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Abstract

Numerous accessory factors modulate RNA polymerase response to regulatory signals and cellular 

cues and establish communications with co-transcriptional RNA processing. Transcription 

regulators are astonishingly diverse, with similar mechanisms arising via convergent evolution. 

NusG/Spt5 elongation factors comprise the only universally conserved and ancient family of 

regulators. They bind to the conserved clamp helices domain of RNA polymerase, which also 

interacts with non-homologous initiation factors in all domains of life, and reach across the DNA 

channel to form processivity clamps that enable uninterrupted RNA chain synthesis. In addition to 

this ubiquitous function, NusG homologs exert diverse, and sometimes opposite, effects on gene 

expression by competing with each other and other regulators for binding to the clamp helices and 

by recruiting auxiliary factors that facilitate termination, antitermination, splicing, translation, etc. 

This surprisingly diverse range of activities and the underlying unprecedented structural changes 

make studies of these “transformer” proteins both challenging and rewarding.
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Introduction

Transcription, the first step of gene expression, is elaborately controlled at every step, from 

initiation to termination, and is tightly coordinated with other cellular processes, such as 

translation in prokaryotes [1,2] and RNA capping and splicing in eukaryotes [3], creating a 

dynamic regulatory network of many interlinked factors. In bacteria and archaea, a single 

RNA polymerase (RNAP) enzyme is responsible for all transcription, whereas in 

eukaryotes, distinct classes of genes are transcribed by multiple different RNAP species. 

Despite differences in subunit composition, with five subunits in bacterial (α2ββ′ω) and 

more than 12 in archaeal and eukaryotic RNAPs, these enzymes share an overall shape, 

make similar contacts to the nucleic acid chains, and have highly conserved active centers 

[4]. However, they differ significantly with respect to regulation, with many more accessory 

factors modulating every step of transcription in eukaryotes. In bacteria, specific initiation at 
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promoters requires only one accessory factor called sigma (σ) that, when bound to RNAP, 

recognizes and melts promoter DNA [5]. Eukaryotic RNAPs use two key basal factors, TBP 

and TFIIB, which bind to DNA and subsequently recruit RNAP and additional factors to 

form a core initiation complex [4,6]; underscoring this regulatory complexity is Mediator, a 

25-subunit 1.4 MDa complex (in yeast) that bridges gene-specific initiation factors and the 

RNAP II and is required for transcription of most, if not all, protein-coding genes [7]. 

Requirements for the termination of transcription are also quite distinct. In bacteria, a simple 

signal composed of an RNA hairpin followed by a run of U residues is sufficient to trigger 

RNA release [8]. Although similar RNA elements may induce termination in archaea and 

eukaryotes [9,10], this step is regulated very differently across the three kingdoms [8,11-13]. 

Among myriads of different accessory factors that modulate transcription, the NusG/Spt5 

transcription elongation factors stand out as the only example of the universally conserved 

regulators that coevolved with the core RNAP since the last universal common ancestor 

[14].

The sequence and core structure are well conserved among all NusG homologs [14,15] (Fig. 

1). These proteins contain a single NGN (NusG-like N-terminal) domain [16], connected via 

a flexible linker to one or more C-terminal domains (CTDs) containing a KOW motif [17]. 

The N-terminal domain (NTD) binds to RNAP and nucleic acids to mediate effects on RNA 

synthesis, while the CTD functions as a tether bridging the transcription apparatus and other 

cellular machineries [18]. Eukaryotic proteins contain multiple KOW domains as well as 

additional regulatory domains that serve as docking sites for other proteins [19]. In bacteria, 

two separate groups of NusG homologs are present [20], the first including proteins closely 

related to NusG and the second comprising specialized NusG proteins (NusGSP) that cluster 

with Escherichia coli RfaH, the best studied operon-specific NusG paralog [15].

The founding member of this family, Escherichia coli NusG, and all its characterized 

homologs share an ability to increase the rate of RNA chain elongation, which is frequently 

referred to as antitermination (AT) modification [21,22], when assayed in vitro [14,15]. 

Together with the absolute requirement for RNAP processivity (uninterrupted RNA 

synthesis between a promoter and a terminator), particularly in eukaryotes where mRNAs 

can be hundreds of thousands of nucleotides long and take hours to synthesize, this property 

was thought to be universally important, underscoring the ubiquity of NusG-like factors in 

all kingdoms [4]. However, recent studies painted a much more complex picture in which 

these proteins have context-dependent effects on RNA chain elongation, have different and 

sometimes opposite effects on transcription termination, and enable communications 

between the transcribing RNAP and diverse co-transcriptional processes that ultimately 

determine the gene expression program in all living cells. Studies of NusG and its homologs 

in bacteria were punctuated by many twists and turns, which, somewhat unexpectedly, 

facilitated unraveling of the molecular mechanism and revealed regulatory plasticity 

displayed by members of this fascinating family of regulators. In this review, we will 

describe the key points of these studies, point out similarities to other, more complex 

transcription machineries, and discuss how factors with the identical binding site on RNAP 

and the ubiquitous AT mechanism may have apparently opposite effects on gene expression.
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E. coli NusG - the founding member of the family

NusG was identified as part of the phage λ N AT complex along with other host Nus (N-

utilization substance) proteins [23]. The λ N protein binds to the nut site on the phage RNA 

and, together with the Nus factors, forms an AT complex that modifies RNAP into a state 

able to resist RNA release induced by nascent RNA structures or a termination factor Rho 

[22]. This modification is essential for the completion of the phage lytic cycle. NusG was 

also found in multi-component complexes required for efficient synthesis of rRNAs [24]. 

rRNAs are not translated and are thus potential targets for Rho that prematurely terminates 

transcription which is uncoupled from translation [8,25], e.g. at a premature stop codon [26]. 

rRNAs comprise the bulk of cellular RNA and their synthesis is tightly controlled to match 

the cell's metabolic status [27]; the maximal rate of rRNA synthesis observed at high growth 

rates was proposed to depend on AT [28]. This constraint could explain why NusG is 

essential in wild-type E. coli [29] and, consistent with its role in AT, E. coli NusG increases 

the RNA synthesis rate in vitro [30]. However, in both the λ and rRNA AT complexes NusG 

plays an auxiliary role, with another protein, λ N [31] or ribosomal protein S4 [32], acting as 

a principal player, respectively.

Strikingly, the essential role of NusG in E. coli turned out to be exactly the opposite, i.e. 

gene silencing by assisting Rho-dependent termination. Genome-wide analyses revealed that 

Rho and NusG jointly inhibit expression of foreign DNA elements, in particular the toxic kil 

gene in the rac prophage [33], and pervasive antisense transcription [25]. Consistently, 

NusG becomes partially dispensable when the rac prophage is deleted [33]. The 

enhancement of Rho-dependent termination by E. coli NusG is well-documented in vitro 

and is mediated by a direct contact between NusG and Rho [18,34] but may not be a 

common property of all NusGs. Interestingly, although Rho is essential and responsible for 

termination of ∼20% of transcripts in E. coli [35], NusG and Rho are dispensable in some 

bacteria, such as Bacillus subtilis [36] and Staphylococcus aureus [37].

By contrast, the AT modification of RNAP by NusG-like proteins appears to be universally 

conserved, consistent with a view that a requirement for high processivity of RNAP, which 

cannot rebind a prematurely released RNA, arose early in evolution [14]. The principal 

details of this mechanism have been elucidated, owing in equal parts to recent progress in 

structural analysis of transcription and an amenable model system [14,15].

A new nucleic acid target of RfaH — a key to the AT mechanism

Knowing the target site of a regulator is crucial for understanding its mechanism of action. 

Based on the cellular AT function and a consistent pattern of effects on elongation observed 

in vitro, NusG and its homologs have been annotated in genomes as AT factors, but the 

underlying mechanism remained elusive. Even though E. coli NusG was shown to bind to 

RNAP in 1992 [23], its binding site was unknown until 2007, in part because NusG is 

essential in wild-type E. coli and is bound to RNAP transcribing almost all genes [38]. E. 

coli RfaH, a sequence-specific nonessential NusG paralog that controls just a handful of 

genes [39], was used instead to elucidate where these factors bind on, and how they modify 

the properties of, the transcription elongation complex (TEC).
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Genetic analysis demonstrated that a 12-nt ops sequence located in leader regions of operons 

under RfaH control was required for the RfaH action [39]. This sequence could be 

recognized by RfaH either as DNA or as RNA. RNA is a logical target for an AT factor 

because pulling on the nascent RNA, either by an RNA hairpin or by Rho, leads to 

termination [8]. The majority of characterized processive AT complexes assemble on the 

nascent RNA (e.g. λ N or rRNA complexes [40,41]) or act as free-standing RNA elements 

(e.g. put RNA [42]). The idea that RfaH could bind RNA was consistent with the presence 

of KOW motifs, which are found in ribosomal proteins and RNA helicases and bind RNA 

directly [43], in all NusG paralogs [17]. Furthermore, the ops element was shown to induce 

RNAP pausing in vivo [44], a regulatory property commonly attributed to RNA secondary 

structures [45]. However, the ops element is too short to encode a multicomponent RNA 

hairpin-dependent pause [46], and was shown to mediate pausing by an alternative 

mechanism [47] that is related to RNAP's ability to backtrack along the RNA chain [48,49]. 

Biochemical studies demonstrated that RfaH did not bind to the nascent RNA and instead 

recognized the non-template DNA strand exposed on the surface of RNAP paused at the ops 

site [50] (Fig. 2).

This finding of non-template DNA interaction was the sole experimental lead that allowed 

us to identify the RfaH binding site on the RNAP and to propose its mode of AT action [51]. 

The position of the ops element is equivalent to that of the -10 element recognized by a 

transcription initiation factor σ in an open promoter complex [52]. Using the interaction with 

the non-template DNA as a constraint, RfaH was modeled to interact with the β′ clamp 

helices (CH) [51], the main σ binding site on the core RNAP [53]. The β′ CH appeared to be 

the least likely target for RfaH because NusA, which competes with σ [54] but not NusG 

[30] for binding to RNAP, was proposed to interact with the β′ CH based on structural 

modeling [55]. However, subsequent studies demonstrated that RfaH, NusG and their 

archaeal homolog Spt5 bind to the CH and compete with initiation factors for binding to 

RNAP [18,56-58], whereas NusA binds to the β flap domain [59], another contact site for 

the σ factor.

The position of RfaH on the TEC (Fig. 3) also suggested a plausible mechanism of AT. In 

addition to the β′CH, RfaH was within an interaction distance from the β gate loop (β GL), a 

flexible part of the β lobe located near the β′CH on the opposite side of the DNA channel. 

This interaction is essential for the AT activity of RfaH but not for its binding to RNAP 

[60,61]. By making simultaneous contacts to the β and β′ pincers, RfaH would enable the 

RNAP to clamp down on the DNA and inhibit isomerization into a paused state, thereby 

increasing the rate of transcription, as observed in vitro. Despite significant differences 

between bacterial and archaeal transcription complexes, archaeal Spt5 interacts with the 

RNAP in an identical fashion [62,63]. These results show that RNAPs utilize NusG 

homologs as dissociable clamps which encircle the DNA to enhance enzyme processivity, a 

universal strategy that is also common among DNA polymerases and helicases [64].

The non-template DNA strand – a sliding target for diverse regulators

While the nascent RNA and double-stranded DNA are recognized by a wide array of 

transcription factors, the non-template DNA may appear to be an odd target. It is a moving 
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target, because the rapidly elongating RNAP spends just a fraction of a second at a given 

template register. Such a sliding window may present a challenge for a protein that 

recognizes a specific sequence, and RNAP stalling at the target site may be required to 

facilitate recruitment, e.g. at the ops pause site (RfaH; [50]), at a promoter-proximal pause 

site (Spt5; [65]), or at a lesion in the transcribed DNA (UvrD; [66]).

Base-specific interactions with the non-template DNA could play diverse roles in 

transcription. This specificity is well established in the case of σ [67] and RfaH [60]. A 

model of yeast TEC bound by Spt5 revealed an interaction between NGN and the non-

template DNA [63], suggesting that NGN-DNA contacts are broadly conserved among the 

NusG homologs in all three domains of life. It could be expected that a nucleic acid-binding 

protein would exhibit some sequence preference. By analogy to promoter escape, wherein 

interactions between σ and promoter elements hold the RNAP back to hinder promoter 

clearance [68], persistent interactions with the non-template DNA would be expected to 

inhibit RNAP translocation. Indeed, RfaH significantly delays RNAP escape from the ops 

site, while reducing pausing at other signals [50], and decelerates pause-deficient RNAPs 

[69]. B. subtilis and Thermus thermophilus NusGs slow their cognate enzymes down 

[70,71], possibly due to inhibiting contacts with the non-template DNA. B. subtilis NusG 

stimulates pausing at U-rich sequences and protects three residues on the non-template DNA 

in the paused complexes [71,72], consistent with sequence-specific recognition of T-rich 

sequences [73]. Recent data also demonstrate the importance of direct interactions between 

the core RNAP and the non-template DNA. This contact was first observed in a promoter 

initiation complex, with a key Asp446 residue in a β subunit pocket specifically interacting 

with a G residue at +1 position, one nucleotide ahead of the active site [52]. This interaction 

appears to modulate transcription initiation and pausing in vivo [74].

Specific contacts with the non-template DNA could mediate differential recruitment of 

NusG homologs to RNAP transcribing different genes, control timing/position of their 

binding to the TEC, provide time for subsequent binding of auxiliary factors to the 

quaternary RNAP/NusG complex, and induce conformational changes in the TEC. Binding 

to the transcription bubble places a factor into a strategic position that offers unique 

advantages. A factor could push the RNAP forward, by favoring the strand reannealing at 

the rear end of the bubble, thereby aiding translocation and decreasing pausing, or push 

RNAP back to induce arrest. Intimate interactions between the non-template strand and the 

RNAP may ensure that a factor that stably associates with the non-template DNA essentially 

becomes an integral part of the TEC able to scan the transcribed region for a specific 

sequence or a DNA lesion. Recent studies show that non-template DNA is targeted by 

proteins that couple transcription to DNA repair and recombination. UvrD, a DNA helicase 

which plays a key role in nucleotide excision DNA repair pathway [75], has been proposed 

to contact the non-template DNA and push the RNAP stalled at a DNA lesion backwards, 

thus exposing the lesion to the nucleotide excision repair complex [66]. Activation-induced 

cytidine deaminase (AID), which induces targeted DNA breaks that give rise to antibody 

class switching by recombination and somatic hypermutation, also binds to the non-template 

DNA [76].
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Pervasive association of NusG [38] and Spt5 [77] with the transcribing RNAP suggests that 

other regulators would cooperate or compete with these general factors to gain access to the 

non-template strand. For example, since σ and TFE bind to overlapping sites on the bacterial 

and archaeal RNAP, respectively [56,57], factor swapping downstream from a promoter 

could assist RNAP during promoter escape [78]. Such an effect has been documented for 

Pyrococcus furiosus TFE [57] which binds nonspecifically to single-stranded non-template 

DNA in early elongation complexes [79]. Conversely, a productive interaction may guide a 

factor to the non-template DNA (e.g. AID associates with RNAP via Spt5 [80]).

Binding to the non-template strand could also facilitate recruitment of other auxiliary factors 

to the nascent RNA, which emerges from the enzyme's exit channel nearby [81]. Spt5 

interactions with the exosome may underlie exosome-mediated pre-mRNA surveillance 

[82], whereas Spt5-dependent recruitment of pre-mRNA cleavage factor I (CFI) [83] and 

mRNA capping enzymes [84] would coordinate mRNA processing and synthesis. Sub1, a 

factor implicated in activation of transcription, termination, and 3′-end formation, modulates 

the RNA elongation rate by binding to Spt5 [85]. In prokaryotic cells, NusG homologs could 

coordinate RNA synthesis and processing with translation. E. coli RfaH and NusG have 

been shown to interact with the ribosomal protein S10 [86,87] and could couple 

transcription to the leading round of translation [88]. Since the interaction surfaces are 

conserved, similar contacts could be established in archaea.

Do all NusG-like proteins work similarly?

The presence of more than one NusG-like factor in the cell implies different targets/

functions or expression under specific conditions. E. coli NusG is not known to be regulated 

and is present in nearly all transcription units [38], suggesting that NusGSPs are required for 

the expression of some “special needs” genes. All characterized NusGSPs activate 

transcription of their targets, akin to NusG acting within large AT complexes. While 

mechanistic details are lacking for most of these factors, unlike NusG, RfaH functions as a 

stand-alone AT factor that is only effective against Rho [50,89,90].

RfaH was discovered as a factor required for lipopolysaccharide biosynthesis[91] and the 

expression of F plasmid tra operon [92] and shown to increase expression of the distal parts 

of several ops-containing operons [39], including rfb. Although the ubiquitous AT 

modification of RNAP could explain this effect, by helping RNAP to escape Rho kinetically 

[93], RfaH effects on gene expression in vivo are dramatically larger than those observed on 

model templates in vitro, even in the presence of cell extracts [50]. This discrepancy 

suggests that some features of the RfaH-controlled operons underlie these differences. In 

vivo analysis demonstrated that Rho and RfaH are associated with the RNAP transcribing 

the rfb operon, whereas NusG is not [20,38], and that Rho reduces rfb RNA synthesis ∼800-

fold in the absence and only ∼2-fold in the presence of RfaH [61]. Rho-dependent 

termination is enhanced by NusG and inhibited by an increase in RNAP elongation rate or 

activation of translation [94]. Thus, such a dramatic anti-Rho effect could be due to a 

combination of (i) competition with NusG; (ii) antipausing activity; or (iii) increase in 

mRNA translation.
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The first scenario is supported by the absence of NusG from all operons associated with 

RfaH in vivo and by RfaH's ability to exclude NusG from RNAP in vitro [20]. The second 

scenario is consistent with the accepted mode of action of all NusG-like factors, which is 

readily observed on a variety of templates in vitro [69] but appears too modest to confer 

dramatic effects observed in vivo. Identification of the β gate loop as an AT determinant for 

RfaH and NusG provided means to probe the importance of AT in transcription activation 

by RfaH. Deletion of the gate loop eliminated the ability of RfaH to reduce pausing in vitro, 

but made only a small contribution to the rfb expression in vivo [61], implying that direct 

effects on RNAP, even though undeniably conserved, are not sufficient for RfaH regulation. 

An idea that all regulation can be explained by RfaH competition with NusG is at odds with 

observations that NusG effects are rather modest and are exhibited only at some Rho-

dependent sites [25]. What are we missing?

Complete silencing of the rfb operon by Rho suggested that this operon may be poorly 

translated. In fact, all experimentally verified RfaH targets lack canonical Shine-Dalgarno 

elements and have many rare codons, potentially hindering both the initial binding and 

translocation of the ribosome, and making the nascent RNA an easy target for Rho. The 

ribosome recruitment appears to be the major step targeted by RfaH since deletion of a 

Shine-Dalgarno element is sufficient to confer the dependence of a heterologous lux operon 

on RfaH [86]. Several lines of evidence are consistent with the direct contacts between the 

ribosome and RfaH, including the solution NMR structure of the RfaH CTD bound to S10 

[86], and support a model in which RfaH acts in lieu of a Shine-Dalgarno element, 

anchoring the 30S subunit to the transcribing RNAP to increase its local concentration in the 

vicinity of the nascent mRNA.

Thus, RfaH may function primarily as a translation initiation factor dedicated to a small set 

of horizontally transferred operons. This activity requires that RfaH is recruited to RNAP at 

the ops site and then establishes a contact with the ribosome while being bound to RNAP. If 

these bridging interactions are maintained throughout the entire operon, RfaH could couple 

transcription to translation, thereby offering additional protection against Rho. An analogous 

mechanism has been proposed for NusG [95], and S10 makes essentially identical contacts 

to RfaH and NusG [86]. However, unlike NusG, RfaH must undergo dramatic 

conformational changes in order to bind to RNAP and S10.

RfaH has to transform to bind to RNAP and ribosome

In free RfaH, the interaction surfaces for RNAP and S10 are hidden (Fig. 4). The RNAP-

binding site on the NTD is masked by an α-helical CTD, and binding of an exposed surface 

on the NTD to the ops bases is proposed to trigger the separation of the RfaH domains and 

permit RNAP binding. Consistently, the isolated NTD does not require ops for recruitment 

to the TEC [51]. This auto-inhibitory mechanism limits RfaH action to a small set of targets 

[20], avoiding the competition with NusG and expression of potentially harmful genes. A 

much more striking transformation occurs in the released CTD, which completely refolds 

into a β barrel that is nearly identical to that of NusG and is able to bind to S10 [86]. The 

CTD folds into a β-barrel when expressed alone or separated from the NTD upon proteolytic 

digestion of the interdomain linker. Surprisingly, the presence of the NTD is sufficient to 
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chaperone CTD into the α-helix, even starting from a denatured chain [96]. Thus, the two 

alternative states of the CTD play key roles during recruitment of both the RNAP and the 

ribosome, prompting to coin the term “transformer protein” for RfaH [97]. The structural 

plasticity of this domain is astounding, particularly since the SH3 β-barrel is a rather 

common structural motif, and suggests that other NusG homologs may undergo similar 

transformations, enabling them to make different functional interactions. How fast this 

transition occurs, whether it is reversible at the end of the transcription cycle, whether there 

could be a protein that naturally exists in equilibrium between the two states, and many 

other questions remain open. From a practical perspective, it may not be possible to predict 

whether an uncharacterized NusG homolog will fold as RfaH or as NusG (or be able to 

change folds) because the primary sequence will likely be compatible with either fold, as is 

the case of RfaH. Yet the protein fold determines whether these proteins require activation 

by DNA binding, the extreme form of sequence dependence.

Alternative transcription elongation factors

Sigma competition is a paradigm for transcriptional control by sequence-specific accessory 

factors, which compete for the pool of free RNAP core molecules and direct them to 

dedicated subsets of promoters, thereby reprogramming gene expression in response to 

cellular triggers [5]. The most abundant primary σA (σ70 in E. coli) recognizes housekeeping 

promoters and is the best studied. It shares the regulatory space with several alternative σs (6 

in E. coli) and binds to many regions of transcription complex, among which the non-

template strand and the β′CH play the key roles during both initiation and elongation [53]. 

NusG and its paralogs comprise an analogous family of alternative factors that bind to an 

overlapping target on the TEC (Fig. 5). Similarly to σ, analysis of NusG/RfaH competition 

revealed clear partitioning of the transcriptome, with “housekeeping” NusG associated with 

most transcribed genes and RfaH - just a few. However, even in the well-studied E. coli this 

family includes additional members, ActX and TraB, encoded on conjugative plasmids R6K 

and F, respectively [98,99]; these proteins phylogenetically cluster with RfaH but nothing is 

known about their mechanisms.

How do NusGSPs find their targets? While σs achieve specificity through recognition of 

different DNA sequences, the mechanisms used by NusG homologs could be more 

multifaceted. In E. coli NusG, the two domains do not interact [100] and the RNAP-binding 

site is always available. In contrast, free RfaH is in autoinhibited state, and contacts to ops 

are required to trigger domain dissociation and expose the RNAP-binding site [51]. Masking 

interdomain interactions may occur even in a housekeeping NusG. In Thermotoga maritima 

NusG, the two domains form a stable and dynamic interface which masks the RNAP-

binding site on the NTD and the hypothetical Rho- and S10-binding surfaces on the β-barrel 

CTD [101]. It is possible that other NusGs may establish autoinhibitory contacts that can be 

subject to regulation by cellular cues or specific DNA binding [73]. A NusG homolog from 

Streptomyces virginiae has an N-terminal extension proposed to bind butyrolactone [102]; 

interestingly, addition of a tag to the N-terminus of RfaH reduces dependence on the ops 

element, presumably due to the domain interface destabilization. Recognition of a specific 

DNA sequence is a common targeting mechanism, and it could be used by NusGSP 

regulators such as E. coli ActX and TraB; however, their gene context suggests an 
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alternative in cis recruitment mechanism (Fig. 6) wherein the newly synthesized NTD loads 

onto RNAP as soon as it emerges from the trailing ribosome [1]. The cis mechanism could 

represent a first step in evolution of a dedicated regulator occurring early after the 

duplication of nusG but before acquisition of an ops-like sequence [20].

A specific sequence may be unnecessary if a regulator has just one target. Many RfaH-like 

proteins are encoded as a first gene within an operon whose expression they activate, such as 

Serratia entomophila AnfA1 from a 30 kb prophage thought to encode a transport system 

for toxin delivery into insect larvae [103] and Myxococcus xanthus TAA from a ∼80 kb 

polyketide antibiotic gene synthesis cluster [104]. Importantly, in cis recruitment does not 

preclude the protein from functioning in trans, particularly if produced in large quantities, 

but it would allow a protein made in a single copy (relative to its target) to protect the 

mRNA against Rho during the pioneer round of translation. Once the complete transcript is 

made, it is immune to Rho, making an AT dispensable.

Having a built-in AT factor could help to evade Rho-mediated silencing upon arrival into a 

new host, enabling efficient horizontal transfer. ActX and TraB are encoded on 

transmissible plasmids in front of type IV pilus synthesis operons [98,99], which are 

necessary for conjugation but are likely targets for Rho. It remains to be determined if these 

putative regulators act via AT and require specific sequences for activation, but an idea of a 

self-sufficient conjugation apparatus that is immune to Rho action appears attractive.

Conclusions

In all organisms, NusG-like proteins bind to the transcribing RNAP and increase its 

processivity and establish communications with enzymes that carry out processing of the 

nascent RNA. These communications can be facilitated by physical contacts with the CTD 

or by transcriptional pausing induced by sequence-specific DNA contacts to the NTD; by 

delaying RNAP escape from a regulatory site, B. subtilis NusG [72] and RfaH [15] are 

thought to control the ribosome binding to the mRNA. In bacteria, NusG paralogs comprise 

a family of alternative transcription elongation factors that compete for binding to RNAP. 

Despite similar effects of these proteins on transcription in vitro [69,105], the cellular 

outcomes of their action are astonishingly different, including silencing of foreign and 

antisense RNAs by potentiating Rho-mediated transcription termination [25,33], activation 

of horizontally acquired genes by blocking Rho-mediated termination [61], and activation of 

mRNA translation, presumably by direct recruitment of the 30S ribosomal subunit [86]. 

Even their structures can change dramatically, enabling sequence-specific recruitment to 

RNAP and acquisition of new interaction surfaces. We hypothesize that alternative NusGSP 

proteins have evolved to work against the housekeeping NusG to allow expression of 

dedicated subsets of horizontally transferred operons which encode virulence and fertility 

determinants. While some NusGSPs reside on the chromosome and control several scattered 

genes, others appear to travel with their target operons on transmissible plasmids, likely 

contributing to the rapid spread of antibiotic resistance in clinical populations [106]. While 

these factors share the binding site on RNAP, structural and regulatory complexity precludes 

simple sequence-based prediction of their target sites and molecular mechanisms of action, 

making their analysis both challenging and exciting.
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Abbreviations

AT antitermination

CH clamp helix

CTD C-terminal domain

NGN domain NusG-like N-terminal domain

NTD N-terminal domain

NusGSP specialized NusG proteins

RNAP RNA polymerase

TEC transcription elongation complex
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Figure 1. 
Structural conservation among NusG family members. A: E. coli NusG (PDB: 2K06, 2JVV) 

consists of two domains connected by a flexible linker; the NTD (green) has an NGN fold 

[16], the CTD has a KOW motif [17]. B: Domain organization of NusG homologs in 

bacteria, archaea, and eukaryotes. The NGNs bind to RNAP and the DNA [18,51,63]; the 

KOW domains tether transcribing RNAP to other proteins (e.g. Rho and ribosome in 

bacteria [86,87,107]) the C-terminal repeats (CTR) present in eukaryotes are regulated by 

phosphorylation and interact with diverse cellular partners [19,108-111]. C: Structural 

superposition of NGN (left) and KOW (right) domains prepared using Chimera. NGN 

domain PDB IDs: E. coli (Eco) NusG: 2KO6; E. coli RfaH: 2OUG; P. furiosus (Pfu) Spt5: 

3P8B; Human (Hsa) DSIF: 3H7H; KOW PDB IDs: E. coli NusG: 2JVV; E. coli RfaH: 

2LCL; P. furiosus Spt5: 3P8B; Human DSIF: 2E70.
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Figure 2. 
RfaH binding site on the transcription complex. A: A TEC cartoon with the template (black) 

and non-template (blue) DNA strands forming a transcription bubble that encompasses the 

nucleotides in the active site (near the catalytic Mg2+ ion; black sphere). RNAP subunits and 

RfaH domains are colored as follows: β (light cyan), β′ (light pink), α (grey), ω (light 

yellow), RfaH NTD (green), and RfaH CTD (cyan). The nascent RNA (red) pairs to the 

template DNA to form the RNA:DNA hybrid, and exits the complex under the β flap 

domain; the helix at the tip of the flap domain is shown. The same color scheme is used in 

other figures. The NTD directly crosslinks to the non-template DNA strand in the TEC and 

interacts with the β and β′ subunits with the gate loop (GL; deep cyan) and the β′ clamp 

helices (CH; orange) elements. B: A close-up of a structural model of RfaH/TEC complex 

[51]. A hydrophobic cavity on NTD interacts with two hydrophobic residues at the tip of the 

β′ CH (purple; Ile290 and Ile291 in E. coli), the polar and charged residues on the opposite 

side of the NTD interact with DNA. This model is supported by biochemical analysis of 

mutationally-altered RNAP and RfaH variants [51,60]. RfaH residues making the key 

contacts to the β′ CH (Tyr54, Phe56) and DNA (Lys10, Arg16, and Arg73) are shown.
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Figure 3. 
The β′ CH as a universally conserved target site for the initiation and elongation factors. A: 
Crystal structure of the E.coli RNAP (PDB ID: 4IGC) with the β and β′ (cyan and light pink, 

respectively), α (grey) and ω (light yellow) subunits shown as ribbons. The active site Mg2+ 

ion (black sphere), the β GL (residues 368 to 376), and the β′ CH (residues 265 to 310) 

motifs are highlighted. The β′CH serves as a docking site for many initiation and elongation 

factors; σ forms direct polar interactions largely with the C-terminal part (red) and many 

indirect interactions covering nearly all of the exposed CH surface in both the E. coli and T. 

thermophilus RNAP holoenzymes [112,113], whereas RfaH NTD makes van der Waals 

contacts with the tip of the β′ CH [51]. Archaeal Spt5 proteins make identical contacts to the 

β′ CH [62,63]. Basal transcription initiation factors Methanocaldococcus jannaschii TFE 

[57] and Saccharomyces cerevisiae TFIIB [114] also interact with the CH domain, setting 

up an orchestrated transition from the initiation to the elongation phase through competition 

for the CH [115]. B: Sequence alignment of the CH domain prepared using DNAStar 

MegAlign module; identical residues are boxed, regions are color-coded as in panel A. Eco: 

E. coli; Pfu: P. furiosus; Sce: S. cerevisiae.
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Figure 4. 
RfaH activation by transformation. In the crystal structure of free RfaH (left; 2OUG), the 

two domains form a large hydrophobic interface that masks the RNAP-binding site on the 

NTD (green) and captures the CTD cyan) in an α-helical state, in which the key residues 

interacting with S10 (e.g. Ile146) face the domain interface. By contrast, an isolated CTD 

folds as a β-barrel (right; 2LCL) in which Ile146 is exposed to bind S10. This dramatic 

transformation can be induced by artificial separation of the two domains in vitro [86] but 

requires the recognition of the ops DNA element in the course of transcription. Direct 

NTD/ops contacts are thought to transduce a signal to the domain interface that weakens the 

interactions with the CTD, allowing for domain dissociation and subsequent CTD refolding. 

The freed NTD and CTD can establish the contacts with RNAP and ribosome, respectively, 

to modulate transcription, translation, and coupling of these processes.
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Figure 5. 
Families of alternative transcription factors. In E. coli, alternative σ factors recognize 

specific sequences (in double-stranded DNA and on the non-template stand in the 

transcription bubble) and the β′CH domain to direct RNAP to specific promoters; σ70 is the 

most abundant and mediates transcription of most genes. Following escape from the 

promoter and release of σ, alternative elongation factors bind to distinct but overlapping 

elements on the non-template DNA stand and modulate RNA chain elongation and 

translation; among them, the most abundant NusG mediates transcription of most genes. The 

well-established competition among the factors from each group controls initiation and 

elongation phases of transcription. In addition, transition between these phases, the promoter 

escape and core RNAP recycling after termination, may be modulated by competition 

between an initiation and an elongation factor for their β′CH/non-template DNA target.
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Figure 6. 
Recruitment strategies of NusG-like proteins. A: A protein in an open conformation can 

bind to RNAP at any site, although some sequence specificity could be present. B: A protein 

in a closed, autoinhibited conformation requires a specific target for recruitment. C: A 

protein which is encoded by the first gene of the controlled operon can be recruited to 

RNAP as soon as it emerges from the ribosome, if translation and transcription are closely 

coupled. Examples of RfaH-like regulators which could be recruited in cis and are known to 

control their resident operons are TAA [104], AnfA1 [103], and Ubx [116].
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