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The advent of genomic analyses has revolutionized the study of human health. Infectious disease research in particular has
experienced an explosion of bacterial genomic, transcriptomic, and proteomic data complementing the phenotypic methods
employed in traditional bacteriology. Together, these techniques have revealed novel virulence determinants in numerous
pathogens and have provided information for potential chemotherapeutics. The bacterial pathogen, Helicobacter pylori, has been
recognized as a class 1 carcinogen and contributes to chronic inflammation within the gastric niche. Genomic analyses have
uncovered remarkable coevolution between the human host andH. pylori. Perturbation of this coevolution results in dysregulation
of the host-pathogen interaction, leading to oncogenic effects. This review discusses the relationship of H. pylori with the human
host and environment and the contribution of each of these factors to disease progression, with an emphasis on features that have
been illuminated by genomic tools.

1. Introduction

Helicobacter pylori is a Gram negative, spiral-shaped epsilon-
proteobacterium that colonizes half of the world’s human
population [1, 2]. H. pylori is the dominant microorganism
within the gastric niche and chronic infection with this
pathogen is associated with increased risk for numerous
negative disease outcomes including gastritis, peptic and
duodenal ulcer, dysplasia, neoplasia, gastric B-cell lymphoma
of mucosal-associated lymphoid tissue (MALT lymphoma),
and invasive gastric adenocarcinoma [3]. H. pylori persists
in the gastric niche despite a robust immune response to
infection, indicating that this pathogen has evolved elaborate
mechanisms to evade both innate and adaptive arms of the
human immune system [4].

H. pylori typically colonizes the human stomach for
years or even decades, often without adverse consequences
[5]. Recent evidence indicates that there are health benefits
associated with H. pylori colonization including protection
from allergic airway disease, gastroesophageal reflux disease,

Barrett’s esophagus, esophageal adenocarcinoma, diarrheal
disease, and obesity, implying that the relationship between
H. pylori and its human host is complex and dynamic [6–
8]. Conversely, numerous factors have been identified that
can contribute to the development of negative outcomes with
respect to H. pylori infection [9]. Together, these can be
clustered into a triad of risk factors including host, pathogen,
and environmental features that interact to promote disease
progression (Figure 1). In recent years, epidemiologic studies,
paired with genomic analyses, have shed light on specific
interactions that are associated with increased risk of disease
outcomes.

2. Evolution of H. pylori and Geographic
Distribution of Strains

H. pylori is an ancient organism that has been prevalent
within human populations for over 60,000 years [10]. Cer-
tain geographic areas, such as the Latin American Andes
Mountain region, have highH. pylori infection rates and very
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Figure 1: Model of factors influencing H. pylori-related disease
outcome. Host genetics, environmental factors, and bacterial strain
differences in virulence properties can all contribute to disease
progression and increased risk of negative outcomes.

high gastric cancer incidence, characteristics that coincide
with low socioeconomic standards [11]. Interestingly, in other
regions of the globe with similar socioeconomic conditions,
including Africa, India,Thailand, Bangladesh, Pakistan, Iran,
Israel, Malaysia, and Saudi Arabia, infection rates are high,
but gastric cancer incidence is relatively low [12–14]. These
are collectively referred to as “enigmas” within the published
literature because the molecular mechanisms behind these
differences remain largely obscure.

Genomics tools including whole genome sequencing,
restriction fragment length polymorphism (RFLP) genome
mapping, and analytical methods, such as maximum like-
lihood analysis and multilocus sequence typing (MLST),
are enhancing the molecular epidemiological methods cur-
rently used to study H. pylori pathogenesis [15]. There is
an impressive amount of genetic diversity between clinical
isolates of H. pylori which is driven by a high mutation
rate, frequent recombination events, and random genetic
drift as well as positive Darwinian selection and fixation
of base substitutions [16]. As human populations migrated
across the globe their endemic H. pylori strains diverged
alongside them leading to phylogeographic differentiation
of this pathogen within human populations that can be
classified into European, Amerindian, Asian, and African
subgroups [17]. Frequently the phylogeographic origin of
an H. pylori strain dictates specific host-adaptive responses
through alterations in virulence factor expression. For exam-
ple, European strains of H. pylori are frequently reported to
have elevated virulence when compared to African strains, a
characteristic that could explain the “African Enigma” [18].
A better understanding of the phylogenetic relationships
between H. pylori strains could reveal novel mechanisms
of virulence. Specifically, variations have been analyzed by
MLST of housekeeping genes (atpA, efp, ppa, mutY, ureI,
trpC, and yphC) to illuminate the genetic origins of H.
pylori strains. These techniques have yielded results that
have mapped the migration of humans in antiquity out of
Africa, across Europe, through Asia, and into the Americas

[19]. These analyses also suggest that H. pylori and human
coevolution have been perturbed in some geographic areas.
For example,H. pylori in India shares common ancestry with
European H. pylori strains, indicating a possible acquisition
of these strains during colonization by European imperial
forces [20]. Conversely, MLST analyses of genomes of H.
pylori from native Peruvians suggest that Amerindian strains
of H. pylori persisted in these populations in the face of
competition from Spanish H. pylori strains. It is likely that
the Amerindian strains endemic to native Peruvians acquired
Western isotypes of the cag-pathogenicity island, a European-
derived virulence factor, resulting in a competitive advantage
conferred to the Peruvian strains [21].

MLST analysis of housekeeping genes can provide insight
into phylogeographic differentiation of these loci. Comple-
mentary to these techniques, investigations into virulence
factors have shown that by evaluating both synonymous and
nonsynonymous nucleotide substitutions within the coding
region, positive selection for amino acid diversity can be
determined. These changes in amino acid sequence can be
associated with increased risk for peptic ulcer disease and
can also be correlated with variations in geographic origin
(Western or Asian) [22].

Besides undergoing phylogeographic differentiation,
genomic analyses have revealed that H. pylori has, like other
obligate human pathogens including Chlamydia trachomatis
andMycoplasma pneumoniae, undergone reductive evolution
by reducing both the number of open reading frames (coding
region sequences) and the total size of its genome [23–25].
This likely occurred as a consequence of its coevolution
within the human host which provides a specialized niche
for bacterial colonization and proliferation and consequently
reduces the need tomaintain genes involved in vital processes
such as macronutrient synthesis and acquisition [26]. These
findings underscore the importance of utilizing genomic
tools to determine the “core genome” within H. pylori to
better understand the basic metabolic requirements for
prokaryotic life.

3. H. pylori Genomic Flexibility and
Genetic Regulation

H. pylori exhibits unusual genetic flexibility and it is hypoth-
esized that the variability within the genome could poten-
tially account for the organism’s ability to adapt to the
dynamic environment within the host gastric niche, facili-
tating chronic colonization. These adaptations include both
reversible and irreversible changes to the genome as well
as regulatory mechanisms that modulate gene expression
[27]. Analyses of numerouswhole genome sequences indicate
that H. pylori has evolved clusters of genes within genomic
islands that harbor distinct areas of variability, termed
“plasticity zones.” These plasticity zones are likely involved
in horizontal gene transfer, a discovery that is supported
by the presence of short conserved integration motifs and
coding regions that are orthologous to integrating conjugative
elements (ICEs). It is postulated that these ICEs, which are
prevalent and widely distributed among all sequenced H.
pylori strains, provide a fitness advantage to the bacterium by
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aiding genetic recombination events, which could ultimately
promote immune evasion and increased ability to colonize,
as well as other currently unappreciated alterations which
would provide a selective advantage for the organism [27].
This hypothesis is supported by recent research which indi-
cates that genetic modifications occur at a rate that is 10
times faster during acute or early infection when H. pylori
is initially encountering the host’s immune response than
during chronic infection. These results also indicate that H.
pylori mutation rates are far higher than any other bacteria
currently assessed and that many of the mutations occur in
genes that encode putative outer membrane proteins [28].
These proteins are implicated in host-pathogen interaction
and transmission between hosts and are also likely targets
for the adaptive immune response [29]. Thus, modification
of these key surface-exposed antigens would likely alter these
interactions to promote the establishment of chronicH. pylori
infection and therefore the genes encoding these proteins
experience the greatest selective pressure.

In addition to mapping genome sequence and struc-
ture, next-generation sequencing technology can now profile
genome function by determining how and when genes
are expressed and the regulatory networks that govern
these expression subunits. Global transcriptomic analysis
has revealed complexity in the riboregulation of H. pylori
gene expression. H. pylori employs approximately 60 small
RNAs as well as a surfeit of transcriptional start sites within
operons, indicating uncoupling of polycistronic transcrip-
tional regulation. Interestingly, about 5% of the open reading
frames encode leaderless messages that lack the canonical
translational initiation signals such as the Shine-Dalgarno
sequence [30]. Comparison of these features to other Epsilon-
proteobacteria, such as Campylobacter jejuni, reveals a lack
of conservation of operon organization and riboregulatory
elements. Together, these results indicate that transcriptional
rewiring occurs differently in C. jejuni and H. pylori to
compensate for the genetic variations that occurred after
these two species diverged from a common ancestor [31].

Epigenetics has emerged as an important area of study
to better understand the subtle and complex nature of gene
regulation. Epigenetic modifications such as DNA methyla-
tion carried out by DNA methyltransferases can have drastic
effects on both genome architecture and gene expression.
H. pylori encodes numerous DNA methyltransferases and
single-molecule real-time sequence analyses of the methy-
lome of closely related strains revealed great diversity in the
methylation of target sequences. This result is attributed to
variation in the specificity of the methyltransferase domain
as well as variation within the methylation target sequence
[32, 33]. Together, these features contribute to changes in
gene regulation including modulating expression of flgE
(encoding a flagellar component), cagY (encoding a type
IV secretion component), and ureC (encoding a subunit
of the urease complex) [32]. These results underscore the
importance of expression dynamics and the necessity to
identify the numerous regulators responsible for mediating
complex interactions between the host and pathogen to
further our understanding of chronic infectious processes.

4. Toxins Encoded in the H. pylori Genome
H. pylori exerts an immunomodulatory effect within this host
tissue as a strategy to circumnavigate both innate and adap-
tive immune systems. Two toxins, the vacuolating cytotoxin
(VacA) and the cancer-associated gene toxin (CagA), have
been implicated in perturbing host immunological responses
[34–36]. VacA is a pore-forming toxin secreted by H. pylori
that causes a wide variety of alterations in host cell biology
including cell vacuolation, autophagy, inhibition of T-cell
proliferation, and induction of programmed necrosis [36–
38]. The gene that encodes VacA has been shown to have
variation between strains and the s1m1 variant is associated
with the greatest risk for development of diseases includ-
ing precancerous lesions and intestinal metaplasia [39, 40].
Sequencing data paired with epidemiological studies have
revealed that polymorphisms within the intermediate region
(i1-type) of VacA are associated with increased risk of peptic
ulcer disease [40]. Additionally, evaluation of the molecular
evolution of VacA reveals that positive selection hasmodified
the sequence encoding VacA in a process that is independent
of the evolution of the core genome [41].This type of separate
positive selection is also observed in the gene encoding the
major surface antigen, CagA [41]. CagA is a cytotoxin that
is translocated into host cells by the cag-type IV secretion
system (cag-T4SS), a macromolecular nanomachine encoded
by several geneswithin the cag pathogenicity island (cag-PAI)
[42]. This T4SS is assembled at the host-pathogen interface
(Figure 2) and is implicated in secretion of peptidoglycan and
the aforementioned cytotoxin, CagA which results in numer-
ous changes to host cell biology including upregulation of
proinflammatory cytokines, alteration of actin cytoskeleton,
disruption of metal homeostasis, and aberrant cell signaling
[42–46]. Evaluation of cagA sequences has revealed that
amino acid polymorphisms within the Glu-Pro-Ile-Tyr-Ala
(EPIYA) segments contribute significantly to carcinogenesis
[47]. This is interesting, because these regions are phos-
phorylated by host tyrosine kinases and are involved in the
modulation of host signal transduction events. Together,
these studies have revealed that polymorphisms within the
coding regions for the cytotoxinsVacA andCagA, specifically
the i1 intermediate region and the EPIYA motif, respectively,
can contribute to increased risk for development of gastric
diseases [48, 49].

5. Expression of H. pylori Virulence Factors

Successful chronic infection of a vertebrate host is a delicate
balance between host and pathogen. The pathogen expresses
virulence factors to (1) elicit an immune responsewhich elim-
inates resident microbiota, (2) acquire nutrients, (3) permit
bacteria to penetrate host tissues, and (4) allow bacteria to
turn the host tissue into a replicative niche. Bacteria have
evolved to tightly control the expression of virulence factors
to promote successful colonization. H. pylori has evolved to
respond to environmental stimuli, such as gastric acid, with
a repertoire of regulatory elements such as two-component
systems comprised of a sensor kinase (ArsS) and a response
regulator (ArsR), which ultimately modulates the expression
of virulence genes involved inmotility and cag-T4SS function
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Figure 2: High resolution scanning electron micrograph of H.
pylori in contact with human gastric epithelial cells. H. pylori
virulence factors including flagella (black arrows) and cag-T4SS
pili (white arrows) are present on the bacterial cell surface during
host-pathogen interaction. Flagella aid in cell motility through the
mucus layer to penetrate host tissues. The cag-T4SS pili induce
proinflammatory and oncogenic cellular responses. Magnification
bar indicates 1𝜇m.

[50]. Motility of H. pylori cells through the gastric mucosa is
accomplished by utilization of numerous lophotrichous flag-
ella (Figure 2). Once H. pylori penetrates the gastric mucosa,
it interacts with host epithelial cells and elaborates cag-T4SS
pili (Figure 2). The cag-T4SS encoded within the cag-PAI is
organized into multiple overlapping operons that are likely
coregulated as well as divergently regulated by numerous
types of stimuli found within the gastric niche [51]. Besides
pH, H. pylori senses diverse environmental cues including
iron, nickel, cobalt, and zinc and responds to these cues by
altering virulence expression [52]. For example, in conditions
of low iron availability, H. pylori increases cag-T4SS activity
and pilus biogenesis as well as expression of numerous
flagellar components [53]. Conversely, in conditions of low
zinc availability,H. pylori represses cag-T4SSmachinery [54].
These data indicate that environmental cues present in the
host can alter the carcinogenic potential of H. pylori and
increase the risk of negative disease outcomes.

6. Dietary Contribution

Bacteria respond to their environment and alter virulence
factor expression accordingly as described above. One of the
numerous environmental stimuli that H. pylori encounters
in the gastric niche are molecules derived from the host
diet. Numerous dietary habits such as iron deficiency, salt
preference, nitrite, protein, and fat intake have been epi-
demiologically linked with increased risk ofH. pylori-related
disease [55]. However, precious few of these dietary factors
have been recapitulated in an animalmodel ofH. pylori infec-
tion with some exceptions. Dietary iron deficiency has been
correlated with increased risk of H. pylori-related disease
progression [56]. In a rodent model of H. pylori infection,
animals fed a low-iron diet exhibited higher incidences of
gastric cancer compared to animals fed an iron-replete diet.

Proteomics analyses of strains of H. pylori derived from
these animals revealed that low-iron conditions induced
expression of numerous virulence factors including flagellar
proteins, a VacA paralog, CagA, HopQ, and urease [53].
Concomitantly, conditions of low iron availability increased
H. pyloriCagA T4SS induction of host proinflammatory IL-8
secretion, a result that correlated with the increase in gastric
inflammation in animals fed a low-iron diet. Similarly, dietary
salt intake has been associated with increased risk of gastric
disease. In a rodent model of H. pylori infection, animals
fed a high-salt diet exhibited higher incidences of gastric
cancer and inflammation compared to animals fed a regular
salt diet. Analysis of bacterial and host transcripts revealed
that cagA and IL-1𝛽, respectively, were highly upregulated in
H. pylori-infected animals in response to dietary salt intake,
a result that correlated with disease phenotypes [57]. Thus,
variations in dietary ion consumption could lead to changes
in bacterial virulence factor expression that ultimately alter
disease progression.

7. Host Factors Associated with Disease

In addition to the numerous bacterial factors that have been
demonstrated to affect disease outcome, genomic approaches
have revealed host factors that are correlated with H. pylori-
associated disease manifestation. MALT lymphoma has been
characterized by microarray analyses which revealed pro-
nounced infiltration of gastric tissue with CD4(+) T cells
expressing CD28 and CD69 as well as an increased expres-
sion of calprotectin [58]. These results indicate that MALT
lymphoma tumor cell proliferation is driven byTh2-polarized
activated T cells and innate immune cells. Complementing
this study, numerous subsequent studies have implicated
Th1, Th17, and the host neutrophil-associated protein cal-
protectin as host molecules that are induced in response to
H. pylori infection and associated with gastric inflammation
[59]. Interestingly, whole genome expression profiles and
sequencing revealed that polymorphisms in IL-1𝛽 and the
IL-8 promoter region can increase the risk of H. pylori-
related diseases such as gastric cancer [62, 63]. Both IL-1𝛽
and IL-8 are powerful proinflammatory cytokines implicated
in gastric inflammation and carcinogenesis in response toH.
pylori. There are numerous reports supporting that the dys-
regulation of the host-pathogen interaction, initiated through
promotion of inflammation, demolishes resident microbiota
to tip the balance in favor of a pathogen, ultimately resulting
in disease progression [64, 65]. Aligned with these, genomic
analyses have revealed that H. pylori has coevolved with
its human host to promote less severe gastric lesions, and
that disruption of the coevolution (introduction of nonnative
strains of H. pylori into a human host) contributes to
differences in disease severity [66, 67]. Together, these host-
specific factors should be taken into account when crafting
models of infectious disease risk.

8. Antibiotic Resistance Mechanisms

Once chronic infection is established, clearance of the col-
onizing bacteria requires administration of antimicrobial
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Figure 3: Model of H. pylori-host interaction in vivo. (A) H. pylori encounters numerous ions in the gastric niche and utilizes flagella to
penetrate the mucus layer and reach the gastric epithelia. (B) H. pylori secretes VacA and CagA cytotoxins, causing changes in host cell
biology. (C) The adaptive immune response as a consequence of H. pylori infection is skewed to expandTh1 andTh17 populations.

chemotherapeutics. The standard treatment for H. pylori
infection is triple therapy with a proton pump inhibitor
(PPI), amoxicillin, and clarithromycin, but current treatment
paradigms in populations predominantly colonized with
resistant strains favor quadruple therapy with the addition of
metronidazole [68]. Antimicrobial resistance is a widespread
problem among bacterial pathogens and recent evidence
indicates the emergence of antibiotic-resistant strains of H.
pylori in clinical samples. In an effort to better understand
the molecular mechanisms that govern antimicrobial resis-
tance, whole genome sequencing has been performed to
characterize patterns of genotypic changes that can be cor-
related with phenotypic changes in antibiotic susceptibility
[69]. The results indicate that resistance to clarithromycin
can be conferred in H. pylori via mutations in 23S rRNA
genes as well as modifications within genes that encode the
TolC-family of efflux pumps [70]. Additionally, resistance to
amoxicillin was conferred through mutations within outer
membrane protein coding regions (hopC, hofH, and hefC)
and penicillin-binding proteins (pbp1 and pbp2) [71].Metron-
idazole resistance has also emerged through frameshift and
nonsense mutations in the rdxA or frxA coding regions or

alternately in the ferric uptake regulator (fur) locus, rendering
quadruple therapy ineffective in many cases [72]. In these
instances where canonical triple or quadruple therapies fail,
second line drugs such as tetracycline and fluoroquinolones
are often employed. Unfortunately, both tetracycline and
fluoroquinolone resistant isolates of H. pylori have emerged.
Sequencing reveals that 16S rRNA substitutions confer tetra-
cycline resistance, while gyrA mutation at codon 87 or 91
results in fluoroquinolone resistance [72, 73]. Collectively,
these data demonstrate that H. pylori has the capacity to
modify its genome to circumnavigate the selective pressure of
antimicrobial chemotherapeutics. Understanding the genetic
elements present in antibiotic-resistant strains of H. pylori
could provide novel targets for new antimicrobial strategies
that will restore the utility of existing therapies.

9. Conclusions

H. pylori is an ancient pathogen that has evolved to persis-
tently colonize the human gastric niche. Infection with this
pathogen leads to diverse outcomes ranging from asymp-
tomatic gastritis to invasive adenocarcinoma. Factors that



6 International Journal of Genomics

modulate risk fall into three major categories including
pathogen attributes, host genetics, and environmental stim-
uli. Genomic tools have revealed numerous aspects of the
host-pathogen interaction, including dietary ion consump-
tion, expression of virulence factors such as toxins, secretion
systems, and flagella, induction of proinflammatory signal-
ing, and cytokine secretion (IL-1 and IL-8) which ultimately
leads to adaptive immune responses including Th1 and Th17
expansion (Figure 3). These events at the host-pathogen
interface could be exploited to influence the outcome of H.
pylori-related diseases. Future work is required to develop
chemotherapeutic strategies tailored to manipulate these
interactions and tip the balance in favor of the health of the
human host.
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