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Abstract

Alzheimer's disease (AD) is a fatal progressive disease and the most common form of dementia 

without effective treatments. Previous studies support that the disruption of endoplasmic reticulum 

(ER) Ca2+ via overactivation of Ryanodine receptors (RYRs) plays an important role in the 

pathogenesis of AD. Normalization of intracellular Ca2+ homeostasis could be an effective 

strategy for AD therapies. Dantrolene, an antagonist of RYRs and an FDA approved drug for 

clinical treatment of malignant hyperthermia and muscle spasms, exhibits neuroprotective effects 

in multiple models of neurodegenerative disorders. Recent preclinical studies consistently support 

the therapeutic effects of dantrolene in various types of AD animal models and were summarized 

in the current review.
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Alzheimer's disease (AD), a fatal progressive disease and the most common form of 

dementia, threatens around 24 to 35 million people worldwide.1-5 It is estimated that this 

disease affects around 6 % of population aged over 65 years, with its incidence increasing 

with age. Patients suffer memory loss and cognitive function decline, and on average die 

nine years after diagnosis.6,7

Amyloid cascade hypothesis of AD is a prominent idea in the research field of AD 

pathogenesis.8-12 It arises from the observation that patients affected by AD are 

characterized by the accumulation of senile plaques containing a product of amyloid 

precursor protein (APP) metabolism called the Amyloid beta (Aβ) peptide.13-15 

Histopathological and genetic evidence form the basis of the amyloid cascade hypothesis, 

which states that deposition of Aβ is the initiating event that triggers neuronal dysfunction 

and death.16-18 Aβ peptides constitute a major part of the neuritic plaques causing 

neurotoxicity, which are cleaved from APP by β- and γ-secretases.19 Hitherto, much of the 
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research focus in the AD field has been on Aβ peptide generation and its mechanisms of 

action.20-22 Despite the efforts to characterize the molecular mechanisms underlying Aβ's 

toxicity, it remains unclear what triggers the accumulation of the peptide and whether such 

action is the primary cause of AD pathogenesis and cognitive dysfunction.18,23-26 However, 

the amyloid cascade hypothesis still dominates the search for AD disease treatments up to 

now. For example, researchers have tried to reduce Aβ production by developing molecules 

that inhibit γ-secrease activity, block Aβ aggregation and promote Aβ clearance.27-32 

Unfortunately, none of the amyloid-targeting molecules that reached clinical trials have 

succeeded, despite of decades of basic and clinical research.

Calcium is one of the most important second messengers33 in the nervous system because it 

plays an essential role in wide range of cellular function including learning and memory, 

synaptic activity and neurotransmitter action, excitotoxicity, and cell death.34-37 Neurons 

maintain intracellular Ca2+ content mainly through Ca2+ signal transduction pathways. 

Neuronal Ca2+ influx is regulated by different Ca2+ channels, including voltage-dependent 

Ca2+ channels (VDCC), α-mino-3-hydroxy-5-methyl-4-isoxazolepropanoic acid (AMPA) 

receptors, nicotinic receptors, N-methyl-D-aspartate (NMDA) receptors and store-operated 

Ca2+ channels (SOC).38-40 Ca2+ can also be released from the primary intracellular stores of 

endoplasmic reticulum (ER).41-45 Neurons are highly sensitive to any changes in 

intracellular Ca2+ concentrations: insufficient intracellular Ca2+ content leads to abnormal 

functioning of neurons, whereas excessive Ca2+ levels cause cell death.40,46,47 Therefore, 

even small fluctuations of Ca2+ content can significantly change the physiological functions 

of cells.39,48-51

In 1987, Dr. Zaven Khachaturian suggested the Ca2+ hypothesis of AD that disruption in 

intracellular Ca2+ homeostasis leads to the final common pathway for AD and age-

associated brain changes.48,52-55 This hypothesis is supported by the presence of AD-like 

symptoms in mouse models harboring presenilin's mutations and synaptic dysfunction due 

to ER Ca2+ concentration changes in the absence of Aβ pathology.56-58 The basis of the 

Ca2+ hypothesis in AD is that the disruption of intracellular Ca2+ signaling homoeostasis 

contributed to both the progressive decline in memory and the increase in neuronal cell 

apoptosis.59,60 Any neuropathology of AD, particularly sporadic AD, has to account for the 

slow progression of the disease and for the fact that the changes in synaptic physiology and 

onset of memory loss often precedes any evidence for the massive cell loss that 

characterizes the later stages of AD. Also, neuronal cell death were observed when Ca2+ 

levels exceeded the normal physiologic range, and the Ca2+-mediated signaling system is 

altered in the aging nervous system resulting in altered neuronal functioning and/or cell 

death.61,62 In addition, Ca2+ dysregulation is further implicated in AD since each of the 

genes currently known to influence AD susceptibility so far (APP, PSEN1, PSEN2, and 

APOE) affects intracellular Ca2+ levels and/or calcium signaling.63-65 Early changes in 

intraneuronal Ca2+ regulation may be also common observations in AD patients. Since 

intracellular Ca2+ homeostasis plays such an important role in both neuronal and synapse 

function, its disruption produce symptoms of brain aging, neuronal degeneration and death, 

synapse and cognitive dysfunction.66-69 Up to date, the proposed mechanisms responsible 
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for Ca2+ dysregulation in AD primarily include overactivation of ryanodine receptors and 

InsP3R, which may contribute to early AD neuropathology and susceptibility.35,70-74

Two well studied Ca2+ channels release Ca2+ from the ER into cytosolic space: 

Inositol-1,4,5-trisphosphate receptors (InsP3Rs) and Ryanodine receptors (RYRs).75-78 As 

shown in figure 1, mutations in presenilin-1 (PS1) and presenilin-2 (PS2) associated with 

familial AD (FAD), significantly enhance the expression and activation of RYRs, as well as 

the activation of InsP3Rs, resulting in excessive Ca2+ release from the ER and abnormal 

cytosolic Ca2+ concentration [Ca2+]c elevation.50,79-81 On the other hand, the ApoE4 gene, a 

widely accepted genetic risk factor for sporadic AD, has been shown to disrupt intracellular 

Ca2+ homeostasis by abnormally increasing NMDA receptor activation, which may result in 

excessive Ca2+ influx, elevation of [Ca2+]c, and Ca2+-induced Ca2+ release (CICR) from the 

ER via RYRs and/or IP3Rs.

RYRs are expressed in soma, proximal dendrites as well as in distal processes and spines. 

The three isoforms of RYRs are RYR1, RYR2 and RYR3, all of which are expressed in the 

central nervous system.82-85 RYR1 is expressed in cerebellar Purkinje cells.84,86,87 RYR2 is 

found in the olfactory nerve layer, dentate gyrus, cerebral cortex, cerebellar granule cells, 

the facial nucleus and the motor trigeminal nucleus.39,88 Lastly, RYR3 is highly expressed 

in the hippocampal CA1 pyramidal cell layer, dorsal thalamus and caudate putamen.49,85 

Overactivation of RYRs in the brain and excessive Ca2+ release from the ER may result in 

increased excitatory glutamate release from presynaptic spaces, neuronal death, 

neurodegeneration, and Aβ pathologies, which is considered as early pathogenic factors in 

AD (Figure 1).34,89-91 Thus, reducing Ca2+ over-release through the inhibition of RYRs is a 

reasonable way to mitigate the AD pathology and ameliorate the memory and cognitive 

problems.74,92,93

Dantrolene is an FDA approved drug for clinical treatment of malignant hyperthermia, and 

muscle spasms, which is an antagonist of RYRs.94-99 The most common side effects of 

dantrolene are dizziness, drowsiness, light headedness, headaches, anorexia, diarrhea, 

nausea, and vomiting. Chronic oral use can be associated with liver dysfunction. Rarely 

observed side effects are fatigue, weakness and rash.39,77, Although the common side effects 

of dantrolene originate in the central nervous system, several studies addressed the 

beneficial effects of dantrolene in AD pathology via acting on RYRs in recent 

years.39,77,100-103 In April of 2012, Peng et al.104 published a pioneer paper investigating the 

therapeutic effect of dantrolene on ethology and pathology in the triple transgenic Alzheimer 

mouse model (3xTg-AD). Wild type or 3xTg-AD mice from 2 to 13 months of age were 

treated with dantrolene continuously. Compared to control, 3xTg-AD mice treated with 

dantrolene exhibited significant improvement in memory retention and working memory. In 

fact, dantrolene treated 3xTg-AD mice performed the same memory and learning ability as 

the wild type control mice. In addition, there was no significant difference in motor function 

among all groups. Immunohistochemical analysis of phosphorylated GSK-3β and 

phosphorylated Tau in the cortex, and synaptic marker expression did not show any 

statistical significance among all treated groups. Notably, amyloid plaques in the 

hippocampus in dantrolene treated 3xTg-AD mice significantly reduced compared to its 

corresponding control group. Taken together, the results showed that early and chronic 

Liang and Wei Page 3

Alzheimer Dis Assoc Disord. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



dantrolene treatment starting before the initiation of amyloid pathology significantly 

decreased amyloid plaque load in the hippocampus and memory deficits in 3xTg-AD mice.

In August of 2012, Oules et al.105 showed that APP contributes to ER Ca2+ homeostasis and 

in turn ER Ca2+ could influence Aβ production. The authors also found that over expression 

of wild-type human APP (APP695) in human SH-SY5Y neuroblastoma cells or the Swedish 

double mutation APP (APPswe) in APPswe-expressing mice (Tg2576) enhances RYR 

expression and increases ER Ca2+ release via RYRs. The authors' use of dantrolene to block 

RYRs decreased the release of RYR-mediated Ca2+ and contributed to the reduction of both 

intracellular and extracellular Aβ load in mouse Tg2576 primary cultured neurons and in 

human SH-SY5Y neuroblastoma cells. Also, Aβ in the hippocampus and cortex decreased in 

dantrolene-treated AD mice. The authors speculated that dantrolene reduces APP 

phosphorylation on Thr-668 residue through the regulation of RYR-mediated Ca2+ release 

by means of the modulation of GSk3β and Cdk5 kinase activities. Their study also notes that 

dantrolene decreases β- and γ-secretases activities. As a result, dantrolene prevents learning 

and memory decline by reducing C99 and Aβ production.

In December of 2012, Chakroborty et al.106 reported sub-chronically short-term (4 weeks) 

treatment of AD models with dantrolene. Using patch clamp recordings and 2-photon Ca2+ 

imaging of hippocampal slices, the authors found that ER Ca2+ signaling is fully normalized 

in dendritic compartments in dantrolene treated early and later-stage AD mice. In addition, 

the increased RYR2 levels and enhanced IP3R-mediated Ca2+ release in AD mice were 

restored to normal levels with dantrolene treatment. Thus, sub-chronic dantrolene treatment 

stabilizes RYRs' function and expression and inhibits abnormal CICR initiated through 

IP3R-mediated Ca2+ release. These aforementioned studies suggest that inhibition of RYRs 

with dantrolene exerts beneficial effects on AD pathology.

However, not all laboratory findings on dantrolene treatment in AD are consistent. When 

Zhang et al.107 investigated the role of presenilins in neuronal ER Ca2+ release in 2010, they 

found that the long-term oral dantrolene treatment of 2-8 month old AD (APP-PS1 mutant) 

mice increased amyloid load and neuronal atrophy in hippocampal and cortical regions 

along with loss of synaptic markers, raising some doubts about the therapeutic potential of 

dantrolene. It is not clear what the reasons are for the discrepancies among all these studies, 

but differences in mouse models, treatment duration, and route of administration may be 

contributing factors. Further studies in different AD animal models are urgently needed to 

investigate and confirm if dantrolene or other raynodine inhibitors will ameliorate or 

aggravate the neuropathology in AD.

In summary, excessive Ca2+ release from the ER modulates the amyloid genic processing 

pathway and other AD pathology, thereby promoting memory loss.43,57,74,108,109 

Dantrolene, as an antagonist of RYRs on ER, mitigates AD pathology and may serve as a 

probe compound for future studies to treat Alzheimer's disease.
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Abbreviations

AD Alzheimer's disease

APP amyloid precursor protein

Aβ Amyloid beta

Ca2+ Calcium

VDCC voltage-dependent Ca2+ channels

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropanoic acid

NMDA N-methyl-D-aspartate

SOC store-operated Ca2+ channels

ER endoplasmic reticulum

Liang and Wei Page 10

Alzheimer Dis Assoc Disord. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



InsP3Rs Inositol-1,4,5-trisphosphate receptors

RYRs Ryanodine receptors

CICR cytosolic Ca2+ concentration [Ca2+]c, Ca2+-induced Ca2+ release
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Figure 1. Calcium dysregulation in AD and the proposed effects of dantrolene
Mutated Presenilins (PS) in familial AD (FAD) increase numbers and activation of RYRs 

and activation of InsP3Rs, resulting in excessive Ca2+ release from the ER. Overactivation 

of RYRs and subsequent disruption of intracellular Ca2+ homeostasis in AD can then cause 

the following pathological changes: 1). Increase presynaptic glutamate release and 

postsynaptic NMDA receptor activation and glutamate excitotoxicity; 2). Increase 

postsynaptic cytosolic [Ca2+]c and neurodegeneration; 3). Form a vicious cycle between 

amyloid pathology and Ca2+ dysregulation; 4). Promote Tau pathology and damage of 

microtubules; 5). Synapse dysfunction. These above pathological changes may result in 

synaptic dysfunction, neurodegeneration and cognitive dysfunction. Dantrolene is expected 

to restore intracellular Ca2+ homeostasis, resulting in inhibition of neuropathology and 

cognitive dysfunction in AD.
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