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Copyright © 2015 Khalid Abualsaud et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Brain status information is captured by physiological electroencephalogram (EEG) signals, which are extensively used to study
different brain activities. This study investigates the use of a new ensemble classifier to detect an epileptic seizure from compressed
and noisy EEG signals. This noise-aware signal combination (NSC) ensemble classifier combines four classification models based
on their individual performance. The main objective of the proposed classifier is to enhance the classification accuracy in the
presence of noisy and incomplete information while preserving a reasonable amount of complexity. The experimental results show
the effectiveness of the NSC technique, which yields higher accuracies of 90% for noiseless data compared with 85%, 85.9%, and
89.5% in other experiments. The accuracy for the proposed method is 80% when SNR = 1 dB, 84% when SNR = 5 dB, and 88%
when SNR = 10 dB, while the compression ratio (CR) is 85.35% for all of the datasets mentioned.

1. Introduction

Brain status information is captured by physiological elec-
troencephalogram (EEG) signals, which are extensively used
to study different brain activities. In particular, they provide
important information pertaining to epileptic seizure disease,
as reported previously [1–3]. Epilepsy is a neurological
disorder involving disturbances to the nervous system that
are induced by brain damage. It has been reported [4]
that 1% of the population worldwide is affected by this
disease. Visual inspection of EEG signals can be very difficult
and time consuming due to the difficulty of maintaining a
high level of concentration during a lengthy inspection; this
difficulty increases operator errors [5, 6]. Therefore, artificial
intelligence techniques are proposed to enhance the process
of epileptic seizure detection.

Recently, ensemble methods for EEG signal classification
have attracted growing attention from both academia and
industry. Sun et al. [7] evaluated the performance of three
popular ensemble methods, namely, bagging, boosting, and

random subspace ensembles. They reported that the capa-
bility of the ensemble methods is subject to the type of
base classifiers, particularly the settings and parameters used
for each individual classifier. Dehuri et al. [8] presented the
ensemble of radial basis function neural networks (RBFNs)
method to identify epileptic seizures. This method was based
on the bagging approach and used differential evolution-
(DE-) RBFNs as the base classifier. He et al. [9] proposed a
signal-strength-based combining (SSC) method to support
decision making in EEG classification. The results show that
the proposed SSC method is competitive with the existing
classifiers. Wang et al. [5] proposed a bag-of-words model for
biomedical EEG and ECG time series that are represented as
a histogram of the code words. The results of the proposed
model are insensitive to the used parameters and are also
robust to noise.

Feature extraction techniques proposed in the literature
can generally be categorized into time-domain- or frequency-
domain-based according to the features used. These tech-
niques were used in several research works [10, 11].
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Time-domain features are easily computed, and their
time complexity is usually manageable [10]. Vidaurre et al.
[12] proposed a time-domain-parameter- (TDP-) based fea-
ture extraction method. It is a generalized form of the Hjorth
parameter and can be computed efficiently. The TDP feature
is then fed to a linear discriminant analysis (LDA) classifier
that is utilized in a brain computer interface application.
Mohamed et al. [13] proposed five time-domain features,
namely, sum, average, standard deviation, zero crossing,
and energy. Subsequently, they used a set of classifiers to
detect epileptic seizures. The output of the classifiers was
then combined, using the Dempster rule of combination,
for a final system decision. A classification accuracy of
89.5% was achieved. Nigam and Graupe [14] proposed an
automated neural network-based epileptic seizure detection
model, called LAMSTAR. Two features, namely, the relative
spike amplitude and the spike rhythmicity of the EEG signals,
were calculated and utilized to train the neural network.

Frequency-domain features are usually obtained by trans-
forming EEG signals into their basic frequency components
[6]. The characteristics of these components primarily fall
within four frequency bands [15]. One classification system
uses a one-second time window to extract relevant features
[16]. The fast Fourier transformation (FFT) is used to trans-
form the data in the window into the frequency domain.
To distinguish between several brain states, frequency com-
ponents from 9 to 28Hz were studied and presented to a
modified version of Kohonen’s learning vector quantization
classifier. Wang et al. [17] proposed an EEG classification
system for epileptic seizure detection. It consists of three
main stages, namely, (1) the best basis-based wavelet packet
entropy method, which is used to represent EEG signals by
wavelet packet coefficients; (2) a k-NN classifier with the
cross-validation method in the training stage of hierarchical
knowledge base (HKB) construction; and (3) the top-ranked
discriminating rules from theHKBused in the testing stage to
compute the classification accuracy and rejection rate. They
reported a classification accuracy of close to 100%; however,
their experiments considered only healthy subjects which is
class A and epileptic seizure active subjects which is class E
data and never considered seizure-free intervals which are
class C or class D. Trivially, neglecting such classes eliminated
the main source of difficulty in this classification process.
Moreover, the data of their experiments is only noiseless and
used a single classifier, k-NN. Bajaj and Pachori [18] proposed
a new method for classifying seizure and nonseizure states.
Themethod used the empirical mode decomposition (EMD)
technique based on bandwidth features. The features were
used as an input to a least squares SVM classifier. Sharma
et al. [19] also presented a classification method of two focal
and nonfocal EEG signals. Data from five epilepsy patients
who had longstanding drug resistance has been used to test
the method.The only base classifier used was the least square
support vector machine (LS-SVM). Average sample entropy
and average variance of the intrinsic mode functions (IMFs)
were obtained based on EMD of EEG signals. The results
show that the proposedmethod gives a classification accuracy
of 85%.The second-order difference plot method of IMF [20]
has been used as a feature for epileptic seizure classification.

The computed area from the diagnostic signal demonstrates
that the IMF detection is found to be a significant parameter
for analysis of both healthy and unhealthy subjects [21].
The mean frequency feature of the IMFs has come up as
a feature to identify variance between ictal and seizure-free
EEG signals [22]. Wavelet and multiwavelet transformations
have been included in analysis and classification of EEG
time-frequency of the epileptic seizure [23]. However, these
methods used noiseless data, while in this research both
noiseless and noisy data were used. Compared with our
methods, these datasets are only using the LS-SVM as a base
classifier, while in this research 4 different classifiers were
used. In another research work [24], the discrete wavelet
transform (DWT) was used to transform EEG signals into
their frequency components. For each wavelet subband,
the maximum, minimum, mean, and standard deviation
were then calculated and used as an input vector for a set
of classifiers. The results revealed that the neural network
classifier outperformed other classifiers with a 95% accuracy
rate, while the k-NN classifier was more tolerant to imperfect
data.

Other reported techniques utilize a mix of time- and
frequency-domain features, such as in Valderrama et al. [25].
The first, second, third, and fourth statistical moments (i.e.,
mean, variance, skewness, and kurtosis, resp.) were extracted
using the EEG amplitudes. Along with these time-domain
features, energy and other frequency-domain features were
extracted. A support vectormachine (SVM)was then applied
to the obtained features for seizure classification. Weng and
Khorasani [26] proposed amethod that uses the average EEG
amplitude, average EEG duration, coefficient of variation,
dominant frequency, and average power spectrum as features
that are input to an adaptive structured neural network.

The classification techniques that are reported through-
out the literature provide satisfactory performance data indi-
cating that the EEG data are not contaminated by different
factors. Although the rawEEGdatasets (free of artifacts) were
used, the lossy compression will introduce signal distortion,
which will affect the reconstructed data. Therefore, wireless
EEG data often are compressed before transmission, which
means that some important information may get lost during
the reconstruction process on the receiver side. Moreover,
a wireless channel may augment the transmission problem
by adding noise artifacts to the transmitted data. Therefore,
a prospective classification technique should consider the
uncertainty in the EEG data to guarantee the targeted
performance.

In this paper, considering that the EEG signal is in
nature bandwidth hungry, several works have considered in-
network processing for either compressing EEG data [27]
or transferring EEG features instead of delivering the raw
uncompressed signal [28]. Another reason considering that
the sensor is battery-operated, if the data is transmitted with-
out compression, the battery power will be consumed faster.
Therefore, we propose unified frameworkwhere the EEGdata
is compressed using compressive sensing (CS) and sent using
two different types of channels. In the first, it was sent over a
noiseless channel while the second was sent over the additive
white Gaussian noise (AWGN) wireless channel in three
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different caseswhere SNR= 1, 5, and 10 dB.On the other hand,
the compressed datawas reconstructed and statistical features
were extracted. Finally, the data obtained was contaminated
due to the reconstruction and the different values of noise.
A distinct factor that distinguishes this research work is the
proposal of a new framework and new noise-aware signal
combination (NSC) method that improves the classification
of the reconstructed and noisy EEG data. To address this sce-
nario, a unified framework has been designed, which presents
compressive sensing-based technique to send compressed
EEG data over AWGN wireless channel, reconstruction, and
feature extraction using time-frequency-domain analysis in
preparation of data classification. Such frameworkmakes this
work more practical because it performs classification con-
sidering data imperfection due to compression and wireless
channel transmission.

Thus, the main contributions of this paper are as follows:
(1) a framework for EEGcompression and classification using
CS and AWGN channel transmission has been developed,
(2) a new noise-aware signal combination (NSC) method
that supports both types of biomedical reconstructed EEG
data, noiseless and noisy, has been proposed, and (3) a series
of comprehensive experiments are conducted to investigate
the effectiveness and robustness of the NSC method for
classifying EEG signals.

The remainder of this paper is structured as follows.
In Section 2, we present an EEG-based framework, includ-
ing compressive sensing, the DCT method, and feature
extraction, as well as the set of classifiers that have been
used. Section 3 describes the proposed system model, which
mainly includes an ensemble classificationmethod, a descrip-
tion of the EEGdatasets, an epileptic seizure detection system
model, and a proposed noise-aware signal combination
(NSC) method. The results and discussions of extensive
experiments investigating the effectiveness and robustness of
NSC for EEG signal classification are illustrated in Section 4,
and the paper is concluded in Section 5.

2. Materials and Methods

Firstly, this section describes the framework of the imple-
mented system and its architecture as well as the main
components. Secondly, a description of the EEG datasets,
which is being used to distinguish between healthy subjects
and epilepsy subjects, is presented. Thirdly, the compressive
sensing integrated with the discrete cosine transform and
measurement matrix is being presented. Fourthly, feature
extraction in described, and finally, a brief of classification
methods are demonstrated.

2.1. Architecture of the Framework. The system model is
composed of twomain parts, the transmitter and the receiver,
shown in Figure 1. The transmitter has 4096 samples raw
electroencephalography (EEG) signals, represented by (x),
and uses a CS technique to downsample the data based on
a sparse measurement matrix. In this framework, we used
DCT and the basis 𝜓 for different quantities of M to obtain
the compressed data 𝑥 that will be transmitted over noiseless

and noisy channels (i.e., radio frequency (RF) or Bluetooth).
Several sources of noise can alter the data, including wireless
channel fading, path loss, and thermal noise at the receiver.
In this paper, without loss of generality, we consider the
thermal noise using the AWGN model at the receiving side
as themost widely usedmodel for representing thermal noise
[29–32]. We control the noise level using the signal to noise
ratio (SNR) to demonstrate data imperfection and to study
the behavior of the different classification techniques in the
presence of such noise.

The receiver, which receives the compressed signal of size
M, reconstructs the EEG data using an inverse DCT (iDCT)
and basis pursuit to obtain the reconstructed signal. The
iDCT reconstruction algorithm is used for the DCT, or an
optimization problem with certain constraints is solved for
the CS [30, 33, 34]. For example, in the following, for a given
compressed measurement 𝑦 at the receiver, the signal x can
be reconstructed by solving one of the following optimization
problems:

Minimum 
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𝑖
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𝑖
Ψ𝑥
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(1)

Using a trick of basis pursuit, find the vector 𝑥
0
with

the lowest L
2
norm that satisfies the observations. For an N-

dimensional EEG signal x,

𝑥 = Ψ𝛼, (2)

where Ψ is a discrete cosine transform (DCT) basis, 𝛼 is the
wavelet, and both are domain coefficients. At the receiver
side, oncewe detect𝛼, iDCTwill be utilized to reconstruct the
original signal from 𝛼. Figure 1 shows the framework that has
compressive sensing and data reconstruction as well as the
classification processes for EEG-based epileptic seizure [24].

2.2. EEG Datasets Descriptions. The datasets used in this
work originated from Andrzejak et al. [35], which are widely
used for automatic epileptic seizure detection. It contains
both normal and epileptic EEG datasets. The EEG datasets
were collected from five patients. The datasets consist of five
sets termed A, B, C, D, and E. Each set was composed of
100 single channel EEG segments of 23.6-second duration.
For sets A and B, the patients were relaxed and awake with
eyes open and eyes closed, respectively. Segments of sets A
and B were taken from surface EEG recordings, which were
performed using a standardized electrode placement scheme
on five healthy subjects. The segments in set C were recorded
from the hippocampal formation of the opposite from the
epileptogenic zone.The segments in setDwere recorded from
within the epileptogenic zone. Sets C, D, and E originated
from EEG archive of presurgical diagnosis. Sets C and D
both contained only the activity measured during seizure-
free intervals. Finally, only set E contained seizure activity.
All EEG signals were recorded with the same 128-channel
amplifier system (neglecting electrodes that have strong eye
movement artifacts (A and B) or pathological activity (C,
D, and E)). The data were constantly written at a sampling
rate of 173.61Hz to the disk of the data acquisition computer
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Figure 1: EEG-based epileptic seizure framework.

system.Kumar et al. [36] reported that when the performance
of sets A and E was compared with set B and set E, it was
concluded that set A and set E were more efficient [36]. In
addition, set A and set B are similar in feature properties
that are hard for the classifier to distinguish between both
sets representing healthy patients. It is worth noting that,
during performance evaluation, we have conducted many
experiments using different groups of classes (i.e., one group
was all 5 classes; another group was A, C, and E, etc.),
and the best results were evident for the class groups of
A, C, and E. Therefore, in this research paper, we opted to
use set A to represent healthy subjects, set C to represent
unhealthy with seizure-free interval subjects, and set E to
represent the epileptic seizure active subjects. In this case, 300
EEG segments are used; each class consists of 100 segments.
Figure 2 illustrates the ideal raw EEG signals of sets A, C, and
E, respectively.

Typically, transmitters are mobile devices, which are
equipped with battery sources; hence, the power consump-
tion during data transmission is critical. Therefore, the
compressive sensing (CS) and discrete cosine transform
(DCT) methods have been utilized to reduce the amount of
data before transmission because CS does not require much
complexity for downsampling at the transmitter; this low
complexity comes with the cost of higher complexity on the
receiver side [29].

2.3. Compressive Sensing. Compressive sensing (CS) tech-
nique [37] is used to reduce the size of the data that was sent
from the transmitter to the receiver, and thus CS has been
considered for efficient EEG acquisition and compression
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Figure 2: Example of three different classes of EEG signals taken
from different subjects.

in several applications [31, 38, 39]. Signal acquisition is
the critical part of most applications, where the acquisition
time or the computational resources are limited, and the
CS technique has the significant advantage of offloading the
processing from the data acquisition step to the data recon-
struction step. CS reduces the time consumed in processing
at the transmitter, at the expense of higher complexity at the
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receiver where more processing time and higher computa-
tional capacity are usually available. Previous research work
[38, 39] focused on the sparse modeling of EEG signals and
evaluating the efficiency of CS-based compression in terms of
signal reconstruction errors and time required.

AnN-dimensional 4096-sample raw EEG signal x is con-
sidered to illustrate the CS compression and reconstruction.
Assume that this signal is represented by a projection onto a
different basis set Ψ:

𝑥 =

𝑁

∑

𝑖=1

𝑥
0𝑖
Ψ

𝑖
or 𝑥 = Ψ𝑥

0
, (3)

where 𝑥 is the original signal, 𝑥
0
is the sparse of representa-

tion of 𝑥, and Ψ is an𝑁 ∗𝑁 bases matrix.
The sparse vector 𝑥

0𝑖
can be calculated from the inner

product of x and Ψ:

𝑥
0𝑖
= ⟨𝑥, Ψ

𝑖
⟩ . (4)

The basis (Ψ) can be a Gabor, Fourier, or discrete cosine
transform (DCT) or aMexican hat, linear spline, cubic spline,
linear B-spline, or cubic B-spline function. In compressive
sensing, Ψ is chosen such that 𝑥

0
is sparse. The vector 𝑥

0
is

k-sparse if it has k nonzero entries and the remaining (𝑁−𝑘)
entries are all zeroes. In addition to the projection above, it is
assumed that 𝑥 can be related to another signal 𝑦:

𝑦
[𝑀∗1]

= Φ
[𝑀∗𝑁]

× 𝑥
[𝑁∗1]

, (5)

whereΦ is ameasurementmatrix (also called sensingmatrix)
of dimensions𝑀∗𝑁, and y is the compressive sensed version
of x. Matrix y has dimensions𝑀 ∗ 1, and data compression
is achieved if𝑀 < 𝑁. It can be shown that this technique is
possible if Φ and Ψ are incoherent. To satisfy this condition,
Φ is chosen as a randommatrix. The compression ratio (CR)
is then defined as follows:

CR = (1 − 𝑀
𝑁

) ∗ 100. (6)

2.4. Discrete Cosine Transom (DCT) Method. The discrete
cosine transform (DCT) is used as the basis to make the EEG
signal sparse as part of the CS framework. It is a Fourier-
related transform similar to the discrete Fourier transform
(DFT); however, it only uses real numbers and has low
computational complexity [24, 28]. Obtaining the signal 𝑥(𝑛)
in the DCT domain will require a definition of the (𝑁 + 1) ∗
(𝑁 + 1) DCT transform matrix, whose elements are given by

[𝐶]𝑚𝑛
=
√

2

𝑁

{𝑘
𝑚
𝑘
𝑛
cos(𝑚𝑛𝜋

𝑁

)} ,

𝑚, 𝑛 = 0, 1, . . . , 𝑁,

𝑘
𝑖
=

{

{

{

1, for 𝑖 ̸= 0 or 𝑁,
1

√2

, for 𝑖 = 0 or 𝑁.

(7)

This matrix is unitary, and when it is applied to a data
vector 𝑥 of length𝑁+1, it produces a vector called𝑋

𝑐
, where

𝑋
𝑐
= [𝐶] ∗ 𝑥, and its elements are given by

𝑋
𝑐
(𝑚) =

√

2

𝑁

𝑁

∑

𝑛=0

𝑘
𝑚
𝑘
𝑛
cos(𝑚𝑛𝜋

𝑁

)𝑥 (𝑛) . (8)

On the receiver side, the basis of the iDCT [28] is utilized
in the CS decoder in order to obtain the reconstructed signal
(𝑥
𝑟
) as follows:

𝑥
𝑟
(𝑎) =

𝑁

∑

𝑘=1

𝑤 (𝑘) 𝑦 (𝑘) cos [𝜋 (2𝑎 + 1) 𝑘
2𝑁

] , (9)

where 𝑁 is the length of both time series and cosine
transform signals, a is the time series index (𝑎 = 1, 2, . . . , 𝑁),
𝑘 is the cosine transform index (𝑘 = 1, 2, . . . , 𝑁), and the
window function𝑊(𝑘) is defined as

𝑤 (𝑘) =

{
{
{

{
{
{

{

1

√
𝑁

, 𝑘 = 1,

√

2

𝑁

, 2 ≤ 𝑘 ≤ 𝑁.

(10)

After obtaining the contaminated reconstructed signal
(𝑥
𝑟
), DWT is used as feature extraction and selection tech-

niques.

2.5. Feature Extraction. EEG feature extraction plays a signif-
icant role in diagnosingmost brain diseases. Obtaining useful
and discriminant features depends largely on the feature
extraction method used. Because EEG signals are time-
varying and space-varying nonstationary signals, the discrete
wavelet transform (DWT) method is widely used [17]. It cap-
tures both frequency and time location information [32, 40–
42]. Using multiresolution wavelet analysis, DWT basically
decomposes the EEG signals into different frequency bands.

EEG data are generally nonstationary signals, which are
heavily dependent on the subject condition. The Daubechies
6 DWT was employed, where the data were sampled at a
rate of 173.61Hz. This means that the EEG data frequency is
86.81Hz; thus, the filter length is long as well; the frequency
wavelet subband is the same as the fundamental component
of the EEG. Hence, decomposition level 7 was calculated
based on the EEG frequency. In addition, considering our
extensive experimental work on the reconstruction accuracy
of different wavelet families, filter lengths, and decomposition
levels [30], we used Daubechies 6 with 1–8 different decom-
position levels in this research. We found that Daubechies 6
with decomposition level 7 is the optimum level in terms of
classification accuracy and computational complexity of the
EEG epileptic seizure category of data. Given the EEG signal
𝑓(𝑥), the wavelet series expansion is depicted [30] as follows:

𝑓 (𝑥) = ∑

𝑘

𝑐
𝑗0
(𝑘) 𝜑
𝑗0,𝑘
(𝑥)

+

∞

∑

𝑗=𝑗
𝑜

∑

𝑘

𝑑
𝑗
(𝑘) 𝜓
𝑗,𝑘
(𝑥) ,

(11)
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where 𝑓(𝑥) ∈ 𝐿2(𝑅), 𝐿2(𝑅) is relative to the wavelet 𝜓(𝑥)
and the scaling function 𝜑(𝑥), and 𝑐

𝑗0
are the approximation

coefficients.
In the first sum, the approximation coefficients 𝑐

𝑗0
can

be represented as the outcome of the inner product process
between the original signal 𝑓(𝑥) and the approximation
function 𝜑

𝑗0,𝑘
(𝑥) as expressed by

𝑐
𝑗
0

(𝑘) = ⟨𝑓 (𝑥) , 𝜑
𝑗𝑜,𝑘
(𝑥)⟩ . (12)

In the second sum, a finer resolution is added to the
approximation to provide increasing details. The function
𝑑
𝑗
(𝑘) represents the details coefficients and it can be obtained

by the inner product between the original signal𝑓(𝑥) and the
wavelet function 𝜓

𝑗,𝑘
(𝑥) calculated as

𝑑
𝑗
(𝑘) = ⟨𝑓 (𝑥) , 𝜓

𝑗,𝑘
(𝑥)⟩ . (13)

Generally, the classification accuracies improve when
using a combination of time- and frequency-domain features
rather than features solely based on either the frequency
domain or the time domain [30]. Different implementation
choices, including different wavelet families, filter lengths,
and decomposition levels, have been utilized to extract
features. Accordingly, the conventional statistical features
(maximum, minimum, mean, and standard deviation) are
extracted from eachwavelet subband.The extraction rules for
statistical features that have been implemented for thewavelet
subband are as follows.

Maximum feature:
𝑥
𝑘
such that 𝑥

𝑘
> 𝑥
𝑖
, ∀𝑖 ̸= 𝑘, 𝑖 = 1, . . . , 𝑛,

𝑑
𝑖
(𝑥) = max

𝑖=1,...,𝑘

{𝑑
𝑖
(𝑥)} .

(14)

Minimum feature:
𝑥
𝑘
such that 𝑥

𝑘
< 𝑥
𝑖
, ∀𝑖 ̸= 𝑘, 𝑖 = 1, . . . , 𝑛,

𝑑
𝑖 (
𝑥) = min
𝑖=1,...,𝑘

{𝑑
𝑖 (
𝑥)} .

(15)

The mean can be calculated by the following:

𝑥 =

1

𝑁

𝑛

∑

𝑖=1

𝑥
𝑖
. (16)

The standard deviation feature is given by the following:

𝜎

2
=

1

𝑁 − 1

𝑁

∑

𝑖=1

(𝑥
𝑖
− 𝑥)

2
. (17)

The original EEG signal was analyzed for the wavelet sub-
bands A7 and D7-D1. Eventually, four conventional statistical
features are selected from each wavelet subband individually.
As a consequence, 32 attributes are obtained from the whole
subbands to be fed to the classifiers. So the featuresmaximum,
minimum, mean, and standard deviation contribute to the
classification accuracy in this research. It has been found that
these features are robustwith the dynamic environment of the
wireless channel [24, 28]. Meanwhile, these features have low
computational complexity.

2.6. Classification Methods. EEG detection and classifica-
tion play an essential role in timely diagnoses and analyze
potentially fatal and chronic diseases proactively in clinical
as well as various life settings [3, 43]. Liang et al. [44]
proposed a systematic evaluation of EEGs by combining
both complexity analysis and spectral analysis for epilepsy
diagnosis and seizure detection. Approximately 60% of the
features extracted from the dataset were used for training,
while the remaining ones were used to test the performance
of the classification procedure on randomly selected EEG
signals [44].

In this research work, four different classifiers have
been used, namely, ANN, naı̈ve Bayes, k-NN, and SVM.
Initially, the classifiers were developed to work individually
to compare their performances. However, we developed a
data fusion method for combining the output of all clas-
sifiers in order to reduce the effect of data imperfections
while maximizing the classification accuracy. Each classifier
belongs to a different family of classifiers and has been
shown to be the best classifier in its family. However, it is
expected that they may yield different classification results
because they each use a different classification strategy [13,
17, 45–47].The following provides a brief description of these
classifiers.

2.6.1. Artificial Neural Network. An artificial neural net-
work (ANN) is a mathematical model that is motivated
by the structure and functional aspects of biological neu-
ral networks. To establish classification rules and perform
statistical analysis, ANN is able to estimate the posterior
probabilities [14, 47, 48]. The ANN has several parame-
ters; in this paper, the ANN configuration uses training
cycles = 500, learning rate = 0.3, and momentum decay
= 0.2.

2.6.2. Naı̈ve Bayes. The naı̈ve Bayes (NB) classifier is a statis-
tical classifier. It is a simple probabilistic classifier based on
the application of Bayes’ theorem. The NB method involves
an assumption thatmakes the calculation of theNB classifiers
more efficient than the exponential complexity. Simply, it
works by considering that the presence of certain features of
a class is irrelevant to any other features. The NB classifier
considers each feature independently to calculate the feature
properties that contribute to the probability of a certain class
to be the outcome of the classification. It then uses Laplace
correction to prevent high encounters of zero probabilities as
the default configuration [13, 24, 46].

2.6.3. k-Nearest Neighbor (k-NN). The k-nearest neighbor (k-
NN) algorithm compares a given test sample with training
samples that are alike, where k parameter is a small pos-
itive and odd integer value. This algorithm combines two
steps. First, find the k training samples that are closest to
the invisible sample. Second, take the commonly occurring
classification for these k samples and find the average of the
values of its k-nearest neighbors in the regression. It can be
defined by a distance metric called the normalized Euclidean
distance, as indicated in the following equation, given two
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points 𝑌
1
= (𝑦
11
, 𝑦
12
, . . . , 𝑦

1𝑛
) and 𝑌

2
= (𝑦
21
, 𝑦
22
, . . . , 𝑦

2𝑛
)

[6, 24, 45]:

dist (𝑌
1
, 𝑌
2
) = √

𝑛

∑

𝑖=1

(𝑦
1𝑖
− 𝑦
2𝑖
)

2
. (18)

In this research, the k-NN configuration uses value of 𝑘 =
10, and mixed measures were selected as the measure type,
which makes the mixed Euclidean distance the only available
option.

2.6.4. Support Vector Machine. The support vector machine
(SVM) learner is a strong classifier based on statistical
learning theory. SVM constructs an ideal hyperplane in order
to separate the data into two different classes to minimize
the risks. SVM takes a set of input data and predicts, for
each given input, which of the two possible classes involves
the input. SVM is an integrated and powerful method for
both classification and regression as well as distribution
estimation. SVM operator supports types C-SVC and nu-
SVC for classification tasks; epsilon-SVR and nu-SVR types
for regression tasks. Finally, the one-class type is used for
distribution estimation [13, 24, 46, 49]. In this research, SVM
configuration is consist of both nu-SVC and radial basis
function kernel were used for SVM configurations consist of
both classification technique.

3. Ensemble Detection and Classification

Ensemble methods are introduced first, followed by the
proposed ensemble system model and, finally, the ensemble
method in this section.

3.1. Ensemble Classification Methods. Several combination
techniques have been introduced in the literature, and each
offers certain advantages and suffers from certain limitations.
However, given several classifiers, the combination (fusion)
method must address two critical issues: the dependency
among the potentially combined classifiers and the consis-
tency of the information contained in each classifier.

For the first issue, the classifiers must be independent
because we consider each classifier to be a source of informa-
tion.Thismeans that each classifier simplyworks on the input
feature set independently, while the classification is based on
combining the outcomes of all classifiers simultaneously.

For the second issue, the classifiers may have conflicting
decisions because different classifiers are expected to consider
different viewpoints of the current system state. To address
this anticipated conflict, an effective mechanism that is
capable of quantifying the assurance in the decision of each
classifier is desirable.

One of these well-known combination techniques is the
majority voting. The majority voting (MV) rule technique
collects the votes of all classifiers and investigates the class
name that ismostly reported by the classifiers. It then chooses
that class as a final decision [50]. However, MV is based on
the idea that the classifiers participating in the voting process
have the same weight. It completely ignores the inconsistency

thatmay arise among the classifiers.This, of course, can cause
less capable classifiers to override more capable classifiers.
Thus, the performance of the classification system can be
deteriorated. Because the classifier models proposed in this
work are expected to have different discriminant weights, the
MV technique is not suitable as a combination method.

In contrast, in probability-based voting schemes, the
combination method should assign a probability value (𝑝)
that reflects the confidence of a classifier in its viewpoint. One
of these schemes can be based on an accumulated experience.
For instance, a given classifier is correct in identifying a
certain hypothesis 75% percent of the time, while another
classifier can correctly identify a different hypothesis 30%
of the time. These values can actually be interpreted as
probability assignments.

If the classifiers happen to provide these different and
conflicting hypotheses as an explanation of the current
system state, then the classifiers should not be treated equally
at the classification stage. Clearly, the first classifier is more
confident in its decision than the first one.This valuable infor-
mation should be incorporated into the fusion (combination)
process.

For instance, wemay assign a weight (p) of 0.75 to the first
classifier while assigning only 0.30 as a weight to the second
classifier.

Let 𝑇 be the set of classifiers:

𝑇 = {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
} , (19)

and let 𝐶 be the set of classes:

{𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
} . (20)

Then, let 𝑑
𝑖,𝑗
be the decision of the classifier 𝑖 and have the

following definition:

𝑑
𝑖,𝑗
∈ {0, 1} , (21)

where 𝑖 = 1, . . . , 𝑇 and 𝑗 = 1, . . . , 𝐶.
Let 𝑝
𝑖
represent the weight of the classifier i. Then, the

probability-based voting decision is calculated as

|𝑇|

∑

𝑖=1

𝑝
𝑖
𝑑
𝑖,𝑗
=

𝐶max
𝑗=1

|𝑇|

∑

𝑟=1

𝑝
𝑟
𝑑
𝑟,𝑗
. (22)

Considering the weight of each classifier, (22) counts the
votes from the participating classifiers.

3.2. Proposed Ensemble System Model. The proposed model
consists of three stages for detecting electroencephalogram
seizures, namely, statistical feature extraction, classifier pre-
diction, and proposed noise-aware signal combination (NSC)
method. The extraction of statistical features was discussed
in Section 2.5. For classifier prediction, four classifiers are
utilized in this model, namely, ANN, Bayes, k-NN, and
SVM.These classificationmethods are trained using themost
popular data mining tools that are an industry standard
and widely used tools for research. The training process is
conducted on similar data adhering to various combinations
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ANN
algorithm

Bayes 
algorithm

SVM
algorithm

Epileptic
seizure

algorithm

NSC:
Noise-aware signal combination method

Features: DWT(ok) = fk,0 , fk,1 , ,fk,l
where k = 0 , s − 1

PLi,j , PCi,j , PRi,j , REi,j , ACj

, . . .
, . . .

k-NN

Figure 3: Proposed ensemble system.

of SNRs and downsampling rates. After exhaustive iterated
experiments, the trainedmodels are saved, and their averaged
performances in different scenarios are reported to the NSC.
The NSC is our proposed ensemble method using com-
binations of probability estimates. Eventually, the ultimate
classification accuracy is obtained for the epileptic seizure
detection. The proposed system model is shown in Figure 3.

There are 𝑠 tabular observations 𝑂 = {𝑜
0
, 𝑜
1
, . . . , 𝑜

𝑠−1
},

where each 𝑜
𝑖
is a 𝑡-tuple of readings 𝑅

𝑖
= (𝑟
0
, 𝑟
1
, . . . , 𝑟

𝑡−1
).

These observations fall into (𝑠/𝑚) different categories of
classes = {𝑐

0
, 𝑐
1
, . . . , 𝑐

𝑚−1
}.

TheDWT is applied to the set of observations𝑂 to obtain
an 𝑙-tuple of features 𝑅

𝑖
= (𝑓
0
, 𝑓
1
, . . . , 𝑓

𝑙−1
) for each 𝑜

𝑖
∈ 𝑂.

In other words, DWT : 𝑂 → 𝐹 such that DWT(𝑜
𝑘
) =

(𝑓
𝑘,0
, 𝑓
𝑘,1
, . . . , 𝑓

𝑘,𝑙
), where 𝑓

𝑘,𝑗
is an 𝑙-tuple extracted feature

for the observation 𝑜
𝑘
obtained by DWT.

Hence, DWT(𝑂) = {(𝑓
𝑖,0
, 𝑓
𝑖,1
, . . . , 𝑓

𝑖,𝑙
| 𝑖 = 0, 1, . . . , 𝑠 − 1)}

is the training and testing tabular 𝑙-tuple format representing
the input data for the classification model in this research
work.

3.3. The Ensemble Method. Several classifiers (n) built on
various hypotheses 𝐻 = {ℎ

0
, ℎ
1
, . . . , ℎ

𝑛−1
} are fed with input

data. The data are DWT(𝑂) in a tabular 𝑙-tuple format, as
discussed above. Each classifier k built on hypothesis ℎ

𝑘
is

trained on the data to predict the label representing the class
𝑐
𝑗
that best describes a given set of features (𝑓

𝑖,0
, 𝑓
𝑖,1
, . . . , 𝑓

𝑖,𝑙
)

corresponding to the observation 𝑜
𝑖
.

At the end of the training of each classifier, a set of
performance measurements of interest is recorded. Table 1
shows some of these performancemeasurements.The trained
model will then be saved for application to various categories
of testing data.This process is replicated and repeated to yield
an output that can be averaged to describe themodel behavior
for long run times.

The proposed ensemble classification method is fed with
the output of them trained classifiers. In a sense, the training
data are bundled first into two parts and are used to train

Table 1: Classifier’s performance measurements.

Measure Description
PL
𝑖,𝑗

Predicted label of 𝑜
𝑖
using hypothesis ℎ

𝑗

PC
𝑖,𝑗

Confidence value predicting 𝑐
𝑖
using hypothesis ℎ

𝑗

PR
𝑖,𝑗

Precision value of 𝑐
𝑖
using hypothesis ℎ

𝑗

RE
𝑖,𝑗

Class recall value of 𝑐
𝑖
using hypothesis ℎ

𝑗

AC
𝑗

Accuracy value of for applying hypothesis ℎ
𝑗

Preliminaries
Let 𝑂 = {𝑜

0
, 𝑜
1
, . . . , 𝑜

𝑠−1
} be the set of observations

Let 𝐶 = {𝑐
0
, 𝑐
1
, . . . , 𝑐

𝑚−1
} be the set of class labels

Let𝐻 = {ℎ
0
, ℎ
1
, . . . , ℎ

𝑛−1
} be the set of hypotheses

Let ℎ
𝑛
be the hypothesis of the combined classifier

Let PL
𝑖,𝑗
, PC
𝑖,𝑗
, PR
𝑖,𝑗
, RE
𝑖,𝑗
, AC
𝑗
be the 𝑗 predicted class,

class confidence, class accuracy, class recall,
and accuracy of ℎ

𝑖

PROCESS
∀ℎ
𝑖
| 𝑖 = 0, . . . , 𝑛 − 1

PR
𝑖,𝑗
=

PR
𝑖,𝑗

∑

𝑛−1

𝑗=0
PR
𝑖,𝑗

, RE
𝑖,𝑗
=

RE
𝑖,𝑗

∑

𝑛−1

𝑗=0
RE
𝑖,𝑗

,

AC
𝑗
=

AC
𝑗

∑

𝑛−1

𝑗=0
AC
𝑗

if ∃ 𝑂 /∗∗ on receiving a periodical batch
of observations ∗/

∀𝑜
𝑖
| 𝑖 = 0, . . . , 𝑠

𝑊 = 0

∀ℎ
𝑗
| 𝑗 = 0, . . . , 𝑚 − 1

𝑘 = PL
𝑖,𝑗
| 𝑘 ∈ 𝐶

𝑤(ℎ
𝑗
) = 𝜎(PR

𝑘,𝑗
+ RE
𝑘,𝑗
) + (1 − 𝜎)AC

𝑗

𝑊 += 𝑤(ℎ
𝑗
)

∀ℎ
𝑖
| 𝑖 = 0, . . . , 𝑛 − 1

𝑃(ℎ
𝑖
) =

𝑤(ℎ
𝑖
)

𝑊

PL
𝑖,𝑛
= max(𝑃(ℎ

𝑖
)|

𝑛−1

𝑖=0
)

Record prediction
Calculate ℎ

𝑛
Performance measurements of interest

Algorithm 1: Noise-aware signal combination algorithm.

the m classifiers on the patterns within each bundle. Finally,
the classification decision of a testing sample is obtained
from an ensemble of the decisions from the corresponding
m classifiers at each layer using the noise-aware signal
combination method. A subset of the performance measures
of each classifier together with the predicted class label 𝑐 ∈ 𝐶
for an observation 𝑜 ∈ 𝑂 provided by each classifier with
hypothesis ℎ ∈ 𝐻 are the input to the hypothesis used by this
combined classifier.

The confusion matrix for each hypothesis ℎ
𝑘
based on

the reported performance results of the trained hypothesis ℎ
𝑘

is calculated using the algorithm shown in Algorithm 1. An
entryMRP (𝑖, 𝑗) in thematrix of reported performance results
for hypothesisℎ

𝑘
represents the frequency of predicting class j

as being class i.Therefore,MRP (𝑖, 𝑖) represents the frequency
of correct predictions being in class i, while∑𝑚

𝑗 ̸=𝑖
MRP (𝑖, 𝑗) is
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Table 2: Confusion matrix for noiseless data.

(a)

True class label
𝑐
0

𝑐
1

𝑐
2

PR
Predicted class label
𝑐
0

0.88 0.12 0.02 0.273
𝑐
1

0.12 0.85 0.02 0.252
𝑐
2

0.00 0.03 0.96 0.245
RE 0.247 0.288 0.251

ℎ
0
= ANN AC

0
0.259

(b)

True class label
𝑐
0

𝑐
1

𝑐
2

PR
Predicted class label
𝑐
0

0.90 0.23 0.00 0.252
𝑐
1

0.10 0.75 0.01 0.256
𝑐
2

0.00 0.02 0.99 0.248
RE 0.253 0.254 0.258

ℎ
1
= NB AC

0
0.254

(c)

True class label
𝑐
0

𝑐
1

𝑐
2

PR
Predicted class label
𝑐
0

0.96 0.37 0.01 0.226
𝑐
1

0.04 0.63 0.09 0.244
𝑐
2

0.00 0.00 0.90 0.253
RE 0.270 0.214 0.235

ℎ
2
= 𝑘-NN AC

0
0.239

(d)

True class label
𝑐
0

𝑐
1

𝑐
2

PR
Predicted class label
𝑐
0

0.97 0.19 0.07 0.249
𝑐
1

0.03 0.81 0.12 0.248
𝑐
2

0.00 0.00 0.81 0.253
RE 0.230 0.244 0.256

ℎ
3
= SVM AC

0
0.248

the frequency of wrong predictions of other classes that are in
class i.

Hence, PRi, the precision of class 𝑖, is (MRP (i,
i)/∑𝑚
𝑗 ̸=𝑖

MRP (𝑖, 𝑗))%, and REi, the recall of class j, is
(MRP (𝑖, 𝑖)/ ∑𝑚

𝑖 ̸=𝑗
MRP (𝑖, 𝑗))%. Finally, ACi, the accuracy

using hypothesis ℎ
𝑘
, is the averaged precision of the classes

and is given by (∑𝑚
𝑖
𝑃𝑅
𝑖
/𝑚) × 100%.

In the confusionmatrix, an entry CM (𝑖, 𝑗) is theweighted
entry MRP (𝑖, 𝑗) on class 𝑖 recall. That is, CM (𝑖, 𝑗) =

MRP (𝑖, 𝑗)/∑𝑚
𝑖
MRP (𝑖, 𝑗), where ∑𝑚

𝑖
CM (𝑖, 𝑗) = 1. The PR

𝑖

in the confusion matrix is the weighted PR
𝑖
across the set of

hypotheses H given by PR
𝑖
/∑𝑛
𝑗
PR
𝑖
, where ∑𝑛

𝑖
PR
𝑖
= 1. RE

𝑖

Table 3: Confusion matrix for noisy data (SNR = 1 dB).

(a)

True class label
𝑐
0

𝑐
1

𝑐
2

PR
Predicted class label
𝑐
0

0.88 0.38 0.04 0.249
𝑐
1

0.12 0.61 0.02 0.267
𝑐
2

0.00 0.01 0.94 0.249
RE 0.257 0.251 0.255

ℎ
0
= ANN AC

0
0.257

(b)

True class label
𝑐
0

𝑐
1

𝑐
2

PR
Predicted class label
𝑐
0

0.82 0.40 0.00 0.248
𝑐
1

0.18 0.59 0.00 0.252
𝑐
2

0.00 0.01 1.00 0.249
RE 0.239 0.243 0.271

ℎ
1
= NB AC

0
0.217

(c)

True class label
𝑐
0

𝑐
1

𝑐
2

PR
Predicted class label
𝑐
0

0.92 0.46 0.00 0.246
𝑐
1

0.08 0.53 0.07 0.256
𝑐
2

0.00 0.01 0.93 0.249
RE 0.268 0.218 0.252

ℎ
2
= 𝑘-NN AC

0
0.264

(d)

True class label
𝑐
0

𝑐
1

𝑐
2

PR
Predicted class label
𝑐
0

0.81 0.30 0.05 0.257
𝑐
1

0.19 0.70 0.13 0.225
𝑐
2

0.00 0.00 0.82 0.252
RE 0.236 0.288 0.222

ℎ
3
= SVM AC

0
0.262

and AC
𝑖
are also weighted across H and are calculated in the

same manner.
The prediction of the combined classifier is calculated fol-

lowing the hypothesis with the highest probability calculated
as

𝑃 (ℎ
𝑗
) =

𝜎 (PR
𝑘,𝑗
+ RE
𝑘,𝑗
) + (1 − 𝜎)AC

𝑗

∑

𝑛−1

𝑖=0
𝜎 (PR

𝑘,𝑖
+ RE
𝑘,𝑖
) + (1 − 𝜎)AC𝑖

, (23)

where k is the label of the predicted class and∑𝑛−1
𝑗=0
𝑃(ℎ
𝑗
) = 1.

Tables 2–5 show the confusion matrices for the four
classifiers, namely, ANN, naı̈ve Bayes, k-NN, and SVM.These
matrices represent the finalized weighted performance of the
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Table 4: Confusion matrix for noisy data (SNR = 5 dB).

(a)

True class label
𝑐
0

𝑐
1

𝑐
2

PR
Predicted class label
𝑐
0

0.94 0.31 0.02 0.260
𝑐
1

0.06 0.68 0.03 0.267
𝑐
2

0.00 0.01 0.95 0.249
RE 0.320 0.192 0.529

ℎ
0
= ANN AC

0
0.258

(b)

True class label
𝑐
0

𝑐
1

𝑐
2

PR
Predicted class label
𝑐
0

0.94 0.36 0.00 0.254
𝑐
1

0.06 0.62 0.00 0.275
𝑐
2

0.00 0.02 1.00 0.247
RE 0.252 0.172 0.391

ℎ
1
= NB AC

0
0.258

(c)

True class label
𝑐
0

𝑐
1

𝑐
2

PR
Predicted class label
𝑐
0

0.91 0.50 0.00 0.227
𝑐
1

0.09 0.50 0.011 0.216
𝑐
2

0.00 0.00 0.89 0.252
RE 0.313 0.252 0.471

ℎ
2
= 𝑘-NN AC

0
0.231

(d)

True class label
𝑐
0

𝑐
1

𝑐
2

PR
Predicted class label
𝑐
0

0.89 0.22 0.10 0.259
𝑐
1

0.11 0.78 0.08 0.243
𝑐
2

0.00 0.00 0.82 0.252
RE 0.306 0.185 0.575

ℎ
3
= SVM AC

0
0.252

trained classifiers based on noiseless data and three different
levels of data noise, SNR = 1 dB, 5 dB, and 10 dB, for EEG-
based epileptic seizures at 𝑀 = 600 downsampling. Also,
these tables show that c

0
, c
1
, and c

2
are representing class A,

class C, and class E, respectively.
For example, Table 2 represents noiseless EEG data,

classes c
0
, c
1
, and c

2
in vertical line are representing the

predicted class label; on the other hand, in the horizontal line,
we show the true class label. The normalized precision PR of
class A in the first row of the four matrices is 0.273, 0.252,
0.226, and 0.249 for ANN, NB, k-NN, and SVM, respectively.

Table 5: Confusion matrix for noisy data (SNR = 10 dB).

(a)

True class label
𝑐
0

𝑐
1

𝑐
2

PR
Predicted class label
𝑐
0

1.00 0.52 0.00 0.263
𝑐
1

0.00 0.48 0.12 0.252
𝑐
2

0.00 0.00 0.88 0.248
RE 0.235 0.275 0.264

ℎ
0
= ANN AC

0
0.257

(b)

True class label
𝑐
0

𝑐
1

𝑐
2

PR
Predicted class label
𝑐
0

0.86 0.38 0.08 0.252
𝑐
1

0.14 0.62 0.36 0.260
𝑐
2

0.00 0.00 0.56 0.246
RE 0.246 0.240 0.272

ℎ
1
= NB AC

0
0.254

(c)

True class label
𝑐
0

𝑐
1

𝑐
2

PR
Predicted class label
𝑐
0

1.00 0.22 0.08 0.232
𝑐
1

0.00 0.78 0.12 0.234
𝑐
2

0.00 0.00 0.80 0.253
RE 0.262 0.206 0.239

ℎ
2
= 𝑘-NN AC

0
0.237

(d)

True class label
𝑐
0

𝑐
1

𝑐
2

PR
Predicted class label
𝑐
0

1.00 0.30 0.02 0.253
𝑐
1

0.00 0.66 0.00 0.253
𝑐
2

0.00 0.04 0.98 0.253
RE 0.257 0.279 0.225

ℎ
3
= SVM AC

0
0.252

The normalized class recall RE of class A in the first four
matrices is 0.247, 0.253, 0.270, and 0.230 for ANN, NB, k-NN,
and SVM, respectively. Furthermore, the normalized overall
accuracy AC is 0.259, 0.254, 0.239, and 0.248 for the same set
of classifiers, respectively.

At the end of each experiment, the algorithm calculates
the performance of each classifier, based on the recorded
test results. The next section reports the obtained results and
provides illustrations and discussions relevant to the perfor-
mance of NSC compared with that of the other individual
classifiers.
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Table 6: Performance of the classifiers with CR = 85.35% for SNR = 1, 5, and 10 dB and noiseless EEG data.

SNR PR RE AC
𝑐
0

𝑐
1

𝑐
2

𝑐
0

𝑐
1

𝑐
2

AVG STD

ANN

1 0.66 0.73 0.99 0.80 0.61 0.94 0.78 0.17
5 0.74 0.88 0.99 0.84 0.68 0.95 0.82 0.14
10 0.80 0.85 0.98 0.88 0.75 0.96 0.86 0.11

Noiseless 0.86 0.82 0.92 0.84 0.82 0.96 0.87 0.08

NB

1 0.67 0.75 0.99 0.80 0.59 0.96 0.78 0.19
5 0.71 0.79 0.98 0.88 0.62 0.96 0.82 0.18
10 0.76 0.83 0.97 0.90 0.69 0.96 0.85 0.14

Noiseless 0.80 0.87 0.98 0.90 0.75 0.99 0.86 0.12

𝑘-NN

1 0.64 0.73 0.99 0.92 0.53 0.93 0.77 0.23
5 0.65 0.71 1.00 0.91 0.50 0.89 0.78 0.21
10 0.71 0.80 1.00 0.98 0.59 0.87 0.81 0.20

Noiseless 0.72 0.83 1.00 0.96 0.63 0.90 0.83 0.18

SVM

1 0.70 0.69 1.00 0.81 0.70 0.82 0.78 0.07
5 0.73 0.78 1.00 0.87 0.78 0.82 0.82 0.05
10 0.76 0.84 1.00 0.94 0.80 0.82 0.85 0.08

Noiseless 0.79 0.84 1.00 0.97 0.81 0.81 0.86 0.09

NSC

1 0.65 0.86 0.98 0.92 0.48 1.00 0.80 0.28
5 0.70 0.93 0.98 0.96 0.56 1.00 0.84 0.24
10 0.77 1.00 0.94 1.00 0.64 1.00 0.88 0.21

Noiseless 0.83 0.95 0.94 0.98 0.74 0.98 0.90 0.14

4. Results and Discussion

This research work addresses EEG-based epileptic seizure
data classification considering noiseless and noisy data with
different values of SNR. For each point on the graphs, we
have conducted 10 experiments and calculated the average
accuracy and its standard deviation accordingly.The standard
deviation describes the distribution range, describing how
much difference occurs between successful computations,
which correspond to the data imperfection. In this case, the
standard deviation (SD) is important to show the difference
between successive measurements to make sure that the
classifiers are not affected by data imperfection. Table 6
shows the calculated performance measures of the studied
classifiers with EEG-epileptic seizure data compressed with
CR = 85.35% for noiseless and added noise of SNR = 1, 5,
and 10 dB. The class precision (PR), class recall (RE) and
the classification average (AVG) accuracy (AC), and standard
deviation (STD) for each classifier for different SNR and
noiseless channel conditions are also shown in Table 6.

The results for each of the individual classifiers ANN,
NB, k-NN (with 𝑘 = 10), and SVM in each SNR case
together with the results of NSC are plotted to illustrate
the differences in their performances. Figures 4–8 show
the performance for noiseless and SNRs of 1, 5, and 10 dB,
respectively. The corresponding accuracies in Table 6 are
emphasized in Figures 4–7 with the line drawn at CR =
85.35%. The constraint on the desired accuracy in the case
of noiseless data is to achieve 90%. The CR of 84.35% was
the cutting edge of achieving this desired goal. Therefore, the
performance of the classifiers at this CR value is the most
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Figure 4: Classification accuracy against CR for noiseless data.

important to us. The overall accuracy results of all of the
experiments show that this constraint is met at CR = 85.35%,
while a high accuracy of 80%was maintained with very noisy
data at SNR = 1 dB.

The results in Figure 4 show a trend in which the classi-
fication accuracy increases almost linearly with the decrease
in CR. The decay in the accuracy seems to be reasonable in
all regions, and NSC has the best accuracy, which starts to
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Figure 5: Classification accuracy against CR for SNR = 1 dB.
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Figure 6: Classification accuracy against CR for SNR = 5 dB.

decay exponentially similar to the accuracy of all of the other
individual classifiers.

Figure 5 shows the lower accuracies for all classifiers
because of the injected quantity of AWGN (SNR = 1 dB),
which is the highest noise injected in all experiments. In
this case, the NSC continued to perform consistently better
than the rest of the classifiers. In addition, the Bayes classifier
continues to exhibit the poorest performance. The exact
reported results at CR = 85.35% can be observed in Table 6.

As expected, Figure 6 shows that increasing theCR results
in decreased overall accuracy for all classifiers.

Finally, Figure 7 shows a slightly different behavior for all
classifiers. The classification accuracy of 90% starts to decay

Noisy EEG data (SNR = 10dB)
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Figure 7: Classification accuracy against CR for SNR = 10 dB.
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Figure 8: Average accuracy of classifiers for all CR values with SNR
= 1, 5, and 10 dB and noiseless EEG data.

after CR = 82.91%.The effect of the AWGN is much less when
SNR = 10 dB, which is close to the EEG data. To the best of
our knowledge, no reportedwork has been found that employ
similar evaluation approach of EEG-based epileptic seizure in
which AWGN considers different SNR values.Moreover, new
interesting results could be realized that the thermal noise
using AWGN clearly affects the classification accuracy.

Overall and regardless of the compression ratio value,
Figure 8 shows the results for the average classification
accuracy; the NSC accuracy is constantly better than the
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Table 7: Comparisons between previous works and the proposed method.

Authors Noiseless data Imperfect data Classifiers Accuracy
Sharma et al., 2014 [19] Two different classes N/A LS-SVM 85%
Sadati et al., 2006 [15] A, D, and E N/A SVM, FBNN, ANFIS, and proposed ANFN 85.9%
Mohamed et al., 2013 [13] A, B, C, D, and E N/A NB, MLP, 𝑘-NN, LDA, and SVM 89.5%
Liang et al., 2010 [44] A, D, and E N/A PCA and GA 80%–90%
Tzallas et al., 2009 [11] A, B, C, D, and E N/A ANN 89%
Proposed method A, C, and E A, C, and E Ensemble NSC 90%

accuracy of any individual classifier. This statement is valid
for both noiseless and noisy EEG-epileptic seizure data.

Compared with previous works, the proposed NSC clas-
sification accuracy of noiseless EEG data has achieved 90%,
which is 5% higher than the accuracy done in Sharma
[19], 4.1% higher than the work done in Sadati et al. [15]
(85.9% accuracy) especially for sets A, D, and E, and 0.5%
higher than that reported in Mohamed et al. [13] (89.5%
accuracy). In addition, Liang et al. achieved classification
accuracy between 80% and 90% [44]. Tzallas et al. [11]
achieved 89% only for noiseless dataset using one classifier.
All of those approaches considered the same EEG dataset.
In contrast to these methods, the proposed method achieved
the desired and improved classification accuracy with noisy
data using different SNR values: 80% for SNR = 1 dB, 84%
for SNR = 5 dB, and 88% for SNR = 10 dB. These results were
obtained at a CR of 85.35%. Moreover, the proposed method
provides several significant benefits such as simplicity and
the improvement of the overall classification accuracy. Table 7
shows the comparisons between the proposed NSC and
others reported in the literature.

5. Conclusion

In this paper, an EEG noise-aware signal combination
method for EEG-based epileptic seizure detection applica-
tions is proposed and investigated. Compression paradigms
with low complexity are achieved by utilizing the iDCT
method for data reconstruction. Features are extracted from
the reconstructed data using DWT. The proposed noise-
aware signal combination (NSC) method together with the
classifiers ANN, naı̈ve Bayes, k-NN, and SVM is tested
with different categories of EEG-based epileptic seizure data.
Noise is introduced to the data at different levels: SNRs of
1, 5, and 10 dB. The proposed NSC combination method
constantly performs better than any of the above four clas-
sifiers. The experimental results show that the proposed NSC
technique is effective with noisy data of 80% for SNR = 1 dB,
84% for SNR = 5 dB, and 88% for SNR = 10 dB while being
effective with 90% accuracy for noiseless data. These results
were obtained at CR = 85.35%.
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