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Stuttgart 70376, Germany, 56University of Tübingen, Tübingen 72074, Germany, 57Institute for Prevention and

Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum

D-44789, Germany, 58Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus,

Bonn 53113, Germany, 59Institute for Occupational Medicine and Maritime Medicine, University Medical Center

Hamburg-Eppendorf,Hamburg20246,Germany, 60InstituteofPathology,MedicalFacultyof theUniversity ofBonn,Bonn
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Previous studies have suggested that polymorphisms in CASP8 on chromosome 2 are associated with breast
cancer risk. To clarify the role of CASP8 in breast cancer susceptibility, we carried out dense genotyping of
this region in the Breast Cancer Association Consortium (BCAC). Single-nucleotide polymorphisms (SNPs)
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spanning a 1 Mb region around CASP8 were genotyped in 46 450 breast cancer cases and 42 600 controls of
European origin from 41 studies participating in the BCAC as part of a custom genotyping array experiment
(iCOGS). Missing genotypes and SNPs were imputed and, after quality exclusions, 501 typed and 1232 imputed
SNPs were included in logistic regression models adjusting for study and ancestry principal components. The
SNPs retained in the final model were investigated further in data from nine genome-wide association studies
(GWAS) comprising in total 10 052 case and 12 575 control subjects. The most significant association signal
observed in European subjects was for the imputed intronic SNP rs1830298 in ALS2CR12 (telomeric to
CASP8), with per allele odds ratio and 95% confidence interval [OR (95% confidence interval, CI)] for the minor
allele of 1.05 (1.03–1.07), P 5 1 3 1025. Three additional independent signals from intronic SNPs were identified,
in CASP8 (rs36043647), ALS2CR11 (rs59278883) and CFLAR (rs7558475). The association with rs1830298 was
replicated in the imputed results from the combined GWAS (P 5 3 3 1026), yielding a combined OR (95% CI) of
1.06 (1.04–1.08), P 5 1 3 1029. Analyses of gene expression associations in peripheral blood and normal breast
tissue indicate that CASP8 might be the target gene, suggesting a mechanism involving apoptosis.

INTRODUCTION

Breast cancer is a complex disease with high, moderate and low
penetrance germ-line variants involved in its etiology (1). In
recent years, �80 low penetrance breast cancer alleles have
been identified, with modest odds ratios, ranging from 1.05 to
1.4, and together accounting for around 15% of familial breast
cancer risk (2,3). It is likely that there are many more loci with
even smaller effect sizes that remain to be identified, accounting
for a further 14–15% of familial risk (2). One of the first low
penetrance breast cancer variant associations to be convincingly
replicated by large case–control studies was the single-nucleotide
polymorphism (SNP) rs1045485 encoding the missense alter-
ation D302H in the caspase 8 apoptosis-related cysteine peptid-
ase (CASP8) gene at chromosome region 2q33 (4,5). This
association was first identified by a candidate gene study and
replicated in 2007 by the Breast Cancer Association Consortium
(BCAC), in a study of .17 000 cases and 16 000 controls (4,5).
The minor C allele, common in Europeans and rare in Asians,
was found to be associated with a 10% reduction in risk of
breast cancer (5). However, further fine-mapping studies have
shown that other variants in the region are associated with an
increased risk of breast cancer, and in the recent large-scale
genotyping study carried out by the BCAC as part of the
COGS (Collaborative Oncology Gene-Environment Study),
rs1045485 showed only weak evidence of association with
breast cancer risk (2,6,7). In addition, in 2010 a UK genome-
wide association study (GWAS) of 3659 cases and 4897
controls found suggestive evidence of association [OR (95%
confidence interval, CI) 1.14 (1.06–1.22); P ¼ 1.5 × 1024]
with an independent variant in the region; rs10931936, a
CASP8 intronic SNP, that is only weakly correlated with
rs1045485 (r2 ¼ 0.083) (8).

In order to clarify the breast cancer risk association(s) at this
locus, we have analyzed 501 SNPs across a 1 Mb region sur-
rounding CASP8, for 89 050 women, as part of a custom-
designed Illumina genotyping chip—the iCOGS array. We
present here the results of this fine-mapping analysis, together
with a meta-analysis across iCOGS and the combined data
from nine breast cancer GWAS, followed by an examination
of associations between the key SNPs and RNA expression
levels.

RESULTS

Breast cancer risk associations in the CASP8 region
on chromosome 2

A summary of the breast cancer risk associations of 1733 typed
and imputed SNPs across a 1 Mb region surrounding CASP8,
based on the iCOGS European data, is shown in Figure 1. The
most significant associations were for SNPs in the CASP8 and
ALS2CR12 (amyotrophic lateral sclerosis 2 (juvenile) chromo-
some region, candidate 12) genes (Fig. 1; Supplementary Mater-
ial, Table S2). The strongest signals came from imputed SNP
rs1830298 in ALS2CR12, with minor allele frequency (MAF)
of 0.29 and an estimated OR (95% CI) per copy of the minor
allele of 1.05 (1.03–1.07), P ¼ 1.1 × 1025, and the genotyped
SNP rs10197246 (MAF ¼ 0.28), with odds ratio (95% CI)
1.05 (1.02–1.07), P ¼ 2.5 × 1025. These two SNPs are highly
correlated and likely reflect the same signal (r2 ¼ 0.9).

Two previously reported susceptibility SNPs, CASP8 D302H
(rs1045485) and rs10931936, were weakly replicated in iCOGS
European data (Supplementary Material, Table S2), with minor
allele OR in the same direction; however, the iCOGS OR esti-
mates were much weaker than those from the original reports
(5,8). The minor C allele of rs1045485 (MAF ¼ 0.11) yielded
an OR (95% CI) of 0.97 (0.94–1.0), P ¼ 0.03, in contrast to
0.88 (0.84–0.92) reported in Cox et al. (5). Similarly, the
rs10931936 minor allele (MAF ¼ 0.28) was associated with a
4% increased breast cancer risk [OR (95% CI) ¼ 1.04 (1.02–
1.06), P ¼ 1.9 × 1024], compared with the 12% increase pre-
sented in Turnbull et al. (8). The latter SNP is strongly correlated
with the iCOGS best hit rs1830298 (r2 ¼ 0.96), but there is very
little correlation between rs1045485 and rs1830298 (r2 ¼ 0.055).

Identification of possible independent signals in iCOGS
European data

The SNPs in the main association peak have similar ORs for
breast cancer, are strongly correlated with one another (r2 .
0.66) and confined to an 82 kb region spanning the CASP8 and
ALS2CR12 genes, and are therefore likely to reflect a single as-
sociation signal, but this does not preclude the possibility of
other signals in the region. To test this hypothesis, we carried
out a regression analysis testing the association of individual

Human Molecular Genetics, 2015, Vol. 24, No. 1 289

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu431/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu431/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu431/-/DC1


SNPs adjusted for the top hit rs1830298, in the iCOGS European
dataset (Supplementary Material, Table S3). Interestingly, while
this resulted in the loss of the signal from the main peak in
CASP8/ALS2CR12, residual associations remained (e.g. 43
SNPs with P ≤ 1 × 1023), suggesting that there may be further
signals present in the region, albeit weaker (Supplementary Ma-
terial, Table S3 and Fig. S1). To investigate this further, we
carried out penalized logistic regression analysis of all 1733
SNPs to identify the best subset of SNPs that explain the associ-
ation, using HyperLasso (10). This identified 59 models contain-
ing combinations of 27 SNPs (Supplementary Material, Table S2),
but many of these models were equivalent after taking into account
linkage disequilibrium between SNPs. To obtain the most parsimo-
nious model, we carried out stepwise forward logistic regression
on the 27 SNPs, which resulted in a model containing four
SNPs; rs1830298 (ALS2CR12; pconditional¼ 9.3 × 1023, MAF ¼
0.29), rs36043647 (CASP8; pconditional ¼ 1.9 × 1024, MAF ¼
0.06), rs59278883 (ALS2CR11; pconditional ¼ 6.1 × 1024,
MAF ¼ 0.07) and rs7558475 (CFLAR; CASP8- and FADD-like
apoptosis regulator; pconditional ¼ 9.2 × 1024, MAF ¼ 0.07).
We refer to these four SNPs, marking four independent sets of
correlated highly associated variants (iCHAVs), as index SNPs.

Meta-analysis of iCOGS and combined nine GWAS data

We first examined the results for the four index SNPs, together
with the previous hits rs1045485 and rs10931936, in the com-
bined nine GWAS meta-analysis, and then carried out a further

meta-analysis combining the iCOGS European data with the
combined nine GWAS for these SNPs (total sample size 56
502 cases and 55 175 controls; Supplementary Material,
Tables S4 and S5). We found that the top index SNP,
rs1830298, replicated in the combined GWAS data alone (P ¼
2.7 × 1026), and reached genome-wide significance (P ¼
1.1 × 1029) in the meta-analysis containing both the iCOGS
and combined GWAS data (Supplementary Material, Table S5;
Fig. 2). The genotyped proxy rs10197246 also reached genome-
wide significance (P ¼ 1.7 × 1028). When we examined the
other three index SNPs in the combined GWAS data, we found
a replicated association (P ¼ 1.8 × 1023) for rs59278883, a

Figure 1. Breast cancer associations within the 1 Mb region surrounding CASP8.
The upper panel plots SNPs based on their chromosomal coordinates on the x-axis
and their P-values on the –log10 scale on the y-axis. Circle and diamond symbols
represent typedand imputedSNPs, respectively. Thecolors indicate thepairwiser2

with index SNP for iCHAV1, rs1830298 (highlighted in purple); r2 is calculated
based on the European panel in the 1000 genomes project. The ranges of
iCHAVs 1–4 are indicated with colored shading. Genes within the region are indi-
cated in the lower panel, with arrows indicating transcript direction, dense blocks
for exons and lines for introns. The plot was generated using LocusZoom (9).

Figure 2. Associations of the four index SNPs corresponding to iCHAVs 1–4,
and the two previous associations, in iCOGS European subjects and GWAS
data. Squares denote the per-allele OR for the minor allele based on iCOGS
and nine GWAS data, with the size of the square proportional to the sample
size. Diamonds represent the pooled estimates of ORs under the fixed effect
model after exclusion of the 1955 samples from the iCOGS data that were
also in the combined GWAS data. Index SNPs correspond to iCHAVs as
follows: rs1830298; iCHAV1, rs36043647; iCHAV2, rs59278883; iCHAV3,
rs7558475 iCHAV4.
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null result for rs36043647 (P ¼ 0.58) and borderline evidence
for rs7558475 (P ¼ 0.05) (Supplementary Material, Table S5;
Fig. 2). However, these three index SNPs all showed some evi-
dence of association in the meta-analysis of iCOGS and com-
bined GWAS (Supplementary Material, Table S5 and Fig. 2),
providing some support for the existence of four signals in the
region. Consistent with its strong correlation with rs1830298, a
similar but slightly weaker signal was found for rs10931936
in the combined analysis (P ¼ 1.0 × 1027). Weak evidence
for association was observed for CASP8 D302H rs1045485
(P ¼ 1.1 × 1023).

Analysis of index SNPs in different ethnic groups

We next explored these four associations in the available Asian
and African-American populations genotyped as part of COGS
(Fig. 3; Supplementary Material, Table S6). Figure 3 shows
the study-specific OR for rs1830298 by the three ethnic
groups. The rs1830298 OR were homogeneous among European
studies (phet ¼ 0.54, I2 ¼ 0) and African-American studies
(phet ¼ 0.40, I2 ¼ 0), but were more heterogeneous among the
nine Asian studies (phet ¼ 0.025, I2 ¼ 54), although the com-
bined effect size in Asians was similar to that seen in Europeans
[OR (95% CI) ¼ 1.04 (0.95–1.13); P ¼ 0.44], and slightly
stronger in African Americans [OR (95% CI) ¼ 1.12 (0.96–
1.30); P ¼ 0.16]. Although estimates in both Asian and
African-American populations were not statistically significant,
the ORs were consistent with the European data, and the pooled
OR (95% CI) was 1.05 (1.03–1.07); P ¼ 4.1 × 1026 for all
populations combined. The MAF of CASP8 rs36043647 was
much lower in Asians, in whom the association was in the oppos-
ite direction to that in Europeans and African Americans, with an
OR (95% CI) of 1.69 (1.13–2.51), P ¼ 0.009, for the minor
allele (Supplementary Material, Table S6). We did not observe
any association of rs59278883 and rs7558475 in Asian and
African-American populations (Supplementary Material, Table S6).

Subtype and survival analysis in iCOGS

To investigate whether these SNP associations vary with clinical
subtypes of breast cancer, we explored potential subtype-
specific associations by comparing different subtypes to all con-
trols in the iCOGS European data. The OR estimates by tumor
estrogen receptor (ER) status, triple negative status and invasive-
ness of breast cancer were all similar and close to the OR of 1.05
seen in overall breast cancer for rs1830298 (Fig. 4). Similarly, no
significant differences in OR were seen when cases were strati-
fied by family history, tumor grade, tumor stage, tumor size
and lymph node status (Supplementary Material, Fig. S2).
A broadly similar picture was seen for the other index SNPs
(Supplementary Material, Figs S2 and S3).

SNP effects were also evaluated for overall survival and
breast cancer-specific survival. There were 4191 deaths
among 39 140 breast cancer patients with known vital status
in the European dataset. Of these deaths, 1979 died from
breast cancer. We did not observe any associations between
the index SNPs or previous hit SNPs with either overall or
breast cancer-specific survival, and all hazard ratios (HR)
were close to unity (data not shown).

Figure 3. Study-specific OR for the minor allele of rs1830298 in iCOGS Euro-
pean, Asian and African-American subjects. Squares denote the individual
study per-allele OR and diamonds indicate the combined effects, with the size
of the symbol indicating sample size. Fixed effect models (FE model) were
used to combine the study ORs if p for the Cochran’s Q test (phet) was .0.05,
otherwise random effect models (RE model) were used. Pooled OR across the
three populations is shown, with phet and I2 for heterogeneity in parenthesis.

Figure 4. Associations between rs1830298 and clinical subtypes of breast cancer
in iCOGS European subjects. Squares denote the individual study per-allele OR
with the size of the symbol indicating sample size. Cases in each subtype group
were compared with all controls.
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In silico functional and expression quantitative trait loci
annotations

We examined available in silico functional and expression quan-
titative trait loci (eQTL) data for the four iCHAVs. Of interest in
iCHAV1, rs3769823 is a missense alteration encoding K14R in
the 4th exon of CASP8, which encodes the N-terminus of protein
isoform 9. In addition, this SNP and rs3769821 are both located
in a region of deoxyribonuclease I hypersensitivity and histone
H3K27 acetylation in breast cell lines (Fig. 5). The minor
alleles of both of these SNPs, together with four others in
iCHAV1 for which data were available, were associated with a
reduction in CASP8 mRNA levels in peripheral blood samples
in the eQTL meta-analysis of Westra et al. (P ≤ 9.4 × 1025;
Supplementary Material, Table S7; Fig. 5) (11). The cancer
genome atlas (TCGA) dataset only had data available for two
SNPs from iCHAV1, and both were associated with a reduction
in CASP8 mRNA in normal breast tissue (P ≤ 1 × 1023; Sup-
plementary Material, Table S7; Fig. 5). No strong eQTL associa-
tions were seen for other genes in the region in either the Westra
et al. or the TCGA data. Taken together, these data suggest that
one or more variants in iCHAV1 may affect levels of CASP8
gene expression. As shown in Figure 5, iCHAVs 3 and 4
overlap enhancer sites identified in Hnisz et al.; a CASP8 enhan-
cer in MCF7 cells and a CFLAR enhancer in human mammary
epithelial cells, respectively (12). However, there was limited
eQTL data available for these iCHAVs, with no evidence of
any significant eQTLs (Supplementary Material, Table S7).

DISCUSSION

In our analysis of the genomic region surrounding CASP8 for
association with breast cancer, the strongest signal came from
an imputed SNP, rs1830298, in the ASL2CR12 gene (iCHAV1).
A strongly correlated genotyped SNP (rs10197246; r2 ¼ 0.9,
23.5 kb telomeric in the same gene), yielded a similar association
signal (P ¼ 1.1 × 1025 and 2.5 × 1025, respectively). In each
case, the rareallele (MAF¼ 0.28) was associatedwithan increase
in the risk of breast cancer of 5% [OR(95% CI) 1.05 (1.03, 1.07)
and 1.05 (1.02, 1.07), respectively]. The odds ratios for both
SNPs are consistent in Europeans, Asians and African Americans
(although not statistically significant in the smaller non-European

cohorts), and were replicated in the combined GWAS data,
achieving a genome-wide level of significance when the iCOGS
and GWAS data were combined (P ¼ 1.1 × 1029 and P ¼
1.7 × 1028, respectively). This association is consistent
between ER-positive and -negative disease, and between invasive
and in situ cancers (Fig. 4). The previously published result for
rs10931936 in the UK GWAS is consistent with its correlation
with rs1830298 (8).

Several of the SNPs in iCHAV1were associated with CASP8
eQTLs. The minor alleles of SNPs in this group, associated with
increased risk of breast cancer, are associated with reduced
CASP8 mRNA levels in both peripheral blood lymphocytes
and normal breast tissue (Supplementary Material, Table S7;
Fig. 5). These data suggest that CASP8 may be the target gene
of iCHAV1, and are consistent with a hypothesis in which the
effect of the risk alleles is via reduced levels of apoptosis, thus
promoting tumor initiation. However, further functional
studies are required to demonstrate a direct interaction
between iCHAV1 and the CASP8 promoter and to investigate
the allele-specific functional effects of these SNPs in different
tissue types.

Our results also suggest three other independent signals in
the region; the most significant SNPs for these three signals
are in CASP8 (iCHAV2), ALS2CR11 (iCHAV3) and the anti-
apoptotic gene CFLAR (iCHAV4); see Figure 2; Supplementary
Material, Table S5. The signals for iCHAVs 3 and 4 were repli-
cated in the combined GWAS, but since they did not achieve
genome-wide levels of significance even in the very large data-
sets analyzed here, they are harder to interpret. However, it is
interesting that both these iCHAVs overlap enhancer regions
(Fig. 5).

As previously noted, we find only very weak support for an
association of rs1045485/D302H in the iCOGS data (P ¼
0.03) (2), although the odds ratio in the combined GWAS data
was more consistent with the original report [OR (95% CI) ¼
0.90(0.85, 0.96), P ¼ 0.0007] (5). At present, the reasons for
the discrepancy with the original report are not clear. D302H is
only weakly correlated with any of the four index SNPs identi-
fied here (max r2 ¼ 0.06 with rs1830298). However, it is corre-
lated with rs28845859 (r2 ¼ 0.67); the latter SNP is associated
with reduced breast cancer risk in the iCOGS data (OR 0.95,
P ¼ 1.9 × 1024; Supplementary Material, Table S2) and

Figure 5. Summary of the CASP8/ALS2CR12 locus. The locations of iCHAVs and lead SNPs are shown relative to genes. eQTL SNPs are displayed as red marks.
ENCODE DNaseI hypersensitive sites derived from various mammary cell types are depicted as gray marks. H3K27ac histone modification ChIP-seq data are shown
as well as predicted enhancers and target genes from Hnisz et al. (12).
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combined GWAS (P ¼ 4.0 × 1025). We found no significant
differences between subtypes, although the associated effect
for D302H was stronger (and borderline significant) for triple
negative disease, despite the smaller sample size (Supplemen-
tary Material, Fig. S3). Further investigation with a larger
sample of triple negative cases may help clarify this point.

The association for the top CASP8 index SNP, rs1830298,
represents one of the smaller effect sizes identified to date for
breast cancer. However, it is worth noting that the CASP8
region has recently been reported to be associated with other
cancers at genome-wide levels of significance, including melan-
oma and chronic lymphocytic leukemia (CLL) (13,14). The
alleles associated with increased risk in melanoma are correlated
with rs1830298, but the signal in CLL appears to be due to uncor-
related SNPs in the region. This difference may reflect the differ-
ent cell type of origin and it will be interesting to determine the
relative importance and function of alleles of the CASP8 gene
family in immune cell lineages, compared with that in epithelial
cancers.

MATERIALS AND METHODS

Study samples

The iCOGS and nine breast cancer GWAS datasets have been
described in detail previously (2). Briefly, the COGS includes
a total of 103 991 women from 50 studies participating in the
BCAC whose DNA samples were genotyped with the iCOGS
array. These were 89 050 Europeans (46 450 cases; 42 600 con-
trols), 12 893 Asians (6269 cases; 6624 controls) and 2048
African Americans (1116 cases and 932 controls). The
numbers of subjects by study are detailed in Supplementary
Material, Table S1. Approximately 93% of cases had invasive
breast cancer (Supplementary Material, Table S1). The combined
nine breast cancer GWAS dataset comprised 10 052 cases and 12
575 controls of European ancestry from United States, UK, Aus-
tralia, Germany, Finland, Sweden and the Netherlands (2).

Ethics statement

Each study was approved by the relevant local/institutional
Research Ethics Committee, and all subjects gave written
informed consent to take part.

SNP selection for fine-scale mapping on the iCOGS array

The region for analysis on chromosome 2 was defined such that it
contained allSNPs correlated (r2 ≥ 0.1) with the SNPspreviously
reported to be associated with breast cancer, namely CASP8
D302H (rs1045485) and rs10931936 (5,8). This identified a
1 Mb region from 201 566 128 to 202 566 128 (hg19). In March
2010 when the iCOGS array was designed, 2191 SNPs had
been catalogued in this region by the 1000 genomes and
HapMap3 projects. Of these, 1723 SNPs had an MAF ≥2%,
and of these 1723, there were 988 SNPs with Illumina assay
design scores of ≥0.8. We selected a total of 280 SNPs correlated
at r2 ≥ 0.1 with rs1045485 or rs10931936, plus 288 tagSNPs
which tagged the remaining 708 SNPs at r2 ≥ 0.9. Another 45
SNPs in the region, nominated by other consortia members,

were included as part of the genotyping array that comprised
211 155 SNPs in total (2).

Genotyping and quality control

Genotyping, allele calling, quality control and principal compo-
nents analysis for COGS are described in detail in Michailidou
et al. (2). Genotyping was carried out at four centers using the
Illumina Infinium iCOGS array, including 2% duplicates from
each participating study. Final genotype calls were made using
Illumina’s proprietary GenCall algorithm. SNPs were excluded
from analysis if the overall call rate was ,95%, duplicate con-
cordance rate was ,98%, or if deviation from Hardy–Weinberg
equilibrium in controls was significant at P , 1 × 1027 (2).
Subjects were excluded from analysis for the following
reasons: genotypically non-female; overall call rate ,95%;
low or high heterozygosity (P , 1 × 1026); discordant repli-
cates or cryptic duplicates. Genotype data and ancestry principal
components (seven principal components for the European and
two each for the Asian and African-American populations)
were thus available for 103 991 individuals.

Statistical analysis

The iCOGS CASP8 region genotype data were split into four
groups for efficiency of imputation of missing genotypes and
untyped SNPs. These comprised 36 793 European ancestry sub-
jects from North American and UK studies in Group 1, with 26
129 and 26 128 of the remaining European subjects in Groups
2 and 3, respectively, and 14 941 Asians and African Americans
in Group 4. Imputations were carried out separately by group
based on the 1000 genomes phase I reference panel with single-
ton variants excluded, using IMPUTE2 version 2.3 (15,16).
SNPs were included in the subsequent analyses if the mean infor-
mation score of the European groups was ≥0.9, and untyped
imputed SNPs were only included if their MAF was ≥3%;
these criteria resulted in inclusion of 501 typed and 1232
imputed SNPs in the final analysis. The imputation accuracy
for rs1830298 was verified in whole-genome sequence data
from 197 individuals; the correlation between the observed
and imputed genotypes was 0.974. The imputation step increases
the number of common SNPs captured at r2 . 0.9 from 76%
(1198/1583) to 84% (1333/1583).

The main analyses were based on the data for individuals of
European ancestry. For each SNP, allelic dosage of the minor
allele was estimated, and included in a logistic regression
model, to estimate OR and corresponding 95% CI. Covariates
for each study plus the seven ancestry principal components
were included in the model (2). These analyses were implemen-
ted in R. P-values from the Wald test are reported in the text
(uncorrected for multiple testing). FDR values in Supplementary
Material, Table S2 were calculated according to the Benjamini &
Hochberg method, as implemented in the R p.adjust function
(17). Penalized logistic regression models (based on the
normal exponential gamma probability density) were imple-
mented in HyperLasso (10), including all 501 typed and 1232
imputed SNPs, to identify the best subsets of SNPs to account
for the observed association data. Based on the sample size
and a type I error of 0.001, a l of 0.05 and penalty of 491 were
specified in HyperLasso, according to equation 7 in Hoggart
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et al. (10). Candidate SNPs were then compiled from the result-
ing HyperLasso models and included in a stepwise forward lo-
gistic regression procedure with penalty k ¼ 10 in the step
function in R to identify the most parsimonious model, as
described previously (18). The SNPs retained in the final
model are referred to as index SNPs.

Index SNPs were further examined by means of meta-analysis
of iCOGS European, Asian and African-American data, and also
with individual SNP results from the combined nine breast
cancer GWAS (2). Due to an overlap of 1955 samples that
exist in both the iCOGS and the combined GWAS data, we
removed these samples from the iCOGS data before carrying
out the meta-analysis. The meta-analysis was carried out using
the MetaFor package in R, with inverse-variance weights and
the DerSimonian-Laird estimator for the random effects model
(19). We used the threshold of P ¼ 5 × 1028 to define genome-
wide significance (2).

The index SNPs were also examined for associations with breast
cancer specific and overall survival in Cox’s proportional hazard
models, including age at diagnosis, study and seven principal com-
ponents as covariates, and accounting for the left-censoring time
between study entry and diagnosis. Further adjustment was
carried out for stage, grade, tumor size and lymph node involve-
ment for SNPs with nominally significant associations with
survival (P , 0.05). These analyses were implemented in R.

In silico functional and eQTL annotations

We defined independent sets of iCHAVs with likelihood (deter-
mined from the individual-SNP logistic regression analysis) rela-
tive to an index SNP of .1/100 and degree of correlation with the
indexSNP of .0.65. The ENCODEintegrated regulation data for
each SNP were retrieved from the UCSC Genome Browser by use
of ANNOVAR (20). Predicted enhancers and target genes were
retrieved from Hnisz et al. (12). Expression QTL data were
obtained by interrogation of the GTEx Portal, the online results
of the peripheral blood eQTL meta-analysis based on 5311
samples from seven studies by Westra and colleagues (11), and
from breast cancer cases in the TCGA Project. For the latter,
RNAseq data in the form of fragments per kilobase of transcript
per million mapped reads (FPKM) were available for uninvolved
breast tissue from 97 TCGA breast cancer cases. Peripheral blood
DNA SNP genotypes for these individuals were extracted from
the TCGA Level 2 Affymetrix 6.0 array birdseed files. Mean
FPKM were compared between individuals homozygous for the
common allele and those carrying one or two copies of the rare
allele by use of an unpaired, unequal variance t-test in Stata.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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