm2) 0.008

Leakage reversal potential (mV) −75

Potassium reversal potential (mV) −85

IKir maximum conductance (mS/cm2) 1.2

IKir Vh (mV) −110

IKir Vc (mV) −11

IKsi maximum conductance (mS/cm2) 0.5

IKsi maximum variable conductance (mS/cm2) 0.1

IKsi variable conductance activation time (ms) 1000

IKsi variable conductance inactivation time (ms) 1000

IKsi Vh (mV) −13.5

IKsi Vc (mV) 11.8

Calcium concentration outside (mmol/cm3) 0.002

Calcium concentration inside (mmol/cm3) 0.00001

Calcium maximum permeability (nm/s) 4.2

Calcium Vh (mV) −34

Calcium Vc (mV) 6.1
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Table 2

Tonic and phasic levels of dopamine used to simulate healthy control, PD on and PD off data. In equation 13, 

the tonic dopamine level is DTonic and the phasic reward and disappointment dopamine levels are ΔDMax.

Tonic
dopamine level

Phasic reward dopamine level Phasic disappointment dopamine level

HC 1 1.6 0.7

PD On 1 1.4 0.8

PD Off 0.8 1.3 0.6
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