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Summary

The analysis of alterations that may occur in nature when segments of chromosomes are copied 

(known as copy number alterations) has been a focus of research to identify genetic markers of 

cancer. One high-throughput technique recently adopted is the use of molecular inversion probes 

(MIPs) to measure probe copy number changes. The resulting data consist of high-dimensional 

copy number profiles that can be used to ascertain probe-specific copy number alterations in 

correlative studies with patient outcomes to guide risk stratification and future treatment. We 

propose a novel Bayesian variable selection method, the hierarchical structured variable selection 

(HSVS) method, which accounts for the natural gene and probe-within-gene architecture to 

identify important genes and probes associated with clinically relevant outcomes. We propose the 

HSVS model for grouped variable selection, where simultaneous selection of both groups and 

within-group variables is of interest. The HSVS model utilizes a discrete mixture prior distribution 

for group selection and group-specific Bayesian lasso hierarchies for variable selection within 

groups. We provide methods for accounting for serial correlations within groups that incorporate 

Bayesian fused lasso methods for within-group selection. Through simulations we establish that 

our method results in lower model errors than other methods when a natural grouping structure 

exists. We apply our method to an MIP study of breast cancer and show that it identifies genes and 

probes that are significantly associated with clinically relevant subtypes of breast cancer.
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1. Introduction

1.1. Molecular inversion probe-based arrays for copy number measurement

DNA segments in a human genome are normally present in two copies, one copy from each 

parent. However, various studies have revealed that the numbers of copies of DNA 

segments, can vary due to local changes in the genome such as duplications, deletions, 

inversions, and translocations, resulting in gains or losses in copy numbers. Such DNA copy 

number alterations (CNA) can lead to over-expression of pro-oncogenes (genes favorable to 

cancer) or silencing of tumor suppressor genes (genes protective against cancer), and affect 

cellular functions in cell division or programmed cell death (Guha et al., 2008), and hence, 

have been identified as important drivers in many diseases including cancer (Pinkel and 

Albertson, 2005). Accumulation of these DNA errors will eventually influence the 

development or progression of cancer; hence, chromosomal copy number analysis has the 

potential to elucidate tumor progression and identify genetic markers for cancer diagnosis 

and treatment. CNAs, as gains and losses, are frequent events in breast tumors and occur in 

patterns that are thought to distinguish genetic paths to tumorigenesis and influence the 

clinical behavior of the disease (Rennstam et al., 2003; van Beers and Nederlof, 2006).

Many techniques have been developed for the genome-wide detection of CNAs, such as 

array-based comparative genomic hybridization (CGH), bacterial artificial chromosome 

CGH, and oligonucleotide array-based CGH (Pinkel et al., 1998; Iafrate et al., 2004; Lucito 

et al., 2003), which detect copy number changes for DNA segments of 5–10 kilobases in 

size. A technique that has recently been used for measuring CNAs of single alleles is the 

molecular inversion probe (MIP) (Hardenbol et al., 2003; Wang et al., 2007). Compared to 

other copy number measuring techniques such as the CGH methods, the MIP assay has the 

advantage of high resolution (detecting copy numbers of DNA sequences of small sizes up 

to one single allele), high specificity (a lower rate of false positives in copy number 

measurement), lower amount of DNA sample required, and reproducibility. We refer the 

reader to Hardenbol et al. (2003) and Wang et al. (2007) for more detailed descriptions of 

the technical aspects of the MIP assays.

MIPS studies in Breast Cancer—In this paper, we focus on the analysis of a novel 

high-dimensional MIP dataset from 971 samples of early-stage breast cancer patients (stages 

I and II) collected through the Specialized Programs of Research Excellence (SPORE) at the 

University of Texas MD Anderson Cancer Center. DNA extracted from tumor samples and 

matched normal samples (from the same patients) were prepared for copy number 

measurement in the Affymetrix™MIP laboratory, which was blinded to all sample and 

subject information. The copy numbers measured from the MIP assay were then pre-

processed using standard methods. (See Thompson et al. (2011) for explicit details regarding 

the pre-processing steps.) The MIP data include full genome quantifications for 330,000 

single alleles/probes from tumor cells of the 971 breast cancer patients.
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Structure of MIPS data—The data structure for downstream statistical modeling/analysis 

consists of log2 intensity ratios of the copy numbers in test samples to the copy numbers in 

normal reference cells for all probes across the genome. Hence, for a sample with the normal 

probe copy number (= 2), the normalized value is log2(2/2) = 0; for a probe with a gain of 

measured copy numbers (> 2) the log ratio is positive, and for a probe with a loss of copy 

numbers (< 2) the log ratio is negative. The magnitudes of the intensity ratios in the positive 

or negative direction are indicative of multiple probe-level gains and losses, respectively. 

The resulting data are continuous, with the distributions of the normalized values 

approximately symmetric around 0. Figure 1 shows an example plot of the partial MIP copy 

number profile for a randomly selected sample of one patient, where the x-axis is the 

genomic location and each vertical line is the normalized value of the copy number for an 

MIP probe. The different line patterns correspond to the group of probes mapped to the 

coding region of one gene, indicating the uniquely annotated gene structures on the 

chromosome. There are several features exemplified in the plot: (i) The copy number 

profiles have a hierarchical structure induced by biology: the contiguous probes (as per their 

genomic location) mapped to the coding region of a gene could be considered as a natural 

group of variables. (ii) There exists substantial variability, both between and within genes, 

primarily due to different numbers of probes mapped to each gene and different probes 

within the same gene contributing differently, both positively and negatively. (iii) Finally, 

there exists serial correlation between the copy numbers of the probes within the same gene, 

given their proximity by genomic location, and the correlation weakens with an increasing 

distance between two probes.

In addition to the MIP copy number profiles, non-genetic clinical information was also 

collected from the patients in the study, including the patient’s age, stage, tumor size, lymph 

node status, nuclear grade (Thompson et al., 2011). The breast tumor samples were 

classified into four subtypes based on immunohistochemical analysis of the tumor markers 

ER, PR, HER2, and Ki67: luminal A (ER+Ki67low), luminal B (ER+Ki67high), HER2+, and 

triple-negative breast cancer (TNBC) (ER−PR−HER2−). Our main focus in this paper is to 

identify probes whose CNAs are significantly associated with the clinical and pathologic 

characteristics of the tumors with an emphasis on clinical subtypes. In particular, we focus 

on the TNBC subtype, as it is among the more aggressive breast tumors for which there are 

no known treatment targets or prognostic factors. Discovering and validating CNAs that 

correlate with TNBC will identify genes and probes of high interest for further investigation 

as clinically useful diagnostic and treatment biomarkers.

We assume that many of the acquired chromosomal changes jointly affect the biological 

outcomes. Thus it is of high interest to model the joint effects of CNAs detected by the MIP 

assay and discover regions of the genome that exhibit significant associations with the 

TNBC subtype – in contrast to univariate single MIP analysis. However, inferential 

challenges for the MIP copy number dataset include not only its high-dimensionality but 

also the features of the copy number data as described above. Therefore, in our study, we 

aim to (i) pursue a variable selection method which incorporates the grouping/gene 

structures in the probe copy number profiles, (ii) identify significant genes as well as 

important probes within the genes that are associated with the clinical features of the patient, 
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as both are of equal interest where genes are known as the functional units of DNA and 

different probes within a gene may have different predictive behaviors, and (iii) account for 

the serial correlation among the copy numbers of the probes within the genes. We propose a 

novel “hunting” approach for variable selection at the two levels, a gene (group) level and 

probe-within-gene (subgroup) level – leading to a statistical formulation of hierarchical 

structured variable selection. We start with a general model for a linear regression model 

assuming independent variables. We then extend the model to account for the serial 

correlation among the variables and for the discrete responses as in our data.

1.2. Relevant statistical literature

Variable selection is a fundamental issue in statistical analysis and has been extensively 

studied. Penalized methods such as the bridge regression (Frank and Friedman, 1993), the 

lasso regression (Tibshirani, 1996), the SCAD regression (Fan and Li, 2001), the LARS 

regression (Efron et al., 2004) and the OSCAR regression (Bondell and Reich, 2008) have 

been proposed due to their relatively stable performance in model selection and prediction. 

The lasso method has especially gained much attention. It utilizes an L1-norm penalty 

function to achieve estimation shrinkage and variable selection. In a Bayesian framework, 

the variable selection problem can be viewed as the identification of nonzero regression 

parameters based on posterior distributions. Different priors have been considered for this 

purpose. Mitchell and Beauchamp (1988) propose a “spike and slab” method that assumes 

the prior distribution of each regression coefficient to be a mixture of a point mass at 0 and a 

diffuse uniform distribution elsewhere. This method is extended by George and Mc-Culloch 

(1993, 1997), Kuo and Mallick (1998), and Ishwaran and Rao (2005) in different settings. 

Other methods specify absolutely continuous priors that approximate the “spike and slab” 

shape, shrinking the estimates toward zero (Xu, 2003; Bae and Mallick, 2004; Park and 

Casella, 2008; Griffin and Brown, 2007; 2010). In particular, Park and Casella (2008) 

extend the frequentist lasso with a full Bayesian method by assigning independent and 

identical Laplace priors to the regression parameters.

These variable selection methods ignore the grouping structure that appears in many 

applications such as ours. The individual-level variable selection methods tend to select 

more groups than necessary when selection at group level is desired. To accommodate 

group-level selection, Yuan and Lin (2006) propose the group lasso method, in which a 

lasso penalty function is applied to the L2-norm of the coefficients within each group. This 

method is subsequently extended by Raman et al. (2009) in a Bayesian setting. Zhao et al. 

(2009) generalize the group lasso method by replacing the L2-norm of the coefficients in 

each group with the Lγ-norm for 1 < γ ≤ ∞. In the extreme case where γ = ∞, the 

coefficient estimates within a group are encouraged to be exactly the same. However, these 

model selection methods focus on group selection without much consideration of selection 

at the within-group level; that is, they only allow the variables within a group to be all in or 

all out of the model. More recently, some frequentist methods have been developed for 

selection at both the group and within-group levels. Wang et al. (2009) reparameterize 

predictor coefficients and selected variables by maximizing the penalized likelihood with 

two penalizing terms. Ma et al. (2010) propose a clustering threshold gradient-directed 

regularization (CTGDR) method for genetic association studies.
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In this paper, we propose a Bayesian method to perform the variable selection on 

hierarchically structured data, given that the grouping structures are known. We propose a 

novel hierarchical structured variable selection (HSVS) prior that generalizes the traditional 

“spike and slab” selection priors of Mitchell and Beauchamp (1988) for grouped variable 

selection. Specifically, instead of the uniform or multivariate normal distribution of the 

traditional “spike and slab” methods, we let the “slab” part in the prior be a general robust 

shrinkage distribution such as a Laplace distribution, which leads to the well-developed 

lasso-type penalization formulations. Unlike other group selection methods, which usually 

utilize lasso penalties for group-level shrinkage and selection, our proposed method uses 

selection priors for group-level selection that are combined with a Laplace “slab” to obtain 

Bayesian lasso estimates for within-group coefficients, and thus achieves group selection 

and within-group shrinkage simultaneously. More advantageously, because the full 

conditionals of the model parameters are available in closed form, this formulation allows 

for efficient posterior computations, which greatly aid our analysis of high-dimensional 

datasets. Using full Markov chain Monte Carlo (MCMC) methods, we can obtain the 

posterior probability of a group’s inclusion, upon which posterior inference can then be 

conducted using false discovery rate (FDR)-based methods, which are crucial in high-

dimensional data. Our method thresholds the posterior probabilities for group selection by 

controlling the overall average FDR while within-group variable selection is conducted 

based on the posterior credible intervals of the within-group coefficients obtained from the 

MCMC samples. Furthermore, we propose extensions to account for the correlation between 

neighboring variables within a group by incorporating a Bayesian fused lasso prior on the 

coefficients for within-group variable selection. Due to the conjugate nature of model 

formulation, our method could also be easily extended to nonlinear regression problems for 

discrete response variables.

The rest of the paper is organized as follows. In Section 2 we propose our hierarchical 

models for simultaneous variable selection at both group and within-group levels. In Section 

3, we extend the hierarchical models for variable selection of generalized linear models. In 

Section 4, we show the FDR-based methods for group selection. Simulation studies are 

carried out and discussed in Section 5. We apply the models to the real MIP data analysis in 

Section 6 and conclude with a discussion in Section 7. All technical details are presented in 

Appendices available as the Supplementary Materials.

2. Probability model

Let Y = (Y1, … , Yn)T denote the clinical outcomes/responses of interest from n patients/

samples and X denote the n × q-dimensional covariate matrix of q probes from MIP 

measurements. For ease of exposition we present the model for the Gaussian case here and 

discuss generalized linear model extensions for discrete responses in Section 3. The model 

we posit on the clinical response is
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where U denotes the non-genetic factors/confounders such as age at diagnosis, tumor size, 

and lymph node status with associated parameters b. We further assume that the columns of 

the data matrix X and the coefficients β are known to be partitioned into G groups/genes, 

where the gth group contains kg elements for g = 1, …, G and . We assume that a 

given probe occurs in only one gene (group), which is trivially satisfied for these data since 

the probes are grouped by genomic location and mapped to a uniquely annotated gene. Thus, 

we write X = (X1, …, XG), with β = (β1, …, βG) denoting the group-level coefficients and βg 

= (βg1, …, βgkg) denoting the within-group coefficients. The error terms ε = (ε1, … , εn) are 

assumed to be independently and identically distributed N(0, σ2) for the Gaussian responses. 

Our key construct of interest is the q-dimensional coefficient vector β, which captures the 

association between the probe measurements and the clinical outcome. Hereafter we propose 

a novel hierarchical prior construction based on the natural hierarchical structure of the 

probe measurements that simultaneously selects relevant genes and significant probes-

within-genes. We first present a model in which we assume that the explanatory variables 

are independent. We extend the method in Section 2.2 to account for within-group 

correlations.

2.1. Hierarchical structured variable selection model

At the group level, we employ a “selection” prior and introduce a latent binary indicator 

variable γg for each group g with the following interpretation: when γg = 0, the coefficient 

vector βg of the gth group has a point mass density at zero, reflecting that all predictors in the 

gth group are excluded from the regression model; conversely, when γg = 1, the gth group is 

selected in the model. At the within-group level, we assign a robust “shrinkage” prior and 

use the scale mixture normal distribution for each element in βg, conditional on γg = 1. That 

is, conditional on γg = 1, we assume each coefficient within the gth group follows a normal 

distribution with the scale parameter of the normal distribution, instead of being a fixed 

value, coming from another independent distribution, called the scale mixing distribution 

(Andrews and Mallows, 1974; West, 1987). Our hierarchical formulation of the prior for 

group g’s coefficient vector can be succinctly written as

(2.1)

where δ● represents the Dirac delta measure that places all its mass on zero, the τgj’s are the 

Gaussian scale parameters of the “slab” distribution, and (●) is a general mixing 

distribution for the normal scales τgj’s. While δ● selects at the group level by setting all 

coefficients in the gth group to zero simultaneously, the mixing distribution  is applied to 

each element within the coefficient vector βg, allowing for independent shrinkage of each 

individual coefficient at the within-group level. By setting  to different mixing 

distributions, various shrinkage properties can be obtained. In this paper, we let (●) be an 

exponential distribution, , with a rate parameter, λg, for the gth group. The 

exponential-scale mixture normal prior is equivalent to a Laplace distribution, and leads to 
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well-developed lasso formulations with a (group-specific) penalty/regularization parameter 

λg for the gth group (Park and Casella, 2008). Other formulations are possible as well, such 

as the normal-gamma prior of Griffin and Brown (2010) and normal-exponential-gamma 

prior of Griffin and Brown (2007), by using other families of scaling distributions. We call 

our prior in (2.1) the hierarchical structured variable selection (HSVS) prior, which has the 

following properties: (1) It generalizes the spike and slab mixture priors of Mitchell and 

Beauchamp (1988) to grouped settings, and accommodates robust shrinkage priors for the 

slab part of the prior, replacing the uniform slab. (2) The within-group shrinkage follows the 

well-developed lasso formulation, which promotes sparseness within selected groups and 

automatically provides interval estimates for all coefficients. (3) The hierarchy allows for 

the simultaneous selection and shrinkage of grouped covariates as opposed to all-in or all-

out group selection (Yuan and Lin, 2006) or two-stage methods (Ma et al., 2010; Wang et 

al., 2009). (4) Most importantly, it is computationally tractable for large datasets since all 

full conditionals are available in closed form. This greatly aids our MCMC computations 

and subsequent posterior inference, as we show hereafter.

Differences with Bayesian group lasso prior—In order to gain more intuition 

regarding this prior, Figure 2(a) shows the schematic plot of an HSVS prior distribution 

versus a Bayesian group lasso prior distribution (Kyung et al., 2010), the model 

specification of which is as follows

(2.2)

In each plot, the density of the HSVS prior and the group lasso prior is imposed on a group 

composed of two individual variables with coefficients β1 and β2. The “spike” at zero in the 

HSVS prior introduces group-level sparsity by simultaneously forcing both coefficients in 

the group to zero when β1 and β2 are both small in value. The Laplace distribution elsewhere 

in the prior independently shrinks individual coefficients within a group toward zero, which 

in return influences the group selection. In contrast, the Bayesian group lasso prior 

simultaneously shrinks β1 and β2 and does not lead to within-group selection. That is, the 

two variables in the group are either both selected or both excluded from the model. This 

conduct is determined by the model, as in formula (2.2), where the Bayesian group lasso 

employs a common variance  for all coefficients in group g, shrinking the coefficients 

toward zero at the same rate through a Gamma mixing distribution imposed on . Hence, 

the Bayesian group lasso selects groups but does not allow for individual variables within 

the group to be excluded from the regression model once a group is selected; whereas our 

HSVS prior results in both group and within-group variable shrinkage and selection. This is 

evident in Figure 2(b), which shows an example plot of the posterior distribution for the two 

coefficients in a group with an HSVS prior and a Bayesian group lasso prior, respectively.

To complete the prior specifications in the Gaussian case, we use a diffuse Gaussian prior 

N(0, cI) for the coefficients for fixed effects b, where c is some large value. For the 

parameter p that controls the group level selection, we use a conjugate Beta hyperprior: 
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Beta(a, b) with (fixed) parameters a and b. We estimate the group-specific lasso parameters 

 and specify a common gamma mixing distribution Gamma(r, δ), ensuring their 

positivity. We use the improper prior density π(σ2) = 1/σ2 on the error variance, which leads 

to a closed form of the full conditional distribution. These hyperpriors result in conjugate 

full conditional distributions for all model parameters, allowing for an efficient Gibbs 

sampler. (See Appendix A in the Supplementary Materials for the full conditional 

distributions and corresponding Gibbs sampling schemes.) Our full hierarchical model for 

the HSVS linear model can be succinctly written as

2.2. Fused hierarchical structured variable selection model

In the above proposed HSVS construction, we utilize a group-specific binary indicator for 

group-level selection and a Bayesian lasso method via independent Laplace priors for 

within-group shrinkage, which is invariant to the permutation of the order of the group-

specific variables. However, as mentioned previously, there exists serial correlation between 

probes within the same gene, and given their proximity by genomic location, positively 

correlated probes are likely to have similar effects on the response. That is, their 

corresponding regression coefficients also tend to be positively correlated. Similar 

arguments have been used in many other contexts as seen in Li and Zhang (2010), 

Tibshirani et al. (2005), and Huang et al. (2011). Hence, a prior introducing positive 

correlations between adjacent coefficients within a gene is desired in such situations where 

there exists a natural ordering of the variables to account for the “serial” structure of the 

data. In addition, in Bayesian variable selection methods with independent priors on the 

coefficients such as Lasso, highly positively correlated predictors would result in a negative 

correlation between the coefficients in the posterior, discouraging them from entering the 

regression model simultaneously (Kyung et al., 2010). That is, inclusion of one variable in 

the model would eliminate its correlated variables from the model. Such a prior with 

positive correlations as a priori on the coefficients would smooth the coefficient estimates 

toward each other in the posterior, encouraging correlated variables to be selected in the 

model simultaneously. For this purpose, we extend our HSVS model to accommodate these 

correlations via a Bayesian fused lasso formulation, as detailed below.

We first start by presenting the Bayesian version of the fused lasso by Tibshirani et al. 

(2005) for non-group settings, and then explain how we extend it to our HSVS setting where 

natural groupings exist.

Fused Lasso—Consider a regular linear regression model (without grouping structures) as
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where β = (β1, … , βk)′, the frequentist fused lasso estimates the regression coefficients by 

minimizing the penalized negative log-likelihood:

In comparison with the regular lasso, the fused lasso utilizes two regulation parameters. The 

first parameter λ1 encourages sparsity in the coefficient estimation, and the second 

parameter λ2 reduces the differences between neighboring coefficients, thus encouraging 

smoothness in the coefficient profiles βj as a function of j and accounting for the adjacency 

structure of the data.

Bayesian Fused Lasso—From the Bayesian point of view, the fused lasso estimates 

could be viewed as the posterior mode estimates with the regression parameters following a 

Laplace prior. Specifically, Kyung et al. (2010) considered a fully Bayesian analysis using a 

conditional prior specification of the form

(2.3)

which is the product of independent Laplace priors on βj, j = 1, … , k, and βj+1 − βj, j = 1, 

… , k − 1. Each Laplace prior could be represented as an Exponential scale mixture of 

normal distributions (Park and Casella, 2008). Hence, the prior in (2.3) is equivalent to the 

hierarchical prior

(2.4)

where  is a tridiagonal matrix with

and  and  are defined as 0. This proof follows that of Kyung et al. (2010) for non-

grouped settings. We extend it here for grouped settings.
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Fused HSVS—In our second proposed prior, the fused-HSVS, we assign the fused lasso 

prior in (2.4) to each group of coefficients βg for within-group variable selection and derive 

the hierarchical model as follows:

where the τgj’s are the variances of the individual coefficients within a group and the ωgj’s 

introduce correlations between neighboring coefficients in the prior. By using the 

exponential hyperpriors with the regularization parameters, λ1g’s and λ2g’s, the hierarchy 

shrinks the coefficient estimates and reduces the difference in neighboring coefficients.

As with the independent HSVS model, we can assign a beta hyperprior distribution to the 

parameter p and diffuse gamma hyperprior distributions Gamma(r1, δ1) and Gamma(r2, δ2) 

to the two sets of regularization parameters {λ1g : g = 1, …, G} and {λ2g : g = 1, … G}, 

respectively. We use the same prior parameters for λ1g’s and λ2g’s. However, different 

values could be used for each set. These choices of hyperprior densities lead to conjugate 

conditional posterior distributions, which can then easily join the other parameters in the 

Gibbs sampler. The full hierarchical model with fused within-group priors is formulated as 

follows:

2.3. Choice of hyperparameters

We discuss the hyperparameter specifications here and note that our complete posterior 

sampling schemes are available in Appendix A in the Supplementary Materials. For the 

parameters of the beta prior on p in the HSVS and fused-HSVS models, we set (a, b) = (1, 

1), which is a uniform prior. This choice of prior gives that the prior probability for any 

specific model in which nonzero coefficients are present in exactly k of the groups is 
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proportional to  (Scott and Berger, 2010), which encourages sparsity in model 

selection. More informative choices can be accommodated using appropriate specifications 

of these parameters. For the gamma priors of  in the HSVS model and of  in the 

fused-HSVS model, we consider the shape parameters (r, r1, r2) to be 1, as in Kyung et al. 

(2010) and Park and Casella (2008), such that the prior densities approach 0 sufficiently fast, 

and we use the empirical Bayes estimator of the rate parameters (δ, δ1, δ2). For example, 

conditional on r = 1, the empirical Bayes estimator of δ in the HSVS model is 

 at the kth iteration. We found that these choices of hyperparameters are 

sufficiently robust, both in our simulated and real data examples. A more detailed discussion 

of prior sensitivity is provided in Appendix B in the Supplementary Materials.

3. Generalized hierarchical structured variable selection model for discrete 

responses

Due to their conjugate construction, both the HSVS and fused-HSVS models can be 

extended to discrete responses using the latent variable formulations, as in Albert and Chib 

(1993) and Holmes and Held (2006). We present the binary case and note that extensions to 

multinomial and ordinal responses can be dealt with in a similar manner.

Suppose that n binary responses, Y1, …, Yn, are observed and that Yi has a Bernoulli 

distribution with probability pi. Following Albert and Chib (1993), we relate the explanatory 

variables to the responses using a probit regression model

where Z1, …, Zn are n independent latent variables. The prior on β parallels the 

developments in Sections 2.1 and 2.2 with the Yi’s replaced by Zi’s, giving rise to our 

generalized-HSVS model. The generalized-HSVS model leads to a truncated normal for the 

full conditional distribution of the Zi. Hence the Zi’s can easily be embedded in the Gibbs 

sampling. The posterior distribution and Gibbs sampling of the Zi’s are detailed in Appendix 

A in the Supplementary Materials.

Note that we choose the probit regression model of Albert and Chib (1993) for binary 

responses in consideration of its computational ease. An alternative to the probit model for 

the binary responses is to perform logistic regression by mixing latent Gaussian models, as 

described by Holmes and Held (2006).

4. Model selection using false discovery rates

The posterior sampling schemes we have outlined explore the model space and result in 

MCMC samples of both the group indicators and the corresponding within-group 
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coefficients at each iteration. We want to select explanatory groups that are significantly 

associated with the response variable. There are different ways to summarize the 

information in the samples for conducting model selection. One could choose the most 

likely set of groups (posterior mode) and conduct conditional inference on the selected 

model. However, this particular configuration of variable groups may appear in only a very 

small proportion of MCMC samples. An alternative strategy is to utilize all of the MCMC 

samples and average over the various models visited by the sampler. This model averaging 

approach weighs the evidence of significant groups using all the MCMC samples and 

generally results in regression models with better prediction performance (Hoeting et al., 

1999; Raftery et al., 1997) – a strategy we follow here. We outline an approach to conduct 

model selection based on controlling the false discovery rate (FDR) (Benjamini and 

Hochberg, 1995) which is especially crucial in the high-dimensional settings that are of 

interest here.

Suppose we have T posterior samples of a parameter set from an MCMC computation. 

Recall that by our prior structures, for each MCMC iteration, a certain set of variable groups 

is included in the regression model whose group indicator , where  is the value of 

γg at the tth MCMC iteration. Let pg represent the posterior probability of including the gth 

group in the model, g = 1, …, G. We can estimate pg to be the relative number of times the 

gth group is present in the model across the T MCMC samples:

We assume that for some significance threshold ϕ, any variable group with pg > ϕ is 

significant, and thus is included in the regression model. Then the set of groups ϕ = {g : pg 

> ϕ} contains all the groups considered to be significant. Note that the (1 − pg)’s can be 

interpreted as the estimates of the local FDR (Storey, 2003) as they measure the probability 

of a false positive if the gth group is significant but is not a predictor group in the true model. 

The significance threshold ϕ can be determined based on classical Bayesian utility 

considerations, such as in Müller et al. (2004), based on the elicited relative costs of false 

positive and false negative errors, or can be set to control the overall average Bayesian FDR. 

(See Morris et al., 2008; Baladandayuthapani et al., 2010; and Bonato et al., 2011 for 

detailed expositions in other settings.)

Thus, given a global FDR bound ν ∈ (0, 1), we are interested in finding the threshold value 

ϕν for flagging the set of groups pg > ϕν as potentially relevant and labeling them as 

discoveries. This implies that the threshold ϕν is a cut-off on the (model-based) posterior 

probabilities that corresponds to an expected Bayesian FDR of ν, which means that 100ν % 

of the groups identified as significant are expected to be false positives. The threshold ϕν is 

determined in the following way: for all the groups g = 1, …, G, we sort pg in descending 

order to yield p(g), g = 1, … , G. Then, ϕν = p(ξ), where . 

Thus, the set of groups ϕν = {g : pg > ϕν} can be claimed as significant in the regression 

model based on an average Bayesian FDR of ν. For the within-group selection, we select 
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individual variables (conditional on the significant groups) using the 95% two-sided credible 

intervals of the coefficients, which are based on the posterior probability distributions of the 

MCMC samples.

5. Simulation studies

We conducted two detailed simulation studies to evaluate the operating characteristics of our 

method in the context of a linear regression model and a probit regression model (closely 

mimicking our real MIPS data), as presented respectively in Sections 5.1 and 5.2 

respectively.

5.1. Simulations for linear regression models

We first assumed a simple linear model,

and considered five scenarios that portray different aspects of the data generating process, 

with the following specification of the covariate matrix, X.

• Model I: We first generated 21 latent random variables Z1, …, Z20 and W from 

independent standard normal distributions. The covariates X1, …, X20 were defined 

as . We considered 20 variable groups for the regression model, 

where the ith group, i = 1, …, 20, is composed of all the terms in a fourth-degree 

polynomial of Xi. The datasets were simulated from the following true model

where ε ~ (0, 22). We collected 100 observations from each run. This model is 

similar to the settings used in Yuan and Lin (2006), where the predictors have a 

natural grouping structure. However, our study is different in that not all elements 

in a group are present in the true models, i.e., some of the within-group coefficients 

are set to zero. Hence, selections at both group and within-group levels are desired 

for the model.

• Model II: We generated the covariates X1, …, X20 as in model I. We then 

considered 20 variable groups for the regression model, where the ith group, i = 1, 

…, 20, is composed of all the terms in a fourth-degree polynomial of Xi. However, 

the data were simulated from a true model with a total of 9 variable groups, each 

containing only 2 terms of the fourth-degree polynomial. We collected 100 

observations from each run. This model has the same setting as model I except for 

the sparsity level in the true model, with model II being less sparse (having more 

variables) than model I.

• Model III: We generated 20 latent variables Z1, …, Z20 independently from a 

standard normal distribution. We then considered 20 groups for the regression 
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model, with each group composed of four variables, Xij for j = 1, …, 4. The Xij’s 

were generated as , where eij ~ N(0, 1). The data were simulated 

from the true model

where ε ~ N(0, 22). We collected 100 observations from each run. In model III, the 

four candidate variables within the same group are correlated, with a correlation r = 

0.5; whereas the variables between groups are independent. The true model 

includes partial elements within three groups. Hence, selections at both group and 

within-group levels are desired for the model.

• Model IV: We generated 20 latent variables Z1, …, Z20 independently from a 

standard normal distribution. We then considered 20 groups for the regression 

model, with each group composed of four variables, Xij for j = 1, …, 4. The Xij’s 

were generated as , where eij ~ N(0, 0.12). The data were 

simulated from the same model as in model III. We collected 100 observations 

from each run. This model has the same setting as model III, except that the 

variables within the same group have a much higher correlation, r = 0.99.

• Model V: We generated 10 latent variables Z1, …, Z10 independently from a 

standard normal distribution. We then considered 10 groups for the regression 

model, with each group composed of 10 variables, Xij, j = 1, …, 10. The Xij’s were 

generated in the same fashion as in model III. The data were simulated from the 

true model

where ε ~ N(0, 22). We collected 100 observations from each run. Thus, model IV 

includes two predictive groups, each group having a block of constant nonzero 

coefficients. We use model IV to compare the performance of the HSVS and fused-

HSVS method when collinearity between neighboring coefficients is present in a 

group.

For each dataset generated from models I, II, III, or IV, the HSVS, group lasso, regular 

lasso, and stepwise selection methods were used to estimate the coefficients. For each 

dataset generated from model V, the HSVS, fused-HSVS, and group lasso methods were 

used to estimate the coefficients. The Bayesian estimates were posterior medians using 10, 

000 iterations of the Gibbs sampler after 1, 000 burn-in iterations. Significant groups were 

selected based on an FDR of ν = 0.10. The regular lasso and group lasso methods estimated 

coefficients using the lars (Efron et al., 2004) and grpreg (Breheny and Huang, 2009) 

packages respectively, with the tuning parameters selected using Cp-criterion and 5-fold 

cross validation. To evaluate the performance of each method, we use the true model error 

defined as
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(5.1)

Table 1 summarizes the average model errors over 200 runs, along with the number of false 

positive (FP) and false negative (FN) groups/individual variables selected for each method. 

The results show that the HSVS method has slightly smaller model errors than the group 

lasso method and significantly smaller model errors than the lasso and stepwise methods for 

models I, II and III; but it performs no better than the group lasso for model IV, where there 

are extremely high correlations within groups. For the group-level selection, the HSVS 

method is similar in performance to the group lasso method. However, the HSVS method 

has an obviously higher FN rate than the group lasso when the number of nonzero groups 

increases, as indicated in model II. For the within-group-level selection, we used the 95% 

posterior credible intervals based on MCMC samples to select significant variables within 

the FDR-based significant groups. Table 1 shows that the HSVS method performs better 

overall than the other methods, with lower FP rates, although at the price of a little higher 

FN rates. This is expected since we use the Bayesian lasso formulation, which shrinks 

within-group coefficients toward zero. Hence, the model tends to exclude the within-group 

variables that have only weak effects on the response. In our simulation study, the HSVS 

model has higher probabilities of obtaining FN for those variables whose true coefficients 

are less than 0.5 in absolute value.

The results of model V estimation show that the fused-HSVS method has a lower mean 

model error than the other two. In addition, the fused-HSVS method performs better than the 

HSVS method in within-group-level selection, with both lower FP and FN rates. The results 

show that the fused-HSVS method, as expected, is better when the variables within a group 

have similar effects on the response. Compared to the HSVS prior, the fused-HSVS prior 

leads to less variation in coefficient estimates within a group, due to the constraint on the 

differences between neighboring coefficients.

5.2. Simulations based on real data

In this section, we conduct a second simulation study for high-dimensional generalized 

linear models closely mimicking our real breast cancer copy number data. Specifically, we 

simulated data with binary responses from the following regression model,

with εi ~ N (0, 1), leading the probit regression model. We considered a high-dimensional 

dataset of 1, 800 variables composing 157 groups, with the grouping structure simulating the 

gene-probe architecture of a subset of genes from a randomly chosen segment on 

chromosome 7 in the breast cancer data. The posterior median estimates of the parameters 

obtained by the fused-HSVS method for the subset from the Bayesian analysis (presented in 

Section 6) were taken as the true values of β, which include 24 nonzero individual 
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coefficients from 8 significant groups. The coefficients from the 8 significant groups range 

from −0.8 to 0.6, with the neighboring coefficients relatively close in value. The plot 

showing the values of the coefficient parameters is included in Figure S1 in the 

Supplementary Materials. One confounder variable was generated from a standard normal 

distribution for the matrix U with its coefficient randomly chosen from the interval (0, 1). 

The data matrix, X, was generated with the following two correlation structures:

• Model VI: The data matrix, X, was partitioned by columns where each submatrix 

Xg corresponds to the covariates of the gth group. The grouping structures were the 

same as those of the breast cancer data. For each group g, the corresponding 

submatrix, Xg, was independently generated from N(0, Σ) with the element of Σ set 

as σij = 0.5|i−j|.

• Model VII: As with model VI, the data matrix, X, was partitioned by columns 

where each submatrix Xg corresponds to the covariates of the gth group. The 

grouping structures were the same as those of the breast cancer data. For each 

group g, the corresponding submatrix, Xg, was independently generated from N(0, 

Σ). Different from model VI, the element of Σ was set as σij = 0.9|i−j|. Hence, the 

model has a higher level of within-group correlations in generating X than model 

VI.

For each model, we collected 900 observations for each run. The generalized HSVS, 

generalized fused-HSVS, and generalized group lasso methods were compared in estimating 

models VI and VII. As in Section 5.1, the Bayesian estimates were posterior medians using 

10, 000 iterations of the Gibbs sampler after 1, 000 burn-in iterations. Significant groups 

were selected based on an FDR of ν = 0.10. The generalized group lasso method estimated 

coefficients using the grpreg (Breheny and Huang, 2009) package with the tuning 

parameters selected by 5-fold cross-validation.

The average model errors over 40 runs are presented at the bottom of Table 2, along with the 

number of FP and FN groups/individual variables selected for each method. We note that the 

fused-HSVS method has obviously lower mean model errors than the other two methods, 

and the mean model errors of the HSVS are a little higher than those of the group lasso 

method. Considering the n/q ratio and the small magnitudes of the true coefficients values 

(from −0.8 to 0.6), the difference in performance is probably due to that the HSVS method 

strongly shrinks each coefficient individually toward zero while the fused-HSVS is able to 

borrow strength from neighboring coefficients and prevent over-shrinking weak coefficients. 

The model errors of the HSVS and fused-HSVS methods increase with the serial 

correlations among the variables, which agrees with the simulation results of model III. For 

variable selection, the HSVS and fused- HSVS methods have significantly lower FP rates 

than the group lasso method at the price of slighter higher FN rates, both at the group and 

within-group levels. Compared with the group lasso method, the HSVS methods are strong 

variable selectors at both levels, resulting in sparser model inference, especially for data 

with q ≫ n. In addition, the fused-HSVS method has lower FN rates than the HSVS while 

maintaining low FP rates, which is consistent with their performance in model error, 

indicating that the fused-HSVS is better at detecting groups with consistently weak signals.

Zhang et al. Page 16

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Robustness to model misspecifications: to test the robustness of our methods to model 

misspecification, we further generated data from the same models and parameter 

configurations, but let the error term εi follow a heavy-tailed distribution. We used a 

 and a skewed distribution , both of which have mean 0 and 

variance 1, as in the probit model. The results, as presented in Table 2 are very similar to the 

results of the simulations with εi ~ N (0, 1). We found that a moderate heavy-tail or 

skewness in the error distributions do not have a significant impact on the inference for our 

simulations.

6. Application to genomic studies of breast cancer subtype

We applied our algorithm to the MIP assay dataset to identify genes as well as probes that 

are significantly associated with the clinically relevant subtypes of breast cancer. The 

subtypes of the 971 breast cancer samples are as follows: 389 are classified as luminal A, 

156 as luminal B, 158 as HER2+, 184 as TNBC, and 84 as unclassified. As mentioned 

previously, we elected to focus on modeling the TNBC subtype with the copy number data. 

Hence, we have binary response variables, with Yi = 1 if patient i has the TNBC subtype, 

and Yi = 0 otherwise. Throughout our article, we considered the error term εi’s to be 

independent and identically distributed Gaussian errors, since we treat samples/patients as 

replicates and any correlation between the patients is accounted for by the copy number 

profiles. We believe this is a reasonable assumption for our dataset, since all samples are 

obtained from a (somewhat) homogeneous pool of patients with early-stage breast cancer.

We modeled the binary response using the HSVS and fused-HSVS model for generalized 

linear models as discussed in Section 3. The candidate variables are the 167, 574 probes that 

are mapped to the coding regions of 16, 523 unique genes, with the probes in the same gene 

treated as a group. The sizes of the groups (numbers of probes in a gene) range from 1 to 

over 100, with an average around 10 and mode around 6. We ran our HSVS models for each 

chromosomal arm separately, used 10, 000 MCMC iterations with a burn-in of 1, 000 for 

inference and selected genes based on an FDR of ν = 0.10. The convergence of the MCMC 

chains was assessed based on the Geweke diagnostic test (Geweke, 1992), which tests 

equality of the means of two nonoverlapping parts of a chain (the first 0.1 and the last 0.5 by 

default). The Geweke statistic asymptotically follows a standard normal distribution if the 

means are truly equal. The test on the MCMC samples on a random sample of model 

parameters indicated stationarity of the chains since the statistics were within (−2, 2). The 

traceplots of three of these parameters are presented in Figure S2 in the Supplementary 

Materials.

A total of 271 genes were selected by the HSVS model for further biological investigation. 

These genes were identified as significantly amplified (positive) or decreased (negative) in 

the TNBC samples compared with other subtypes. Figure 3(a) shows the posterior 

probabilities of the genes on two chromosomes, with the dashed line indicating the FDR 

threshold. A gene is considered significant if the associated probability exceeds the 

threshold. For each selected gene, the posterior distributions of coefficients for the gene-

specific probes are also provided for detailed examination of the different impacts of the 
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probes on a gene’s function. Figure 3(b) shows the posterior median coefficient estimates 

and the corresponding 95% credible intervals for the probes for two gene groups.

The selected genes were analyzed through the use of Ingenuity Pathway Analysis (IPA) 

software (Ingenuity® Systems, www.ingenuity.com) in order to gain insight into the 

signaling pathways and cellular functions associated with the set of genes. The functional 

analysis of the selected genes identified the biological functions that were most significant to 

the selected genes, as displayed in Figure 4(a). The vertical axis gives the negative log ratios 

of the p-values of right-tailed Fisher’s exact tests, determining the probability that each 

functional term assigned to the set of selected genes is due to chance alone. Most 

interestingly, the humoral immune response is significant only in genes with decreased copy 

numbers in the TNBC samples, while the post-translational modification is found only in 

genes with increased copy numbers in the TNBC samples. This indicates that the 

aggressiveness of the TNBC cells may be related to a reduced immune response mediated 

by antibodies produced by B cells, and excessive post-translational modification of 

functional gene products. In addition, we find that the genes amplified in the TNBC samples 

include the enzymes associated with oxidative phosphorylation (as seen in Figure 4(b)). It is 

generally thought that cancer cells metabolize glucose by glycolysis rather than the more 

efficient oxidative phopshorylation. The copy number gain of the genes associated with 

oxidative phosphorylation may provide new clues about the TNBC tumor subtype. The copy 

number gain of RBBP8 also indicates an effect of the oxidative stress caused by the 

enhanced oxidative phosphorylation in the TNBC samples. Other genes whose identification 

as amplified agrees with previous biology studies include oncogenes such as PI3K 

(phosphoinositide-3-kinase) and SOS1 (son of sevenless homolog 1), and oncogenic 

transcription factor ETS1 (v-ets erythroblastosis virus E26 oncogene homolog 1-avian) 

(Chinnadurai, 2006; Dittmer, 2003), which are amplified in TNBC. Other genes with 

decreased copy numbers in the TNBC samples are BTG2 (BTG family, member 2), which 

correlates with increased survival in breast cancer; PLK2 (polo-like kinase 2), which is 

associated with checkpoint-mediated cell cycle arrest; IRS1 (insulin receptor substrate 1), a 

suppressor of metastasis in breast cancer; IL9 (interleukin-9) and IL13 (interleukin-13), 

which are associated with triggering immune response; and THBS1 (thrombospondin 1), an 

angiogenesis inhibiting factor (Eckerdt et al., 2005; Gibson et al., 2007; Lawler, 2002).

The fused-HSVS model identified 294 genes that are significantly associated with the 

TNBC subtype, most of which (232 genes) are the same as those identified by the HSVS 

model. A functional analysis shows that the associated biological functions are similar 

across the gene sets identified by the two methods (as seen in Figure 5(a)). Most of the 

genes of interest mentioned above for the HSVS model were also selected by the fused-

HSVS model.

As a comparison, we also ran the frequentist group lasso method on only the 1st 

chromosome, which identified 159 genes on that single chromosome as being associated 

with the TNBC subtype, while the HSVS and fused-HSVS method identified only 20 and 21 

genes respectively on the same chromosome. For the within-group variable level, the HSVS 

identified 20 probes within 11 genes as having a significant effect that should be further 

inspected. The fused-HSVS method identified 20 probes within 10 genes; whereas the group 
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lasso included 2486 probes (over 98%) of the total located in the selected 159 genes. These 

results agree with the simulations in that the group lasso method tends to select over-dense 

models while the HSVS methods are favored for parsimonious modeling with a relatively 

small number of genes selected for further investigation. Furthermore, the group lasso 

includes almost all the probes within the selected genes in the model, whereas the HSVS 

methods select predictive probes within a significant gene, providing detailed information 

on the different levels of contribution of the probes within a selected gene to its functioning. 

Figure 5(b) shows the coefficient estimates for the HSVS methods and the frequentist group 

lasso method on a truncated DNA segment of 1041 probes located in the coding region of 

140 genes on chromosome 1. All the genes identified by the frequentist group lasso method 

also showed signals based on the HSVS methods. However, only two of them were 

considered significant when using the FDR-based selection method. Comparing the HSVS 

and fused-HSVS models, the latter identified one more gene, whose group members had 

very small coefficient estimates (0 to 0.20). This result suggests that, compared with the 

HSVS method, the fused-HSVS method has a higher chance of selecting large groups of 

variables with consistently weak predictor members.

To conduct model diagnostics on our analysis method, we randomly split the samples such 

that 80% of the samples were randomly chosen as the training data and the remaining 20% 

as the test data. We pooled the genes selected by both the HSVS or fused-HSVS method, 

and re-applied the generalized HSVS, fused-HSVS, and group lasso methods to the training 

data, including only the selected genes for parameter estimation. The estimated models were 

then used to predict the binary responses for the test data. The diagnostic process of splitting 

the samples and running the estimations and predictions was repeated ten times. The HSVS 

method on average correctly classified 144.1 samples (80.96%) out of the 178 samples in 

the test data with the standard error to be 5.68, the fused-HSVS and group lasso methods 

correctly classified 147.7 (82.98%) and 148.9 (83.65%) in mean with their standard errors to 

be 4.85 and 3.45, respectively. A multiple comparison test shows that the misclassification 

rates by the three methods are not significantly different from each other. When we look at 

each category, the fused-HSVS correctly classified 51.66% of the TNBC patients and 

90.97% of other patients on average, the group lasso 29.83% of the TNBC and 97.39% of 

others, and the HSVS 12.50% of the TNBC and 98.31% of others. We note that the rates of 

misclassifying the TNBC patients are high for all three methods (48.35% with the fused-

HSVS at the lowest). This is probably due to the fact that the data have insufficient 

information for correct prediction of TNBC given the limited number of TNBC samples in 

the data. However, given the equivalent predictive performance by the three methods, the 

HSVS methods identify much fewer genes than the group lasso, greatly shrinking the pool 

of potentially relevant genes for subsequent investigation without missing important genes. 

In addition, we also used the CTGDR method (Ma et al., 2010) for prediction in the 

diagnostic test as a comparison, which assumes a logistic regression model for binary 

responses. The CTGDR method on average correctly classified 131.3 samples (73.76%) out 

of the 178 samples in the test data with the standard error to be 3.16. For each category, it 

correctly classified 36.48% of the TNBC and 83.36% of other patients on average. The 

result shows that the CTGDR method is significantly lower than the other three methods in 
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identifying non-TNBC patients, which could be due to that the CTGDR method assumes a 

different generalized linear model for the binary response.

7. Discussion

In this paper, we propose a novel Bayesian method that performs hierarchical variable 

selection at two levels simultaneously. Compared to Wang’s hierarchical penalization 

method (Wang et al., 2009), which provides shrinkage at both group and within-group 

levels, the HSVS method conducts selection of groups and shrinkage within groups, with the 

significance of a group explicitly elucidated by the posterior probability of group inclusion 

based on MCMC samples. In addition, instead of yielding point estimates of the parameters, 

as in the frequentist method, the Bayesian HSVS method yields posterior distributions of the 

parameters, which provide the degrees of uncertainty in model inference. Finally, the HSVS 

model can be easily extended by implementing different “slab” priors to account for the 

characteristics of the data, as in the fused-HSVS model.

We conducted simulation studies under various settings to evaluate the operating 

characteristics of our method. We found our HSVS method to be a strong variable selector 

at both group and within-group levels, which satisfies the need for parsimonious model 

selection. The proposed method performs better overall than the group lasso and regular 

lasso methods when both group-level and within-group-level selections are desired. 

However, the performance of the HSVS method decreases when the true model is less 

sparse or the variables have only weak effects on the response, due to the joint effect of the 

spike and slab and the lasso priors used in our method. In addition, the HSVS method 

performs slightly worse than the group lasso method when high correlations exist within 

groups. This is not surprising since we use the Bayesian lasso for within-group selection, 

and it is not robust to such correlations.

Considering the serial correlation structure among the probes within a gene in the MIP data, 

we propose the fused-HSVS model by replacing the independent Laplace priors with the 

fused lasso priors for within-group-level selection. The implementation of the Bayesian 

fused lasso method encourages neighboring coefficients within a group to be close in value. 

This is expected in the genetic association study of the MIP data since the copy numbers of 

neighboring probes within a gene are positively correlated and hence are thought to have 

similar effects on breast cancer development.

We applied the HSVS and fused-HSVS methods to the genetic association analysis of the 

MIP dataset collected from patients with breast cancer. The genes selected by the two 

methods are mostly in common. However, the analysis suggests that the fused-HSVS prior 

tends to have a higher sensitivity than the HSVS prior for the genes whose probe variables 

have consistently weak regression coefficients.

There are several possible extensions of our HSVS-based models to more general settings in 

which variables have natural grouping structures. Examples of such applications include 

polynomial effects of the same factor, genes belonging to the same pathway, and proteins 

composing the same molecular complex. Another interesting extension would be in a 

survival context for time-to-event responses, which will address the more important 

Zhang et al. Page 20

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



biological question of finding prognostic markers for cancer progression. Finally, we can 

easily extend the hierarchical model by changing the “slab” part of the group prior for 

different purposes such as stronger within-group variable selection using various types of 

shrinkage priors. We leave these tasks for future consideration.
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Fig. 1. 
Copy number profile from a tumor sample. The log-ratios are plotted on the vertical axis 

against their genomic position (in MB). The line type patterns indicate the gene structures on 

the chromosome. MB: megabases; 1MB = 1,000,000 bases, where bases (or nucleobases) 

are structural units of DNA.
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Fig. 2. 
Schematic plot of prior and posterior distribution of the hierarchical structured variable 

selection (HSVS) method. (a) Left: the density curve of an HSVS prior for a group with two 

variables; Right: a Bayesian lasso prior for a group with two variables. (b) Left: an example 

plot of the posterior distribution for a group with two variables when an HSVS prior is 

applied; Right: an example plot of the posterior distribution for the group of two variables 

when a Bayesian lasso prior is applied.
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Fig. 3. 
Data analysis results: (a) The posterior probabilities of being included in the model in 

MCMC samples for the genes on chromosome 7 (left panel) and 12 (right panel). The 

dashed line indicates the FDR threshold where genes with probabilities above the line are 

considered significant; (b) The posterior median estimates with 95% credible intervals for 

the probes in two significant genes groups. The gene names are shown on the top of each 

plot. MB: megabases; 1MB = 1,000,000 bases, where bases (or nucleobases) are structural 

units of DNA.
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Fig. 4. 
Functional analysis of selected genes by the Ingenuity System. (a) Ontology terms 

associated with the genes that have a gain or loss of copy number in the TNBC data; (b) 

Ingenuity pathway depicting oxidative phosphorylation. The complexes denoted by the solid 

ellipses show the point at which each of the five genes (enriched in copy-number) plays a 

role in this pathway.

Zhang et al. Page 27

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 5. 
Analysis results for the fused-HSVS model. (a) Comparison of the functional terms 

associated with the genes indicated by the HSVS (black color) and fused-HSVS (light grey 

color) methods. The plot is generated by the Ingenuity System; (b) Comparison of the 

coefficient estimates of a truncated MIP dataset for the HSVS model and fused-HSVS 

model. The left plot shows the posterior median estimates of the HSVS model with 95% 

credible intervals; the right plot shows the posterior median estimates of the fused-HSVS 

model with 95% credible intervals. The cross symbols in (b) are the coefficient estimates of 

the frequentist group lasso method.
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