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SUMMARY

The number of effectively independent tests performed in genome-wide association studies and 

the corresponding genome-wide significance level varies by population. Therefore, a common p-

value threshold may be inappropriate. To assess this, we estimated the number of independent 

SNPs for all Phase 3 HapMap samples using the LD pruning function in PLINK. We also used an 

autocorrelation-based approach to verify the HapMap findings, and tested it on 1000 Genomes 

data to estimate the number of independent tests in whole genome sequences. The number of 

effectively independent tests performed in genome-wide association studies (GWAS) varies by 

population, making a universal p-value threshold inappropriate. We estimated the number of 

independent SNPs in Phase 3 HapMap samples by: (1) the LD pruning function in PLINK, and (2) 

an autocorrelation-based approach. Autocorrelation was also used to estimate the number of 

independent SNPs in whole genome sequences from 1000 Genomes. Both approaches yielded 

consistent estimates of numbers of independent SNPs, which were used to calculate new 

population-specific thresholds for genome-wide significance. African populations had the most 

stringent thresholds (1.49×10−7 for YRI at r2=0.3), East Asian populations the least (3.75×10−7 for 

JPT at r2=0.3). We also assessed how using population-specific significance thresholds compared 

to using a single multiple testing threshold at the conventional 5×10−8 cutoff. Applied to a 

previously published GWAS of melanoma in Caucasians, our approach identified two additional 

genes, both previously associated with the phenotype. In a Chinese breast cancer GWAS, our 

approach identified 48 additional genes, 19 of which were in or near genes previously associated 
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with the phenotype. We conclude that the conventional genome-wide significance threshold 

generates an excess of Type 2 errors, particularly in GWAS performed on more recently founded 

populations.
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INTRODUCTION

Linkage analyses and association studies are the two most popular methods used to identify 

risk alleles for human disease. Linkage analyses have been most successful for monogenic, 

Mendelian disorders because the causal alleles have large effect sizes and are more common 

in multiplex pedigrees. For more common diseases, such as diabetes, schizophrenia, and 

most cancers, in which the connections between genotype and phenotype are usually subtle 

and complex, association studies provide greater statistical power (Risch and Merikangas, 

1996).

Recent advances in genotyping and sequencing technology have made “agnostic” high-

throughput association study designs, in which many interrogated loci are chosen using 

statistical rather than biological criteria, the predominant approach for the identification of 

genes that predispose to disease. Genome-wide association studies (GWAS) and high-

throughput, massively parallel sequencing permit investigators to interrogate millions of 

single nucleotide polymorphisms (SNPs) throughout the genome in a single study. However, 

performing such a large number of statistical tests is expected to generate an abundance of 

false positive findings, or type 1 errors, if the threshold for significance is not appropriately 

strict. The number of false positive results typically has been managed by controlling the 

family-wise error rate (FWER), namely, the probability of at least one false discovery within 

a family of hypotheses. A conservative approach to assure that the FWER is below a set 

threshold (α) in a given GWAS is to apply a Šidák (1) or a Bonferroni (2) correction,

1. P(study-wide type I error) = 1 − (1 − α)1/n

2. P(study-wide type I error) = α/n

where n is the number of independent tests (Šidák, 1967). The Bonferroni correction, a close 

approximation of the more rigorous Šidák correction, has been used when approximating the 

standard for GWAS significance, with p < 5x10−8 corresponding to an α of 0.05 for one 

million independent tests (Altshuler et al., 2008). This correction for genetic analyses was 

recommended after simulated data were used to estimate the number of independent variants 

in the human genome, based on patterns of linkage disequilibrium (LD) primarily based on 

European-ancestry individuals (Pe’er et al., 2008). Although this study provided an initial 

estimate of the number of independent tests and a corresponding threshold for significance, 

there is now an opportunity to refine this threshold using densely genotyped reference 

populations and data from high-throughput genetic studies of traits.

SOBOTA et al. Page 2

Ann Hum Genet. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



We argue that a more accurate and population-specific empirical estimate of the number of 

independent tests necessary to control the FWER can now be used. Since the 5×10−8 

threshold was estimated in individuals of European ancestry, it is a crude proxy for the 

genomic landscape in other populations because LD and allele frequencies vary with 

ancestry. Consequently, the significance threshold required to control the FWER does not 

correspond to the number of tests performed in any real study and also varies with ancestry. 

Therefore, although this canonical threshold will effectively limit type 1 error, it almost 

certainly inflates false negative findings, or type 2 errors (Williams and Haines, 2011), and 

is not tuned to the data at hand or diverse populations with distinct demographic histories in 

general. An imbalance of error rates permitting an excess of type 2 error may be more 

problematic in the long term because type 1 errors are more easily identified in subsequent 

studies, and the resources necessary to perform very large GWAS to overcome the bias 

toward type 2 errors are finite (Williams and Haines, 2011).

Less conservative methods have been suggested to limit the inflation of type 2 error in high 

density genetic analyses. The False Discovery Rate (FDR) controls the expected proportion 

of false positives among the rejected null hypotheses and is a popular, less conservative 

alternative to Bonferroni correction (Benjamini Y, 1995). However, FDR also assumes 

independence of hypotheses; therefore, if many SNPs in strong LD are present on an array, 

it can suffer from a loss of statistical power. Other methods such as permutation procedures 

can provide an accurate FWER, but implementation is computationally challenging and not 

feasible in consortium studies. Furthermore, the results of permutation testing are difficult to 

extrapolate beyond the data set from which they are generated (Hoggart et al., 2008).

Several studies have proposed to correct only for the effective number of independent tests 

performed, Meff, a number that has been estimated by using principal components or the 

analysis of the LD structure in the genome (Cheverud, 2001, International HapMap, 2005, 

Gao X, 2008, Duggal et al., 2008). LD structure has been previously analyzed using a Solid 

Spine of LD measure, the 4-Gamete Rule, and the Gabriel and Nyholt methods (Duggal et 

al., 2008, Nyholt, 2004, Hudson and Kaplan, 1985, Gabriel et al., 2002, Barrett et al., 2005). 

While some of these methods improve type 2 error rates and perform similarly to the 

Bonferroni correction in high and moderate LD settings, it has been suggested that the use of 

the traditional r2 measure might improve the Meff estimation even further (Nicodemus et al., 

2005). Moreover, perhaps because of the requirement of additional software and analytics 

necessary to estimate Meff, these approaches have not been widely adopted. Hence, the 

genome-wide threshold of 5×10−8 continues to be the convention.

We propose a much simpler and more practical solution: empirically estimating Meff using 

the r2-based LD pruning option in PLINK, the software most commonly used for GWAS 

analyses. This approach adjusts for a more natural number of independent tests, likely 

reducing the type 2 error rate by uncovering more true associations and thus accounting for 

more heritability without dramatically increasing sample size, sample utilization, and study 

cost. We further validate this approach with an alternative autocorrelation method.

Variable LD patterns have been well documented among the CEU, YRI, CHB, and JPT 

samples used in Phase 1 of the HapMap project (International HapMap, 2005, International 
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HapMap, 2003). Because the correlational structures of SNPs are specific to populations, the 

degree of overcorrection using the canonical genome-wide threshold also varies. Phase 3 of 

the International HapMap Project provides estimates of LD structure in additional samples 

from several more major populations and admixed groups: ASW, CHD, GIH, LWK, MXL, 

MKK, and TSI. Here, we present methods to calculate correlation-based Meff values, 

providing genome-wide thresholds that correspond to the Phase 3 HapMap samples. We 

demonstrate that the extent of the overcorrection from a Bonferroni-based genome-wide 

threshold is proportional to the founding date of a given population or its distance from 

Africa. We then use the LD pruning-based method to establish study-specific thresholds in 

two genome-wide association studies: a cutaneous melanoma study in non-Hispanic whites 

and a breast cancer study in East Asians. We then re-evaluate the significant associations at 

the various Meffs defined by new LD thresholds for each GWAS and show that substantial 

type 2 error occurred when the conservative 5×10−8 standard of significance was used.

There is no generally agreed upon r2 threshold below which SNPs are classified as 

independent. To avoid an arbitrary choice of r2 in our LD-based method, we complemented 

the PLINK-based approach with autocorrelation to estimate the number of independent tests 

performed in a given association study. The estimation of Meff was addressed empirically by 

assessing the autocorrelation of genotype one individual at a time. Autocorrelation of 

genotype can be viewed as linkage disequilibrium at the limit of one individual. While it is 

not feasible to estimate linkage disequilibrium without partitioning a chromosome into 

multiple disjoint blocks or sliding windows (Cheverud, 2001, Nyholt, 2004, Li and Ji, 2005, 

Moskvina and Schmidt, 2008, Han et al., 2009, Ramos et al., 2011), it is computationally 

efficient to estimate autocorrelation for one individual over an entire chromosome. This 

approach is independent of (simulated or measured) phenotypes, and does not require p-

values, thereby decoupling the effective number of markers from the testing burden for any 

particular type of statistical test of association, any assumption of the asymptotic distribution 

of test statistics, or any p-value threshold. Using data from each GWAS, the HapMap 

samples as well as whole genome sequences (Genomes Project et al., 2012), we show that 

the intra-population patterns of Meff estimates we obtained with LD pruning are highly 

consistent with this robust approach.

MATERIALS AND METHODS

HapMap thresholds determined by PLINK pruning

To study the effects of population-specific LD structure on genome-wide significance 

thresholds, we examined genotype data (Affymetrix® Genome-Wide Human SNP Array 6.0, 

Illumina Human 1M-single BeadChip) from the second release of the International HapMap 

Project Phase 3. Our analysis was restricted to the founders in each of the 11 samples, 

reducing the sample size from 1,184 individuals in the original data set to 988 (Table S1). 

We excluded SNPs with minor allele frequencies below 0.05, as LD among rare alleles is 

often weak and power to detect associations is low, and genotyping call rates less than 95%. 

We excluded individuals for whom more than 5% of SNPs available on the platform could 

not be called. The number of markers passing quality controls for each sample is shown in 

Table S1. The data were subsequently pruned for linkage disequilibrium in PLINK (Purcell 
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et al., 2007, Purcell), using a 100 SNP window size, a 5 SNP window shift, and r2 ranging 

from 0.1 to 1.0 in increments of 0.1. The number of SNPs remaining after this pruning 

process was considered to be equal to the number of effectively independent SNPs for each 

population and each r2 threshold. Population-specific genome-wide significance thresholds 

were then determined with the Bonferroni method (2), dividing an alpha of 0.05 by the 

number of effectively independent SNPs as determined by the PLINK pruning, over a range 

of r2 values (i.e., 0.05/(number of effectively independent SNPs)).

Cutaneous Melanoma GWAS thresholds

We calculated genome-wide significance thresholds using the same LD pruning technique 

for a cutaneous melanoma GWAS data set. The study included 2,830 non-Hispanic white 

patients seen at MD Anderson, as previously described (Amos et al., 2011). The same SNP 

and individual quality control criteria were used as for the HapMap data (Table S2). The 

GWAS data were pruned for LD as described above. The Bonferroni correction (2) was used 

to establish genome-wide significance, dividing an alpha of 0.05 by the number of 

effectively independent SNPs as determined by PLINK. The resulting thresholds derived 

from the study sample’s genotype data were compared to those calculated for the HapMap 

CEU sample. The SNPs interrogated in the GWAS were reevaluated using the different 

thresholds established by the various r2 cutoffs. SNPs falling between the population-

specific thresholds and 5×10−8 were assigned to genes using the SNP Functional Prediction 

tool in SNPinfo (Xu and Taylor, 2009). The criterion for previous association of these genes 

with cutaneous melanoma was at least one statistically significant finding in the literature. 

To better understand the correlational structure of associating SNPs, we examined pairwise 

correlations of all SNPs from the same chromosome that remained significant after a 

multiple testing correction (for r2 = 0.1). This provides a summary of the correlation 

structure of all SNPs nominally associated with disease.

Shanghai Breast Cancer Study GWAS thresholds

We evaluated associations at various population-specific genome-wide thresholds for the 

Shanghai Breast Cancer Study and the Shanghai Breast Cancer Survival Study GWAS, a 

cohort of 5,161 East Asian females aged 20 to 75 with stage I to stage IV disease. The 

details of the studies and the sample have been described elsewhere (Shu et al., 2009, Shu et 

al., 2012). We applied the same quality control criteria and LD pruning method as above to 

the Shanghai sample. Putatively associating SNPs were assessed using literature searches. If 

the SNPs falling between the population-specific thresholds and 5×10−8 were in genes with 

previous evidence of association, or evidence published subsequently in larger studies, we 

considered them type 2 error resulting from the usage of an overly conservative genome-

wide threshold.

Estimating Meff using Autocorrelation

We also performed a second, independent analysis to determine the effective number of 

independent tests. Specifically, autocorrelation was performed on Phase 3 HapMap samples 

and each GWAS study, using the same inclusion criteria as above, and separately on whole 

genome sequence data. Sequence data were retrieved from the 1000 Genomes phase 1 

version 3 release (ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/). All 
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SNPs were extracted for the autosomal and X chromosomes. The effective numbers of 

markers were estimated by autocorrelation. Briefly, genotypes were recoded as 0, 1, or 2 

copies of the minor allele, corresponding to an additive genetic model. For each 

chromosome for each individual, we fit an autoregressive model. The notation for an 

autoregressive model of order p is AR(p) and the model is defined as , 

in which c is a constant, φ1,…,φp are the parameters, and εt is white noise. The order of the 

fitted autoregressive model is chosen by minimizing the Akaike information criterion 

(Plummer, 2012). For the best fit model, the effective number of markers is estimated by 

first dividing the residual variance by (1 minus the sum of the autoregression coefficients)2, 

and then multiplying the number of markers by the variance of the recoded genotypes and 

dividing by the former quotient. For each chromosome, the maximum value of the order is 

the largest integer smaller than 10×log10 (number of markers). If this default value is too 

small, then the effective number of markers may be overestimated, leading to overly 

conservative significance levels and loss of power. Finally, the effective numbers of markers 

were summed by chromosome and averaged across individuals for each sample. All 

calculations were performed using R, including the effective Size function from the R 

library coda (Plummer, 2012, R Core Team, 2013). Note that there is no pruning in this 

approach.

RESULTS

Population-Specific Genome-wide Thresholds Using the LD-pruning Method

In the HapMap data, the numbers of SNPs were population-specific in both the pre-LD-

pruned and post-LD-pruned data. Samples of African ancestry (LWK, MKK, YRI, and the 

admixed ASW) had the highest number of independent SNPs remaining throughout the 

range of r2 values used for LD pruning (e.g., 825,819 – 867,326 at r2 = 0.8, Table 1). The 

East Asian samples (CHB, CHD, and JPT) had the fewest number of independent SNPs 

(402,860 – 414,300 at r2 = 0.8), and those of European and Indian origin (CEU, TSI, GIH, 

and the admixed MXL) were intermediate (489,663 – 516,945 at r2 = 0.8, Table 1).

The numbers of SNPs remaining after LD pruning were used to calculate population-

specific genome-wide significance thresholds, using a Bonferroni multiple testing 

adjustment (2). With an r2 level of 0.8 as the cutoff for establishing the number of 

independent tests, the estimated significance threshold was 6.05×10−8 for YRI, 1.02×10−7 

for CEU, and 1.24×10−7 for JPT (Figures 1, S1; Table S3). When the number of SNPs with 

r2 < 0.5 was used to estimate the number of independent tests, the significance threshold was 

9.26×10−8 for YRI, 1.82×10−7 for CEU, and 2.22×10−7 for JPT. When r2 < 0.1 was used, 

the estimated significance threshold was 5.31×10−7 for YRI, 9.78×10−7 for CEU, and 

1.13×10−6 for JPT. As expected, the three African samples along with the admixed ASW 

sample had similar thresholds when r2 varied between 0.3 and 0.9. At LD pruning r2 of 0.2 

and 0.1, the admixed ASW sample had stronger LD than the other African samples, thereby 

defining fewer independent SNPs and a more easily reached significance threshold. GIH, 

CEU, TSI, and MXL had similar thresholds in the 0.3 – 0.9 r2 range, but MXL had more 
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independent SNPs in LD at r2 levels of 0.1 and 0.2. The CHB, CHD, and JPT samples had 

similar significance thresholds across the entire r2 range (Table S3).

Re-evaluating SNPs in a Cutaneous Melanoma GWAS in a Caucasian Sample

In addition to using existing databases, we also applied LD pruning to actual GWAS data to 

assess whether our results from the HapMap data matter in practice. The genome-wide 

significance thresholds in the non-Hispanic white melanoma study compared favorably with 

those for the CEU sample from Phase 3 of HapMap, diverging only at very high LD levels 

(Figure 2A; Table 2). The actual GWAS data set had fewer SNPs interrogated (736,303 

SNPs) than the CEU HapMap sample (1,219,753 SNPs); therefore, as expected, there were 

fewer independent tests remaining at higher r2 cutoffs (Tables 1, 2). For example, pruning at 

r2 = 0.9, the genome-wide significance threshold for the actual GWAS data was 9.82×10−8 

compared to 8.30×10−8 from the CEU HapMap data. However, when the LD pruning 

cutoffs were lowered, the two data sets produced similar thresholds, consistent with a high 

level of SNP redundancy in both the HapMap and GWAS data. When LD pruning was 

carried out at an r2 of 0.5, the threshold from the melanoma GWAS became 1.91×10−7 

compared to 1.82×10−7 for CEU, while at an r2 of 0.1 it was 8.80×10−7 for the GWAS 

versus 9.78×10−7 for CEU.

SNPs not meeting the 5×10−8 threshold in the melanoma study were then reevaluated using 

the genome-wide significance thresholds obtained by LD pruning the GWAS data (Table 3). 

Seven additional SNPs were found between the p-values 5×10−8 and 8.80×10−7, the 

threshold for LD pruning at r2 of 0.1. All seven SNPs were in genes previously associated 

with cutaneous melanoma (Barrett et al., 2011, Falchi et al., 2009, Bishop et al., 2009, 

Stefanaki et al., 2013). Four of the SNPs were in or near the MTAP gene on chromosome 9, 

while the remaining three were in DEF8, AFG3L1, and DBNDD1 on chromosome 16. Other 

SNPs in DEF8 and AFG3L1 were identified using the conventional p-value cutoff, but no 

SNPs in DBNDD1 were. The DBNDD1 SNP, rs10852628, can be found at an LD pruning r2 

of 0.9, while all MTAP SNPs require an r2 of 0.1. rs10852628 is correlated with SNPs 

mapping to other genes on chromosome 16, and it might be tagging the same causal variant 

as the other SNPs (Figure S2). The SNPs in and around MTAP are the only ones with p-

values below 8.80×10−7 that are located on chromosome 9.

Re-evaluating SNPs in a Breast Cancer GWAS in an East Asian Sample

LD pruning of the Shanghai data at various r2 levels produced a pattern of population-

specific genome-wide significance thresholds similar to that obtained using the CHB and 

other East Asian samples from Phase 3 of HapMap (Figure 2B). Because the Shanghai 

GWAS data had fewer SNPs interrogated (584,593 SNPs) than the CHB HapMap data 

(1,119,904 SNPs), there were fewer independent tests remaining at high r2 levels used for 

pruning (Tables 1, 2). The population-specific genome-wide significance thresholds for the 

breast cancer GWAS data ranged from 8.55x10−8 (no LD pruning) to 1.01×10−6 

(corresponding to r2 = 0.1, Table 2).

Ninety SNPs associated with breast cancer in the Shanghai study at a p-value between 

5×10−8 and the population-specific threshold of 1.01×10−6. Of these SNPs, 21 were in genes 
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already identified as significant at p< 5×10−8 in this dataset. Of the remaining 69 SNPs, 28 

(41%) mapped to genes previously associated with breast cancer. More specifically, 58 

SNPs were in 48 different genes (10 SNPs in ESR1, 2 SNPs in ZBTB20, and 46 SNPs in 46 

other genes) of which 19 (40%) had support for association with breast cancer in the 

literature (Table S4). At an LD-pruning level of r2 = 0.5, corresponding to a p-value 

threshold of 2.82×10−7, 32 new SNPs achieved population-specific significance, 13 of 

which (41%) mapped to genes previously associated with the phenotype. Of these 32 SNPs, 

seven were intergenic and 25 mapped to 21 different genes; nine of the 21 genes (43%) have 

been previously associated with breast cancer (Table S4). Even at the more conservative LD 

pruning level of r2 = 0.8, 21 new SNPs achieved population-specific significance, eight of 

which (38%) were in genes previously associated with the phenotype. Of the 21 SNPs, six 

were intergenic and 15 mapped to 13 genes; six of the 13 genes (46%) have been previously 

associated with breast cancer (Table S4).

Population-Specific Genome-wide Significance Thresholds using the Autocorrelation 
Method

The estimated effective number of markers after autocorrelation and the corresponding 

population-specific genome-wide thresholds in the HapMap samples are listed in Table 4. 

Samples of African ancestry (LWK, MKK, YRI, and the admixed ASW) had the highest 

number of independent SNPs remaining (337,252.8 – 370,280.7, Table 4). The East Asian 

samples (CHB, CHD, and JPT) had the fewest number of independent SNPs (85,953.9 – 

86,790.1), and those of European and Indian origin (CEU, TSI, GIH, and the admixed 

MXL) were intermediate (113,980.2 – 127,899.4, Table 4). Estimating empirical number of 

tests in the HapMap samples with autocorrelation corresponds to LD pruning at an r2 of 0.2–

0.3 (Table 1, 4). Autocorrelation on the melanoma GWAS data estimated 137,069 

independent tests, with a corresponding population specific threshold of 3.64x10−7, 

consistent with LD pruning at an r2 of 0.2–0.3 (Table 2). Autocorrelation on the breast 

cancer GWAS data estimated 91,099 independent tests, with a corresponding population 

specific threshold of 5.49x10−7, again consistent with LD pruning at an r2 of 0.2–0.3 (Table 

2).

The nominal and effective numbers of markers based on autocorrelation for the 14 samples 

with whole genome sequence data from the 1000 Genomes Project are provided in Table 5. 

The nominal numbers of markers were ~10,300,000 for the CHB, CHS, and JPT samples, 

~10,700,000 for the CEU, FIN, GBR, IBS, and TSI samples, ~13,400,000 for the CLM, 

MXL, and PUR samples, and ~19,200,000 for the ASW, LWK, and YRI samples. We 

estimated the effective numbers of markers to be ~286,000 for the CHB, CHS, and JPT 

samples, ~341,000 for the CEU, FIN, GBR, IBS, and TSI samples, ~527,000 for the CLM, 

MXL, and PUR samples, and ~1,600,000 for the ASW, LWK, and YRI samples. These 

estimates indicate that, for whole genome sequence data, the conventional genome-wide 

significance threshold of 5×10−8 is conservative for all of the non-African samples and 

liberal for the African samples. The ratio of nominal to effective markers is smallest in the 

African samples (11.55–12.43, Table 5) and largest in the East Asian samples (35.70–36.59, 

Table 5), consistent with larger numbers of lower frequency variants and/or weaker linkage 

disequilibrium in the African samples. Note that the size of the IBS sample is particularly 
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small (n=14), limiting discovery of lower frequency variants and consequently pulling down 

the European averages. The estimated Meff and the corresponding population-specific 

genome-wide significance thresholds at alpha=0.05 corresponded to LD pruning at r2 

between 0.6–0.7 for the European and East Asian samples (CEU, TSI, CHB, and JPT), 

while the thresholds in African samples corresponded to unpruned data (Tables 1, 5, and 

S3). It should be noted that these values are based on all possible variants, regardless of 

frequency, and not those explicitly genotyped in any given study. Thus, these values are 

applicable to GWAS or exome studies that include imputation using the 1000 Genomes 

sequence data. These values are also useful for whole genome sequence-based studies and 

integrated GWA/exome studies.

DISCUSSION

Over 1,600 GWAS studies have been published to date, associating SNPs to a variety of 

phenotypes in diverse populations. While the popularity of the GWAS and other high-

density agnostic approaches continues to grow, the major analytical challenge of 

establishing an appropriate genome-wide significance threshold remains. Our results 

demonstrate that using a 5×10−8 genome-wide threshold is inappropriate because of 

variation in the underlying LD structure within and among populations, supporting a 

previous argument that some of the missing heritability is due to overly stringent statistical 

criteria (Williams and Haines, 2011). Furthermore, the extent of the overcorrection 

stemming from a genome-wide threshold appropriate for 1 million independent tests is 

directly proportional to a given population’s distance from Africa (Figures 1 and S1). 

Therefore, GWAS studies of European, Indian, and East Asian populations should use a less 

significant threshold than studies of African populations for whom 10−8 is most reasonable. 

Even in Africans, we found that a p-value threshold corresponding to a conservative r2 

cutoff of 0.8 for determining independence of a test suggested that GWAS are typically 

overcorrected (Table S3). Of importance, the genome-wide significance level of 5×10−8 

does not account for the actual number of independent tests performed in any study but is 

designed for those tests that could in theory be performed based on known common variants, 

which is conservative for studies without complete coverage of all known common SNPs 

and long demographic histories.

When we applied our LD pruning method to an actual GWAS data set for cutaneous 

melanoma, we discovered seven additional SNPs meeting the least stringent genome-wide 

threshold. These seven SNPs mapped to four genes associated with melanoma; two of these 

SNPs were in genes not associated with the outcome when the threshold of 5×10−8 was 

applied (Barrett et al., 2011, Falchi et al., 2009, Bishop et al., 2009). DBNDD1 is on 

chromosome 16, in close proximity to AFG3L1, DEF8, and CDK10; therefore, the SNP in 

DBNDD1 might be tagging the same locus as the significant SNPs in the other genes (Kent 

WJ, 2002). MTAP, another previously associated gene, is located on chromosome 9; 

therefore, its significant SNPs represent an additional locus not detected using conventional 

GWAS thresholds in the dataset we used. Of note, making the genome-wide significance 

threshold population-specific did not add any false positive findings, as all of the additional 

SNPs are within genes previously associated with the phenotype. In this particular case, 

inflating the type 2 error rate to conservatively control for FWER prevented us from 
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validating findings previously published that are most likely true associations. Therefore, it 

is almost certain that stringent control of the type 1 error rate prevents discovery of 

important new variants that would otherwise be compelling.

When the less conservative CEU threshold of 9.78×10−7 (LD pruning r2 of 0.1) was applied 

to the melanoma GWAS data, an additional SNP in MTAP and one in a new gene, CDK10, 

reached statistical significance (Table 3). We expect that this is a true finding, since CDK10 

is near AFG3L1, DEF8, and DBNDD1, and it has been previously implicated in cutaneous 

melanoma (Stefanaki et al., 2013). This result demonstrates that LD pruning the GWAS data 

at an autocorrelation supported r2 of 0.3, or even 0.1, (where the population-specific 

threshold was 8.80×10−7) will not be able to detect all false negative findings, but neither 

will any other method. Thus, appropriate pruning provides a large improvement over the 

current strategy, which only controls type 1 error regardless of the loss of power. Of course, 

type 1 errors can be corrected in follow-up studies, whereas type 2 errors are much less 

likely to be followed up.

As expected from the LD pruning results for the HapMap samples, the East Asian sample in 

the Shanghai Breast Cancer Study GWAS had a smaller number of independent tests than 

the Caucasian GWAS sample across all LD pruning r2 values. When we used the new 

population-specific thresholds, approximately 40% of literature-supported genes were not 

identified by the conventional threshold of 5×10−8 across LD pruning r2 values. Therefore, 

as in the melanoma GWAS, our method appears to be identifying SNPs that are relevant to 

the phenotype. Furthermore, assessing the extent of type 2 error based on previously 

documented associations underestimates the actual type 2 error, as it ignores novel true 

associations; some of the non-literature supported SNPs are almost certainly true findings as 

well.

The effective numbers of markers based on autocorrelation of the 1000 Genomes sequence 

data are uniformly more than one order of magnitude smaller than the nominal numbers of 

markers, reflecting redundancy due to LD in conjunction with large numbers of rare alleles. 

In particular, the estimated effective number of markers for the CEU sample of 358,852 is 

within a factor of two of a previous estimate of 693,138 two-sided tests (Dudbridge and 

Gusnanto, 2008). Autocorrelation on the whole genome CEU sequences yields about 3 times 

as many independent tests as carrying it out on the HapMap CEU sample, but still yields a 

threshold not as stringent as 5x10−8, or those recently recommended for whole-genome 

sequencing data (Xu et al., 2014).

Importantly, for all of the non-African samples the numbers of independent tests, even based 

on sequence data, are significantly less than one million. The main difference between these 

estimates can be explained by treatment of rare alleles. To illustrate, consider a singleton 

marker. An association test at this marker will be counted as one independent test due to the 

lack of LD with other markers. However, from the point of view of information theory, such 

a marker has low entropy due to the low minor allele frequency. Thus, rare variants, 

although independent, are less informative and this has motivated the development of linear 

and quadratic gene-based tests which do not require such detailed consideration of multiple 

testing. Given that the number of known protein-coding genes in the human genome is 
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20,687 (Consortium et al., 2012), the testing burden of gene-based testing of rare variants is 

an order of magnitude smaller than the testing burden of LD-pruned common variants.

The effective number of markers as estimated by autocorrelation is solely a function of 

genotype or sequence data. Consequently, the effective number of markers is independent of 

phenotype data and statistical tests of association. Furthermore, autocorrelation does not rely 

on pairwise correlation coefficients or arbitrary thresholds for those correlation coefficients. 

For a given data set, the effective number of markers need only be estimated once.

We recommend using experiment-specific thresholds, wherever possible. However, in the 

cases where this is not feasible, population-specific thresholds, as opposed to a universal 

genome-wide significance level, are preferred, not only in future GWAS but also to reassess 

data already available in the more than 1,600 GWAS studies published to date. Furthermore, 

pruning in PLINK is not as computationally intensive as permutation testing, and the 

reference HapMap or 1000 Genomes samples can be used as proxies, if performing LD 

pruning is not feasible (e.g. for meta-analyses). As we have shown, because the correlation-

specific LD pruning pattern of the non-Hispanic white melanoma GWAS sample closely 

resembled that of the CEU sample, both samples produced similar genome-wide 

significance thresholds. A similar pattern was seen with the HapMap CHB sample and the 

Shanghai Breast Cancer Study GWAS. Thresholds from the autocorrelation method can also 

be used as proxies for situations in which evaluating population-specific significance levels 

is challenging, such as with whole genome sequence data. However, we recommend that, 

when possible, LD pruning be performed for each GWAS sample independently, as each 

GWAS sample is likely to be somewhat different from the reference samples in the 

International HapMap or 1000 Genomes Projects. We suggest using a threshold of r2=0.3 

for pruning, as verified by autocorrelation data, though our GWAS results suggest that even 

this might be overly conservative. As a final note, we point out that one of the single best 

known genetic associations – that of HBS with malaria susceptibility – failed to achieve 

significance in a GWAS from West Africa (Jallow et al., 2009) but would have been 

detected using the population-specific threshold for the HapMap YRI sample. Specifically, 

in the study of severe malaria susceptibility, the HBB SNP rs11036238 was not identified 

using the conventional significance level of 5×10−8 (Jallow et al., 2009), but would have 

been using a significance level of 5.31×10−7 based on an r2 = 0.1 LD cutoff from the YRI 

sample, as the p-value in the published data was 3.9x10−7. Therefore, even in African 

populations, applying a less conservative multiple testing correction threshold not only 

makes statistical sense, but works.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Significance threshold change by linkage disequilibrium in Phase 1 HapMap samples
Comparison of the conventional genome-wide threshold (maroon) to the population-specific 

genome-wide threshold calculated by LD pruning the HapMap CHB sample (black), JPT 

sample (orange), CEU sample (red) and YRI sample (blue).
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Figure 2. Significance threshold variation change by linkage disequilibrium in GWAS data and 
corresponding HapMap proxies
A) Changes in p-value thresholds as derived from a GWAS for melanoma in non-Hispanic 

whites and from the HapMap CEU samples. Comparison of the conventional genome-wide 

significance threshold (gold) with the population-specific genome-wide threshold calculated 

by applying autocorrelation to the cutaneous melanoma GWAS data (blue), population 

specific genome-wide thresholds calculated by LD pruning the Phase 3 HapMap CEU 

sample (black) and population specific genome-wide thresholds calculated by LD pruning 

the cutaneous melanoma GWAS data (red).

B) Changes in p-value thresholds as derived from a GWAS for breast cancer in an East 

Asian sample and the HapMap CHB sample. Comparison of the conventional genome-wide 
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significance threshold (gold) with the population-specific genome-wide threshold calculated 

by applying autocorrelation to Shanghai Breast Cancer Study GWAS data (blue), population 

specific genome-wide thresholds calculated by LD pruning the Phase 3 HapMap CHB 

sample (black) and population specific genome-wide thresholds calculated by LD pruning 

the Shanghai Breast Cancer Study GWAS data (red).
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Table 2
SNPs remaining after LD-pruning and corresponding thresholds in melanoma and breast 
cancer GWAS

Number of independent tests and multiple testing adjusted p-value thresholds for the cutaneous melanoma 

GWAS in a non-Hispanic Caucasian sample and a breast cancer GWAS in an East Asian sample, at various 

LD pruning r2 levels and by autocorrelation.

r2 Melanoma GWAS indep. 
tests

Melanoma GWAS p-value 
thershold

Breast Cancer GWAS 
indep. tests

Breast Cancer GWAS p-
value threshold

1 736,303 6.79×10−8 584,593 8.55×10−8

0.9 509,102 9.82×10−8 347,523 1.44×10−7

0.8 442,520 1.13×10−7 286,368 1.75×10−7

0.7 379,219 1.32×10−7 244,848 2.04×10−7

0.6 318,629 1.57×10−7 209,557 2.39×10−7

0.5 262,280 1.91×10−7 177,619 2.82×10−7

0.4 208,672 2.40×10−7 146,712 3.41×10−7

0.3 157,074 3.18×10−7 115,681 4.32×10−7

0.2 106,645 4.69×10−7 83,491 5.99×10−7

0.1 56,880 8.80×10−7 49,523 1.01×10−6

Autocorrelation 137,069 3.64x10−7 91,099 5.49x10−7
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Table 4
SNPs remaining and corresponding thresholds estimated by autocorrelation

Effective number of autosomal and X chromosome SNPs and the corresponding population-specific threshold 

for the Phase 3 HapMap samples.

Sample Effective Number of Markers Population-specific Threshold

ASW 370,280.7 2.65×10−7

CEU 113,980.2 4.74×10−7

CHB 86,790.1 5.38×10−7

CHD 86,373.6 5.39×10−7

GIH 127,899.4 4.45×10−7

JPT 85,953.9 5.61×10−7

LWK 360,705.2 2.20×10−7

MKK 337,252.8 2.22×10−7

MXL 121,312.7 5.33×10−7

TSI 118,641.0 4.62×10−7

YRI 353,476.3 2.27×10−7
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