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Background: Animal and plant matrix metalloproteinases (MMPs) are kept zymogenic through large prodomains and a
cysteine-switch mechanism.
Results: Bacterial MMP karilysin has only a short N-terminal peptide upstream of the catalytic domain, which lacks cysteines.
Conclusion: This peptide inhibits through an aspartate-switch mechanism and also exerts other functions of authentic
prodomains.
Significance: Karilysin is kept latent by a novel mechanism for MMPs.

The matrix metalloproteinases (MMPs) are a family of
secreted soluble or membrane-anchored multimodular pepti-
dases regularly found in several paralogous copies in animals
and plants, where they have multiple functions. The minimal
consensus domain architecture comprises a signal peptide, a
60 –90-residue globular prodomain with a conserved sequence
motif including a cysteine engaged in “cysteine-switch” or “Vel-
cro” mediated latency, and a catalytic domain. Karilysin, from
the human periodontopathogen Tannerella forsythia, is the
only bacterial MMP to have been characterized biochemically to
date. It shares with eukaryotic forms the catalytic domain but
none of the flanking domains. Instead of the consensus MMP
prodomain, it features a 14-residue propeptide, the shortest
reported for a metallopeptidase, which lacks cysteines. Here we
determined the structure of a prokarilysin fragment encompass-
ing the propeptide and the catalytic domain, and found that the
former runs across the cleft in the opposite direction to a bound
substrate and inhibits the latter through an “aspartate-switch”
mechanism. This finding is reminiscent of latency maintenance
in the otherwise unrelated astacin and fragilysin metallopepti-
dase families. In addition, in vivo and biochemical assays
showed that the propeptide contributes to protein folding and
stability. Our analysis of prokarilysin reveals a novel mechanism
of latency and activation in MMPs. Finally, our findings support
the view that the karilysin catalytic domain was co-opted by

competent bacteria through horizontal gene transfer from a
eukaryotic source, and later evolved in a specific bacterial
environment.

The matrix metalloproteinases (MMPs)5 are a family of zinc-
and calcium-dependent peptidases, which are grouped into the
metzincin clan of metallopeptidases (MPs) together with other
separate families such as the ADAMs/adamalysins, astacins,
fragilysins, and serralysins (1–8). MMPs are found throughout
animals and plants (9–12), where their distribution is consistent
with a Darwinian tree-based pathway. In addition, polyplication
has led to several paralogous MMP genes being present in the
same organism: 24 in humans, 26 in sea urchin, 26 in zebrafish,
seven in sea squirt, and two in fruit fly (11). In contrast, only a
patchy phylogenetic distribution of genes encoding hypotheti-
cal orthologs has been found in viruses, Bacteria, Archaea, and
fungi. Earlier studies of the relationship between mammalian
MMPs and supposed prokaryotic orthologs included, as we now
know, bacterial members of other metzincin families such as
serralysins, fragilysins, and astacins (13–16). Accordingly, it
was suggested that a primordial MMP may have arisen from an
ancestor that is common to vertebrates, invertebrates, and
plants but is not shared by earlier stages in evolution (11,
16 –18). This entails that the hypothetical prokaryotic, viral,
and fungal MMPs are incongruent with the tree of life or, more
accurately, xenologs, i.e. the result of direct or indirect horizon-
tal gene transfer from eukaryotic donors (9, 19, 20). This is
reminiscent of the evolutionary origin postulated for fragilysin,
which is the only molecular virulence factor described for
enterotoxigenic Bacteroides fragilis and for which no similar
proteins have been reported, not even from other B. fragilis
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strains (21). Structural studies supported the view that the cat-
alytic domain of this MP is the result of horizontal gene transfer
of a member of the ADAM/adamalysin family, which has 38
orthologs in humans (8, 22–25), from a mammalian host to this
bacterium, which thrives in the intestinal tract (26, 27).

Returning to MMPs, karilysin from the human periodonto-
pathogen Tannerella forsythia is the only bacterial family mem-
ber to have been analyzed biochemically to date (9, 28 –33). In
addition to karilysin, only MmpZ from Bacillus anthracis has
been functionally assessed at the genetic level through knock-
out studies in B. anthracis cells, but it has not been isolated or
characterized (34). Similarly to vertebrate MMPs, karilysin
showed preference for medium-sized to bulky hydrophobic
residues (leucine, tyrosine and methionine) in the specificity
pocket, S1� (Ref. 30; for active-site cleft subsite nomenclature,
see Ref. 35). It inactivates antimicrobial peptide LL-37 and inte-
grants of the complement system, including ficolin-2, ficolin-3,
C4, and C5, by proteolysis and may thus contribute to evasion
of the innate host immune response (29, 31). Karilysin is
sequentially and evolutionarily closer to MMPs from winged
insects that are transmission vectors of human diseases (47%
sequence identity with Dm1 from Aedes aegypti and Anopheles
gambiae; (9)) and mammals (44% identity with human MMP-
11, -13, and -20 (9)) than to the few other bacterial sequences
found in genomic sequences. Accordingly it was likewise sug-
gested that it may be the result of horizontal gene transfer of an
MMP gene from an animal to an intimate bacterial pathogen,
which inhabits a biofilm on the tooth surface in humans (9).

The metzincins are characterized by a consensus sequence
responsible for binding of the catalytic zinc ion (CSBZ), H-E-
X-X-H-X-X-(G/N)-X-X-(H/D) (amino acid one-letter code; X
stands for any residue), and a conserved methionine-containing
turn, the “Met-turn” (1–5, 36). In MMPs, the CSBZ encom-
passes three histidine zinc ligands, the general base/acid gluta-
mate for catalysis, and a structurally relevant glycine (3). In
addition, the distinct MMP paralogs are multidomain proteins
that display a disparate domain organization that is the result of
successive polyplication, gene fusion, and exon shuffling (11).
The only domains common to all animal and plant MMPs are a
signal peptide, which is removed after secretion, a prodomain
and a catalytic domain, as found, e.g. in human MMP-7 and
MMP-26, and in plant MMPs (12, 16, 18).

Most peptidases are biosynthesized as zymogens contain-
ing prosegments, which are required for latency mainte-
nance to prevent unbridled activity but also sometimes to
assist in proper folding of the usually downstream catalytic
moieties (37– 40). Metzincin exceptions lacking prosegments
include the archaemetzincins, for which no hydrolytic activity
has so far been reported, i.e. they might not need to be kept
latent (41, 42); the toxilysin EcxA from Escherichia coli, whose
soluble expression requires co-expression with its cognate
EcxB subunit, thus pointing to a chaperone-like function for
this ancillary subunit (43– 45); the cholerilysin StcE from
E. coli, for which an N-terminal immunoglobulin-like domain
may assist the downstream catalytic moiety in proper folding
(46); and igalysins, where an all-�-domain of similar topology to

immunoglobulin-like domains is likewise found at the N termi-
nus of the catalytic moiety (see Protein Data Bank (PDB) access
codes 4DF9 and 3P1V and Ref. 5).

MMP prodomains (see Table 1 in Ref. 47) span 60 –90 resi-
dues and include a conserved sequence motif, P-R-C-G-(V/N)-
P-D, engaged in a “cysteine-switch” or “Velcro” mechanism of
latency (10, 16, 48 –51). It has been suggested that this mecha-
nism may be shared by variants within other metzincin families,
for which conserved cysteines were described upstream of the
catalytic domain, such as the ADAMs/adamalysins (motif P-K-
M-C-G-V (8, 52–54)), leishmanolysins (motif H-R-C-I-H-D
(2)), and pappalysins (motif C-G (55)). In contrast, the 472 res-
idues encoded by the karilysin gene (see UniProt sequence
database access code D0EM77) only comprise a short 14-resi-
due potential propeptide, which lacks cysteines, between the
20-residue signal peptide and the 161-residue mature catalytic
moiety (Fig. 1A). A C-terminal domain of 277 residues of
unknown function and sequence unrelated to any domain
found in eukaryotic MMPs completes the protein. This strongly
suggests a potentially different mechanism of latency mainte-
nance, hitherto unseen not only in MMPs but also in metz-
incins in general, as the shortest prosegments described to date
are those of members of the astacin family, which span �34
residues (7, 56 –58).

We had previously determined the structure of the catalytic
domain of karilysin (termed Kly18 (9)). To shed light on the
molecular determinants of the first mechanism of latency
maintenance of a bacterial MMP, in this work we assayed the
possible function of the propeptide in folding, stability, and
activity inhibition of Kly18. We further solved the x-ray crystal
structure of an active-site mutant of a construct spanning the
propeptide and Kly18 affecting the catalytic glutamate, pKly18-
E156A, to circumvent autolysis. The mechanism derived was
supported by site-directed mutagenesis and it is discussed in
the context of general MMP latency maintenance.

EXPERIMENTAL PROCEDURES

Protein Production and Purification—The gene coding for
full-length wild-type T. forsythia prokarilysin without the
20-residue signal peptide (hereafter pKly; 52 kDa; residues
Gln21-Lys472 according to UP D0EM77, see also Fig. 1A) was
cloned at BamHI and XhoI restriction sites into vector pGEX-
6P-1 (GE Healthcare) as described elsewhere (30). The result-
ing vector, pKAR1 (see Table 1 for an overview of vectors and
constructs used), confers resistance toward ampicillin and
attaches an N-terminal glutathione S-transferase (GST) moiety
followed by a human rhinovirus 3C proteinase (HR3CP) recog-
nition site (L-E-V-L-F-Q-2-G-P; HR3CP cleavage leaves two
extra residues, underlined, at the N terminus of the recombi-
nant protein after digestion; three extra residues, L-G-S, are
further present due to the cloning strategy). Single-residue
point mutants pKly-Y35A and pKly-E156A (pKAR2 and
pKAR3, respectively) were generated using the QuikChange
Site-directed Mutagenesis Kit (Stratagene) according to the
manufacturer’s instructions as described (30). Double mutant
pKly-D25A/Y35A (pKAR4) was similarly generated using
pKAR2 as a template. Genes coding for the E156A-mutated
catalytic domain of karilysin, with and without the propeptide
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(hereafter pKly18-E156A and Kly18-E156A; 20 and 18 kDa; res-
idues Gln21-Ser201 and residues Tyr35-Ser201, respectively),
were also cloned into vector pGEX-6P-1 (pKAR5 and pKAR6,
respectively). Genes coding for pKly18 and its mutant proteins
pKly18-Y35A and pKly18-D25A/Y35A were cloned into the
same vector (pKAR7, pKAR8, and pKAR9, respectively) follow-
ing a strategy previously described (59). Genes coding for
pKly18, pKly18-E156A, Kly18, and Kly18-E156A were, further-
more, cloned at NcoI and XhoI restriction sites into vector
pCRI-7a (59), which confers resistance toward kanamycin and
does not attach fusion proteins (pKAR10-pKAR13, respec-
tively). In these cases, the cloning strategy entailed that residues
M-G were attached at the N terminus. All constructs were ver-
ified by DNA sequencing.

Proteins encoded by vectors pKAR1-pKAR9 were produced
by heterologous overexpression in E. coli BL21(DE3) cells,
which were grown at 37 °C in Luria-Bertani medium supple-
mented with 100 �g/ml of ampicillin. Cultures were induced at
an A600 of 0.8 with 0.2 mM isopropyl �-D-thiogalactopyranoside
and incubated overnight at 18 °C. Purification of wild-type and
mutant pKly, and subsequent autolysis of the former to obtain
Kly18, was achieved as described elsewhere (30). In turn,
pKly18-E156A, Kly18-E156A, pKly18-Y35A, and pKly18-
D25A/Y35A were purified as follows. After centrifugation at
7,000 � g for 30 min at 4 °C, the pellet was washed twice in 1�
PBS, and resuspended in the same buffer supplemented with
EDTA-free protease inhibitor mixture tablets and DNase I
(both Roche Diagnostics). Cells were lysed using a cell disrupter
(Constant Systems, Ltd.) at 1.35 Kbar, and the cell debris was
removed by centrifugation at 40,000 � g for 1 h at 4 °C. The
supernatant was filtered (0.22 �m pore size; Millipore), and
incubated with glutathione-Sepharose 4B resin (GE Health-
care). The sample was washed first in 1� PBS and then in buffer
A (50 mM Tris-HCl, 150 mM NaCl, pH 7.5), and eluted by incu-
bation and cleavage with HR3CP at a 1:20 enzyme:substrate
(w/w) ratio for 48 h at 4 °C. The protein was concentrated by
ultrafiltration, and finally purified by size-exclusion chroma-
tography on 16/600 or 10/300 Superdex 75 columns (GE
Healthcare) previously equilibrated with buffer B (20 mM

Tris-HCl, pH 8.0) or buffer C (20 mM Tris-HCl, 150 mM

NaCl, pH 7.5).

Proteins encoded by vectors pKAR10 –pKAR13 were pro-
duced in E. coli BL21(DE3) cells, which were grown at 37 °C in
Luria-Bertani medium supplemented with 30 �g/ml of kana-
mycin. Cultures were induced at an A600 of 0.8 with 0.2–1 mM

isopropyl �-D-thiogalactopyranoside and incubated either for
5 h at 37 °C or overnight at 18 °C. Cells were harvested by cen-
trifugation at 7,000 � g for 30 min at 4 °C, washed in buffer A,
resuspended in the same buffer, and further lysed in an ice-bath
using a digital sonifier (Branson). After centrifugation at
15,000 � g for 30 min at 4 °C, both cell debris and supernatant
were analyzed by 15% Tricine-SDS-PAGE stained with Coo-
massie Blue.

Protein identity and purity were assessed by mass spectrom-
etry using an Autoflex Bruker apparatus and N-terminal
sequencing through Edman degradation at the Proteomics
Facility of Centro de Investigaciones Biológicas (Madrid,
Spain). Ultrafiltration steps were performed with Vivaspin 15
and Vivaspin 4 filter devices of 5-kDa cut-off (Sartorius Stedim
Biotech). Approximate protein concentration was determined
by measuring A280 in a spectrophotometer (NanoDrop) using
the calculated absorption coefficients E0.1% � 2.32 and 2.42 for
pKly18-E156A and Kly18-E156A, respectively.

Autolytic Activation and Propeptide Inhibitory Activity
Assays—Mutants pKly-Y35A (from pKAR2), pKly-D25A/Y35A
(pKAR4), and pKly18-Y35A (pKAR8) were incubated in buffer
B at 37 °C and at 0.4 mg/ml final protein concentration for up to
120 h to assay autolysis. Reactions were stopped at specific time
points by boiling aliquots in reducing/denaturing buffer, and
samples were further analyzed by 10% or 15% Tricine-SDS-
PAGE stained with Coomassie Blue. Kly18, obtained by autol-
ysis from pKAR1-encoded protein, was incubated at 0.025
�g/ml of final protein concentration for 30 min with 0.1–10 mM

peptide Q-R-L-Y-D-N-G-P-L-T (purchased from GL Biochem
Ltd.), which mimics the propeptide sequence. Proteolytic activ-
ity was subsequently measured at 37 °C in buffer C on substrate
Mca-R-P-K-P-V-E-Nva-W-R-K(dnp)-NH2 (Bachem; at 10 �M)
in a microplate fluorimeter (Infinite M200, Tecan).

Thermal Shift Assays—Aliquots were prepared by mixing 7.5
�l of �300 Sypro Orange dye (Molecular Probes) and 42.5 �l of
either pKly18-E156A (from pKAR5) or Kly18-E156A (pKAR6)
at 1–2 mg/ml in buffer C in the absence and presence of 1–5 mM

TABLE 1
Vectors and constructs

Name Original vector
Antibiotic
resistancea

Restriction
sites Insert

Fusion
construct

(N-terminal)

Additional
N-terminal

residues

pKAR1 pGEX-GP-1 (GE Healthcare) amp BamHI/XhoI wt Gln21-Lys472 (pKly) GST � HR3CPr G-P-L-G-Sb

pKAR2 pGEX-GP-1 (GE Healthcare) amp BamHI/XhoI Y35A mutant Gln21-Lys472 (pKly-Y35A) GST � HR3CPr G-P-L-G-Sb

pKAR3 pGEX-GP-1 (GE Healthcare) amp BamHI/XhoI E156A mutant Gln21-Lys472 (pKly-E156A) GST � HR3CPr G-P-L-G-Sb

pKAR4 pGEX-GP-1 (GE Healthcare) amp BamHI/XhoI D25A/Y35A mutant Gln21-Lys472 (pKly-D25A/Y35A) GST � HR3CPr G-P-L-G-Sb

pKAR5 pGEX-GP-1 (GE Healthcare) amp BamHI/XhoI E156A mutant Gln21-Ser201 (pKly18-E156A) GST � HR3CPr G-P-b

pKAR6 pGEX-GP-1 (GE Healthcare) amp BamHI/XhoI E156A mutant Tyr35-Ser201 (Kly18-E156A) GST � HR3CPr G-P-b

pKAR7 pGEX-GP-1 (GE Healthcare) amp BamHI/XhoI wt Gln21-Ser201 (pKly18) GST � HR3CPr G-P-b

pKAR8 pGEX-GP-1 (GE Healthcare) amp BamHI/XhoI Y35A mutant Gln21-Ser201 (pKly18-Y35A) GST � HR3CPr G-P-b

pKAR9 pGEX-GP-1 (GE Healthcare) amp BamHI/XhoI D25A/Y35A mutant Gln21-Ser201 (pKly18-D25A/Y35A) GST � HR3CPr G-P-b

pKAR10 pCRI-7a (59) kan NcoI/XhoI wt Gln21-Ser201 (pKly18) None G-P-b

pKAR11 pCRI-7a (59) kan NcoI/XhoI E156A mutant Gln21-Ser201 (pKly18-E156A) None M-G-
pKAR12 pCRI-7a (59) kan NcoI/XhoI wt Tyr35-Ser201 (Kly18) None M-G-
pKAR13 pCRI-7a (59) kan NcoI/XhoI E156A mutant Tyr35-Ser201 (Kly18-E156A) None M-G-

a amp, ampicillin; GST, glutathione S-transferase; HR3CPr, recognition sequence for human rhinovirus 3C peptidase; kan, kanamycin; mut., mutant; wt, wild-type.
b After cleavage with HR3CP.
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CaCl2. Four replicates of each aliquot were analyzed in an iQ5
Multi-Color Real Time PCR Detection System (Bio-Rad) in
96-well PCR plates sealed with optical tape. Samples were
heated from 30 to 95 °C at 0.5 °C/min, and the change in
absorbance (�ex � 490 nm; �em � 575 nm) was monitored over
time. The temperature of midtransition (Tm (60)) was deter-
mined for both proteins from the inflection point of each curve
using iQ5 software.

Crystallization and Data Collection—Crystallization assays
of pKAR5-encoded pKly18-E156A protein were carried out at
the IBMB/IRB Crystallography Platform by the sitting-drop
vapor diffusion method using 96 � 2-well MRC plates (Innova-
dyne). A TECAN Freedom EVO robot was used to prepare
reservoir solutions, and a Phoenix/RE (Art Robbins) robot or a
Cartesian Microsys 4000 XL (Genomic Solutions) was used for
nanodrop dispensing. Crystallization plates were stored in
Bruker steady-temperature crystal farms at 4 and 20 °C. Suc-
cessful conditions were scaled up to the microliter range in
24-well Cryschem crystallization dishes (Hampton Research).
The best crystals were obtained at 20 °C from drops containing
protein solution (3.75 mg/ml in buffer B) and 100 mM Bistris
propane, 200 mM potassium thiocyanate, 20% (w/v) polyethyl-
ene glycol 3350 (pH 7.5) as reservoir solution from 2:1-�l drops.
Crystals were cryo-protected with 20% (v/v) glycerol. Diffrac-
tion datasets were collected at 100 K from liquid-N2 flash cryo-
cooled crystals (Oxford Cryosystems 700 series cryostream) on
a Pilatus 6M pixel detector (from Dectris) at beam lines ID23-1
and ID29 of the European Synchrotron Radiation Facility
(ESRF, Grenoble, France) within the Block Allocation Group
“BAG Barcelona.” Crystals contained two molecules per asym-
metric unit. Diffraction data were integrated, scaled, merged,
and reduced with programs XDS (61) and XSCALE (62) (see
Table 2 for data processing statistics of the best dataset).

Structure Solution and Refinement—The structure of pKly18-
E156A was solved by likelihood-scoring molecular replacement
with the program PHASER (63) using the coordinates of the
protein part only of mature wild-type Kly18 (PDB access code
4IN9 (64, 65)) as searching model. Two solutions were found at
final Eulerian angles (�, �, �, in °) of 285.8, 56.7, 97.2, and 76.9,
91.3, 284.2; and fractional cell coordinates (x, y, z) of 0.120,
�0.017, 0.100, and 0.997, 0.332, and 0.608, respectively. These
solutions gave initial Z-scores of 8.5 and 8.3 for the rotation
functions, and 6.6 and 6.2 for the translation functions, respec-
tively, as well as a final log-likelihood gain of 1,120. A subse-
quent density improvement step with ARP/wARP (66) ren-
dered an electron density map that enabled straightforward
chain tracing. Thereafter, manual model building with COOT
(67, 68) alternated with crystallographic refinement with pro-
grams PHENIX (69) and BUSTER/TNT (70, 71), which
included TLS refinement and automatically determined non-
crystallographic restraints, until completion of the model. Both
final model chains A and B contained residues Gln21-Pro199, as
well as two zincs and one calcium each. Segment Val36-Gly39 of
chain A was continuous in the final Fourier map but ambiguous
as to the position of the side chains. In addition, segments
Gln38-Ser40 and Ser54-His57 of chain B were traced based on
weak electron density to preserve chain continuity. Pro122 and
Pro123 were linked by a cis-peptide bond. Three glycerol mole-

cules and 226 solvent molecules completed the structure (see
Table 2).

Miscellaneous—Figures were prepared with CHIMERA (72).
Structural superpositions were performed with SSM (73)
within COOT, and with LSQKAB (74) and ROTMAT within
the CCP4 suite of programs (75). Model validation was per-
formed with MOLPROBITY (76). The interaction surface bur-
ied at the interface between the propeptide and the mature
enzyme moiety was calculated with CNS version 1.3 (77). The
final coordinates of pKly18-E156A are deposited with the PDB
with code 4R3V.

RESULTS AND DISCUSSION

Roles of the Propeptide in Vitro and in Cellula—Wild-type
karilysin is secreted as a zymogen with a 14-residue N-terminal
propeptide (21Q-R-L-Y-D-N-G-P-L-T-G-D-N-N34), which is
cleaved off at position Asn34-Tyr35 during maturation (Fig. 1A).
This is the primary activation cleavage and it releases an active
48-kDa form (Kly48 (30)). In recombinant protein production,
subsequent cleavages within the C-terminal domain give rise to
Kly38 and, finally, to a stable form of 18 kDa (Kly18), which
corresponds to the isolated mature catalytic domain (CD) (5,
28, 30, 33). These cleavages were shown to be autolytic as acti-
vation was repressed by general chelating MP inhibitors and in
the inactive active-site variant, E156A, which ablated the cata-
lytic glutamate of the CSBZ (1, 5, 30, 79, 80). In addition, cleav-
age-site mutant Y35A, which does not match the specificity of
the enzyme, was activated only slowly when compared with the
wild-type (30, 33).

To assess whether the propeptide had a chaperone-like func-
tion on the downstream catalytic moiety, we cloned the genes
encoding pKly18-E156A and Kly18-E156A in a vector that does
not attach a fusion protein at the N terminus that would assist

TABLE 2
Crystallographic data

Data

Space group/cell constants (a, b, c in Å
and � in °)

P21/36.18, 121.69, 41.88; 105.26

Wavelength (Å) 0.97242
No. of measurements/unique reflections 104,406/22,975
Resolution range (Å) (outermost shell) 60.8–2.01 (2.06–2.01)
Completeness (%) 99.8 (96.2)
Rmerge

a 0.105 (0.534)
Rr.i.m. (�Rmeas)a /CC(1/2)b 0.116 (0.616)/99.6 (84.3)
Average intensity 10.3 (2.5)
B-factor (Wilson) (Å2)/average multiplicity 29.0/4.5 (4.0)
Resolution range used for refinement (Å) ∞–2.01
No. of reflections used (test set) 22,047 (741)
Crystallographic Rfactor (free Rfactor)c 0.165 (0.194)
No. of protein atomsd/solvent

molecules/ligands/ions
2,843/226/3 glycerols/4 zinc,

2 calcium
Root mean square deviation target values

bonds (Å)/angles (°)
0.010/0.98

Overall average B-factor (Å2) 30.8
Model validatione

Residues in favored regions/outliers/all
residues

345 (97.5%)/0/355

Residues with bad bonds/bad angles/poor
rotamers/C� deviation �0.25 Å

0/0/7(2.4%)/0

Values in parentheses refer to the outermost resolution shell.
a For details, see Refs. 110 and 111.
b According to Karplus and Diederichs (78).
c Crystallographic Rfactor � �hkl �Fobs� � k �Fcalc�/�hkl �Fobs�, where k is a scaling

factor, and Fobs and Fcalc are the observed and calculated structure factor ampli-
tudes, respectively. This factor is calculated for the working-set reflections; free
Rfactor, same for a test-set of reflections (�500) not used during refinement.

d Including atoms with double occupancy.
e According to MOLPROBITY (76).
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in proper folding (pKAR11 and pKAR13, respectively; see
“Experimental Procedures”). We found that the active-site
mutant pKly18-E156A was successfully overexpressed in solu-
ble form (Fig. 1B). In contrast to the zymogen, Kly18-E156A
was produced only in insoluble form (Fig. 1B). Moreover, when
expressed from the pKAR6 vector, which attaches an N-termi-
nal glutathione S-transferase fusion protein (see Table 1),
Kly18-E156A was obtained with 	10 times lower yield than the
proprotein (vector pKAR5). We conclude that the propeptide
plays a major role in proper folding of Kly18 as previously
described for other MPs such as fragilysin (26, 27), funnelin
metallocarboxypeptidases (79, 81, 82), and ADAMs/adama-
lysins (54) but not for mammalian MMPs (83).

We further examined the effect of the propeptide in response
to denaturation by a thermal shift assay following the thermo-
fluor approach (60). Purified pKly18-E156A (pKAR5) showed
two unfolding transitions compatible with unfolding of pro-
peptide and CD, with Tm values of 60 
 0.5 and 74 
 0.5 °C
(Fig. 1C). In contrast, the unfolding of purified Kly18-E156A
(pKAR6) showed a single transition, with a Tm of 49 
 2.2 °C.
The addition of a physiological concentration of calcium
resulted in a substantial increase in stability of both pKly18-
E156A and Kly18-E156A. Accordingly, the former showed Tm
values of 67.5 
 1.7 and 76.5
 1.2 °C, and 69.5 
 1.7 and 79 

2.2 °C, in the presence of 1 and 5 mM CaCl2, respectively,
whereas those of Kly18-E156A were 52.5 
 1.2 and 54.5 
 1 °C.

This result is in agreement with the important role of calcium in
Kly18 activity, as addition of 2–5 mM CaCl2 is reported to
enhance activity about three times (30). Thus, regardless of cal-
cium, the 14-residue propeptide redounded to a dramatic
increase in Tm, underpinning that it plays a major role in the
thermal stability of the zymogen. Finally, we assayed the effect
of a decapeptide spanning propeptide sequence Gln21-Thr30 on
the activity of purified mature Kly18 (from pKAR1) in the pres-
ence of a fluorogenic peptide substrate (Fig. 1D). We observed a
weak but consistently concentration-dependent inhibitory
effect as previously shown for other MPs when their propep-
tides or prodomains were added in trans, among others funne-
lins (79, 81), ADAMs/adamalysins (84), and mammalian MMPs
(85– 87). Summarizing, the propeptide of karilysin is the short-
est currently described to date for an MP, and it exerts all roles,
which collectively or selectively had been previously described
for peptidase propeptides or prodomains: latency maintenance,
folding assistance during biosynthesis, stability to thermal
denaturation, and inhibition of peptidolytic activity (38, 39, 81).

Overall Structure of pKly18 —Due to rapid autolytic process-
ing of recombinant wild-type prokarilysin (30), crystals of
pKly18 could only be obtained for an inactive variant affecting
the catalytic glutamate (pKly18-E156A), as already reported for
other MP zymogens (88 –92). This protein crystallized as mon-
oclinic crystals diffracting to 2-Å resolution with two molecules
per asymmetric unit. These were essentially identical (C�-atom

FIGURE 1. Effect of the Kly18 propeptide in vitro and in vivo. A, scheme depicting the domain structure of T. forsythia karilysin. Numbering according to
UniProt D0EM77. B, SDS-PAGE of cultures of wild-type and E156A variants of pKly18 and Kly18. Lanes 1 and 2, insoluble and soluble fractions of wild-type pKly18
(from pKAR10), respectively. Lanes 3 and 4, insoluble and soluble fractions of wild-type Kly18 (pKAR12), respectively. Lanes 5 and 6, insoluble and soluble
fractions of pKly18-E156A (pKAR11), respectively. Lanes 7 and 8, insoluble and soluble fractions of Kly18-E156A (pKAR13), respectively. Overexpressed proteins
are labeled with an asterisk. C, unfolding transition curves showing temperature-dependent change in fluorescence of pKly18-E156A (pKAR5; solid line) and
Kly18-E156A (pKAR6; dashed line) in the absence (black curve) and presence of CaCl2 (1 mM, red curve; 5 mM, green curve). The blank curve is indicated with a
dotted line. D, proteolytic activity of Kly18 (pKAR1) at 37 °C using substrate Mca-R-P-K-P-V-E-Nva-W-R-K(dnp)-NH2 at 10 �M in the absence (0) and presence of
0.1, 0.5, 1, 2, and 5 mM propeptide mimic. E and F, stability of mutant pKly-Y35A (E) and mutant pKly-Y35A/D25A (F) over time. Kly48, Kly38, and Kly18 are
indicated by arrows.
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root mean square deviation � 0.53 Å) except for segments
Asn53-His57 and Asn34-Gly39. The latter flanks the primary
activation cleavage point and is flexible. It is stabilized
through an interaction with segment Asn87-Asn89 of the sec-
ond molecule present in the asymmetric unit of the crystal
although in different conformations in molecules A and B, so
the discussion hereafter is centered on molecule A if not
otherwise stated. When two values are indicated, they refer
to both molecules.

The protein reveals a compact, almost spherical shape of
	40 Å in diameter and is subdivided into three moieties (Fig.
2A): the N-terminal propeptide (Gln21-Asn34), and a CD split
into a larger N-terminal upper subdomain moiety (Tyr35-
Gly162; NTS) and a smaller C-terminal lower subdomain moi-
ety (Ile163-Pro199; CTS, see also Refs. 9 and 28)) if viewed in the
standard orientation for MPs (35). NTS and CTS conform to
the overall fold of vertebrate MMPs (47, 93) and are separated
by a shallow active-site cleft. The NTS is an �/�-sandwich con-
sisting of a twisted five-stranded pleated �-sheet (strands
�I-�V; see Fig. 2A), which is parallel for its first four strands and
antiparallel for its lowermost one, �IV. The sheet accommo-
dates on its concave side two �-helices (the “backing helix” �A
and the “active-site helix” �B; for numbering and extension of
repeating secondary structure elements, see Fig. 2C of Ref. 9).
The right-handed twist of the helices coincides with the right-
handed twist of the sheet and both helices’ axes intersect the
strands of the sheet at an angle � � �35° (94). The two helices
pack against each other interacting through Ala66-Ala70 of �A
and Leu149-Ala154 of �B at a crossing angle � � �50°, which
corresponds to a class II helix interaction (94). The loop con-
necting strands �III and �IV (L�III�IV) contains the “S-loop”
(Gly100-Leu115), which encompasses first a binding site for a
structural zinc (Zn998) and, downstream, a binding site for a
structural calcium (Ca997; see Fig. 2B). The zinc is tetrahedrally
coordinated by His102 N�2, Asp104 O�2, His117 N�2, and His133

N�1, whereas the calcium is octahedrally coordinated by six
oxygens: Asp109 O�1, Gly110 O, Thr112 O, Ile114 O, Asp135 O�2,
and Glu138 O�2 (see Fig. 2B and its legend for details). The
presence of calcium is consistent with its crucial role in catalysis
(30) and in protein stability (see Fig. 1C). Such calcium is found
in mammalian MMP structures (47, 93), but it was not found in
previous mature Kly18 structures (see below and Refs. 9 and
28). At Gly162 of the CSBZ, the polypeptide chains take a sharp
turn and enters the CTS (Fig. 2A), which mainly contains the
“C-terminal helix” �C and the Met-turn, centered on Met173,
which forms a hydrophobic base for the catalytic metal-binding
site and is required for its integrity in MMPs and metzincins in
general (47).

The active-site cleft contains the catalytic zinc ion (Zn999) at
half-width coordinated by the three histidines of the CSBZ
(His155, His159, and His165) through their N�2 atoms at dis-
tances 2.00 –2.05Å (Fig. 2, A and C). The cleft is top-framed on
its non-primed side (see Refs. 35 and 95)) by the “upper-rim
strand” �IV of the NTS �-sheet, which in MMPs binds sub-
strates in extended conformation from left to right through
antiparallel �-ribbon-like interactions. On its primed side, the
cleft is top-framed by the final stretch of the S-loop, termed the
“bulge-edge segment” (Thr112-Ley115), and bottom-framed by

the segment bridging the Met-turn and helix �C. This segment
includes the “S1�-wall forming segment” (Pro175-Tyr177) at the
front and the “specificity loop” (Gly179-Gln183) at the back.
Together with the first turn of the active-site helix �B, the latter
structural elements contribute to the size and chemical nature
of the S1� pocket, which confers specificity to Kly18 and also
MMPs in general (47, 93), here for medium-sized to bulky
hydrophobic residues (30). Side chains participating in pocket
shaping include Leu115, Ala116, Thr151, Val152, His155, Leu172,
Tyr177, and Lys181.

Inhibition by the Propeptide—The 14-residue propeptide
starts at the front right and runs in extended conformation
across the active-site cleft, thus blocking access to the cleft,
though in the opposite direction to a substrate, i.e. right to left
(Fig. 2, A and C). This reverse orientation of the propeptide in
the cleft may contribute to attenuate autolysis, as previously
suggested for zymogens of cysteine peptidases and mammalian
MMPs (39). The interaction with the CD buries a surface of
2,100 
 35 Å2, which is much larger than the average of mono-
meric protein-protein domain intra-chain interfaces (1,193 Å2

(96)) but is slightly lower than the range of typical MMP-pro-
tein inhibitor interaction surfaces (2,400 –2,700 Å2; see Ref. 97).
The interaction includes 13 hydrogen bonds, a double salt
bridge, one metallorganic bond, and hydrophobic carbon-car-
bon contacts between eight residues from the propeptide and
11 from the CD (see Table 3). Segments involved include almost
the entire propeptide (Arg22-Gly31) and, from the CD, mainly
Asn111-Tyr120 from the bulge-edge segment and the upper-rim
strand, and Pro175-Tyr177 from the S1�-wall forming segment.
Further involved are Tyr106, Ala124, and Glu138 and the zinc-
liganding histidine side chains. Four inter-main chain hydrogen
bonds form on the primed side of the cleft (two with the S1�-
wall forming segment and two with the bulge-edge segment
and strand �IV) and three more on the upstream non-primed
side (with �IV and L�IV�V; Fig. 2C). In particular, Arg22 con-
tacts the base of the S-loop: it doubly salt bridges Glu138, which
is also one of the calcium ligands (see above, Table 3 and Fig.
2B), and hydrogen bonds three carbonyl oxygens of the S-loop,
Asn111, Gly113, and Thr112, which, again, is also a calcium
ligand. In addition, the Arg22 carbonyl oxygen binds the S1�-
wall forming segment and its side chain performs a hydropho-
bic interaction with Leu115. Accordingly, this residue plays a
major role in the stabilization of the Ca997 site and, thus, the
zymogen in general, which explains its enhanced stability in
response to thermal denaturation (see above). In addition,
superposition of pKly18-E156A onto mature Kly18 in complex
with a tetrapeptidic cleavage product in the primed side (see
below) and human MMP-8 with a modeled substrate traversing
its cleft based on inhibitor structures (98) indicates that Arg22

occupies the S3� position of the cleft.
However, the most important interaction of the propeptide

with the CD is exerted by Asp25, which approaches the catalytic
zinc from the top and monodentately occupies through its O�1
atom the fourth position of the tetrahedral coordination sphere
of the metal (2.00/2.04 Å apart; Fig. 2C) further to His155,
His159, and His165 N�2 atoms. The preceding carbonyl group of
Tyr24 binds strand �IV, and its aromatic side chain penetrates
the deep hydrophobic S1� pocket, mainly interacting with the
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His155 ring face-to-face. The 	-rings are 	3.5 Å apart and par-
allel but slightly displaced along the ring planes to form a half-
overlapping sandwich, which gives rise to an optimal 	-stacked

structure (99). Downstream in the chain, Pro28 is in a pocket,
probably S2, framed by His159, Glu164, and Tyr120, the latter two
interact through a tight hydrogen bond (Tyr120 O
-Glu164 O�2,
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2.61 Å). Residue Leu29 is surrounded by the side chains of
Tyr106, His117, and Phe119, which may feature S3 (Fig. 2C). After
Gly31, the polypeptide abandons the active-site cleft moving
outward to reach the primary activation cleavage point, Asn34-
Tyr35 (Fig. 2A), after which the chain folds back toward the
molecular moiety and enters strand �I of the NTS �-sheet.

A Novel Activation Mechanism in MMPs—Previous work
had yielded three structures of mature wild-type Kly18 in com-

plexes with tri- and tetrapeptidic cleavage products, as well as
an inhibitory tetrapeptide in the non-primed side of the cleft
(PDB 2XS3, 2XS4, and 4IN9 (9, 28)). These were obtained both
in the presence and absence of magnesium and showed deviat-
ing chain traces for segment Asn53-His57 (L�I�A) in the two
molecules found in the asymmetric unit of the magnesium
unbound structure (PDB 2XS3 (9)) and in the single molecules
found in magnesium-bound (PDB 2XS4 (9)) and inhibitor-

FIGURE 2. Overall structure of pKly18-E156A. A, ribbon-type plot of pKly18-E156A in standard orientation (35). Depicted are the propeptide (ribbon and
carbon atoms in turquoise) and the mature enzyme moiety (�-strands in yellow labeled �I-�V; �-helices in salmon labeled �A-�C; and coils and carbon atoms
in tan). Further shown are the catalytic zinc ion (Zn999; bottom magenta sphere), the structural zinc ion (Zn998; top magenta sphere), and the structural calcium
ion (Ca997; red sphere), as well as the side chains of the three catalytic zinc ligands (His155, His159, and His165), the Met turn methionine (Met173), the alanine
replacing the catalytic glutamate (Ala156), and residues flanking the primary activation cleavage point, Asn34-Tyr35. B, close-up of the window of A as stick model
highlighting the structural zinc and calcium sites. Protein segments depicted are Asn101-Gly105 from the first part of the S-loop (carbons in gold), Asp109-Phe119

from the second part of the S-loop (carbons in sandy brown), His131-Glu138 from �V-L�V�B (carbons in tan), and the side chain of Arg22 from the propeptide
(carbons in turquoise). The zinc is bound by His102 N�2, Asp104 O�2, His117 N�2, and His133 N�1 at distances 1.99 –2.06 Å, and the calcium is bound by Asp109 O�1,
Gly110 O, Thr112 O, Ile114 O, Asp135 O�2, and Glu138 O�2 at distances 2.34 –2.39 Å. These distances agree with standard zinc- (1.99 –2.09 Å; (109)) and calcium-
binding (2.36 –2.39 Å; (109)) distance values for oxygens and nitrogens. C, close-up of A in wall-eye stereo centered on the catalytic zinc after a horizontal 	30°
rotation upwards. Selected hydrogen and ionic bonds (see also Table 3) are depicted as green lines. Residues and ions labeled in A are not labeled here for clarity.
The propeptide is shown in cyan to distinguish it from the mature catalytic moiety (in tan/yellow/orange) and its chain direction is pinpointed by a cyan arrow
and labels of the N- and C-terminal parts depicted. D, superposition in wall-eye stereo of pKly18-E156A (ribbon in tan for the mature enzyme moiety and in
brown for the propeptide, zinc ions in magenta, and calcium ion in red; stick model for the side chains of Ser20-Tyr35 with carbons in brown) and Kly18 (ribbon
and zinc ions in pink, see PDB 2XS3, molecule A (9)), which was obtained in a product complex with peptide A-F-T-S bound to the primed side of the cleft (stick
model with carbons in gold). Tyr35 is shown for both structures. E, detail of D in wall-eye stereo depicting the large rearrangement of the N terminus at Tyr35 after
maturation cleavage at Asn34-Tyr35. The �-amino group of Tyr35 makes a salt bridge with the side chain of Asp187 in the mature enzyme. Aside from Tyr120 and
Glu164 (significantly) and Pro122-Ala129 (slightly; see black arrows), maturation does not entail major conformational rearrangement of the rest of the structure.

TABLE 3
Direct interactions between the propeptide (PP) and the catalytic domain (CD)
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bound crystals (PDB 4IN9 (28)). In addition, significant differ-
ences were also found in the second half of the S-loop including
the bulge-edge segment, which was metal-free in all structures,
as the aforementioned magnesium, which coincides with a
potassium site in the inhibitor-bound form, was found on the
opposite surface of the CD (see Fig. 1, A and C, in Ref. 9, and Fig.
1A in Ref. 28), in a place that suggests little if any functional or
structural relevance. In these structures, either an outward- or
an inward-folded flap was found for the S-loop (Fig. 1E in Ref. 9
and Fig. 1D in Ref. 28), which suggests intrinsic flexibility of this
protein segment to adapt to different substrates. Among the
distinct mature Kly18 coordinates, molecule A of the magne-
sium-unbound structure (PDB 2XS3) was chosen here for com-
parison with pKly18-E156A as it showed the lowest divergence
in the overall chain trace (Fig. 2, D and E).

Superposition revealed that the mature CD is preformed in
the zymogen and, with some notable local exceptions (see
below), is simply uncovered during maturation by removal of
the propeptide, as found in mammalian MMPs (47) and other
MPs such as funnelins (79, 82). Removal occurs through cleav-
age at Asn34-Tyr35, which is solvent exposed on the molecular
surface and thus readily accessible for processing (Fig. 2A). This
explains why the wild-type zymogen undergoes rapid autolysis,
so it cannot be isolated intact (see Ref. 30 and first section of
“Results and Discussion”). This was the first cleavage observed
in vitro, thus termed primary activation cleavage site, and no
further cleavage was detected either within the propeptide or in
the CD. The site is consistent with most vertebrate MMPs being
activated at X-F/Y bonds, which are found at similar regions in
all structures (10). Propeptide removal occurs under loss of a
number of protein-protein interactions (see Table 3 and the
preceding section), which explains why the mature enzyme is
less stable to thermal denaturation (see first section of “Results
and Discussion”). In particular, Arg22 plays a key role in stabi-
lizing the Ca997 site (see above), and its removal may contribute
to cation-site and S-loop flexibility, leading to metal loss. This
site is easily created from the unbound form by two glycine-
mediated main chain rotations (peptide flip of bond Thr112-
Gly113 and 	70° rotation of peptide bond Gly110-Asn111), so as
to orient the carbonyl oxygens toward the interior, and cation
binding should largely compensate for the energetic cost of
such minor rearrangement. However, the finding that none
of the mature Kly18 structures, which were partially
obtained in the presence of calcium (9), contained an intact
calcium site supports the requirement of Arg22 as an addi-
tional stabilizing factor for site integrity.

Activation further entails that the position occupied by Asp25

O�1 in the ligand sphere of the catalytic zinc (see the preceding
section) is taken over by a catalytic solvent molecule, which
renders a competent active site following an “aspartate-switch”
mechanism. Such a competent zinc environment has also been
reported for several mature MPs (see e.g. Refs. 64, 80, and 100).
To date, aspartate-switch zymogenic mechanisms have been
described only for astacins (7, 88) and fragilysins (26), which are
only distantly related MPs grouped with MMPs within the
metzincins. To verify the function of Asp25 in latency in pKly18,
we used mutant pKly18-Y35A (from pKAR8), as the wild-type
form (pKAR7) was insoluble. Although this mutant was pro-

duced with a yield similar to that of pKly18-E156A and was
stable for several days, mutant pKly18-D25A/Y35A (pKAR9)
was insoluble. We further assessed the function of Asp25 in
full-length karilysin using the slowly autolytic mutant pKly-
Y35A (pKAR2), as the reaction in the wild-type is too rapid (30).
While pKly-Y35A was essentially intact after 5 days at 37 °C,
pKly-D25A/Y35A (pKAR4) had been entirely transformed into
the 38- and 18-kDa forms after this time (Fig. 1, E and F). Taken
together, these results support the essential role of Asp25 in
latency maintenance.

As to further changes upon maturation, segment Pro122-
Ala129 from L�IV�V is slightly shifted downwards by 	2 Å and
the side chains of Tyr120 and Glu164 rotate toward the zinc site
(Fig. 2E). Activation only entails major rearrangement of the
new N-terminal segment Tyr35-Ser40, on the left surface (Fig. 2,
D and E), which is rotated downward around bonds C-C� and
C�-N of Ser40. In this way, this segment nestles in a surface
cavity framed by helix �C and the first segment of the CTS
between Gly162, and the “family specific residue,” which is a
serine in MMPs (1, 101) (here Ser166). This entails that the new
�-amino group of Tyr35, which is translated 25 Å, establishes an
intra-molecular salt bridge with Asp187 of �C, which is vaguely
reminiscent of the activation of trypsin-like serine peptidases
(102). Asp187, in turn, is itself further bound to Ser166 and is
adjacent to a second aspartate, Asp188, which binds two main
chain amides of the Met turn. This electrostatic network is
characteristic of physiologically relevant mature MMPs, also
referred to as “superactive forms” (47, 103). With the exception
of the mature N-terminal fragment, the rest of this electrostatic
network is already present in the zymogen (Fig. 2E).

Intensive studies of the activation of mammalian MMPs have
produced the structures of pro-MMP-1 (PDB 1SU3 (90)), pro-
MMP-3 (PDB 1SLM (104)), pro-MMP-9 (PDB 1L6J(105)), and
pro-MMP-2 (PDB 1EAK; (89)). These studies revealed that the
mammalian MMP zymogens contain a pre-formed competent
protease moiety and true prodomains, which span between 66
and 91 residues, as shown for pro-MMP-2 (Fig. 3A) (47). The
prodomains include elongated N-terminal extensions that
may interact with ancillary domains, such as the fibronectin
type II insertions found in MMP-2 and MMP-9, followed by
globular cores of 	55 residues. These are made up of three
�-helices that are arranged around a 3-fold axis with a left-
handed twist.

The prodomain globular core serves as a scaffold to place a
downstream peptide, which runs in extended conformation in
the opposite direction to a bound substrate and thus blocks the
active-site cleft (Fig. 3, A and B). This peptide encompasses the
conserved motif involved in cysteine-switch or Velcro latency
characteristic of animal and plant MMPs (48 –50), 100P-R-C-G-
N-P-D106 (MMP-2 residues in italics; see PDB 1EAK and UP
P08253), which is equivalent to pKly18 segment 23L-Y-D-N-G-
P-L29 (Fig. 3, C and D). Both the cysteine- and aspartate-switch
motif show an intricate electrostatic network producing a
unique scaffold to interact with the mature catalytic domain
moiety. In contrast to pKly18, where the first cleavage occurs in
the primary activation cleavage site, however, classical mam-
malian pro-MMPs are activated by conformational changes in
the prodomain induced by cleavage in a so-called “bait region”
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by several peptidases such as trypsin, plasmin, and other
MMPs. Activation follows a “stepwise activation” process to
eventually yield the final cleavage site X-F/Y accessible for pro-
cessing and dissociation of cysteine and zinc to generate a func-
tional active site (48, 49, 51, 106 –108). As in Kly18, after cleav-
age at Asn109-Tyr110, the new N terminus is rearranged and
participates in the electrostatic network centered on the con-
served aspartate of helix �C, Asp346 in MMP-2.

Conclusions—This examination of the structure and function
of the zymogen of the first bacterial MMP to be studied bio-
chemically has uncovered several features of the activation
mechanism of pKly18, which are shared with animal and plant
MMPs: (i) the relevant cleavage site is X-F/Y; (ii) the scissile
bond is located in similar regions of the structure; (iii) activa-
tion entails rearrangement of the segment equivalent to Tyr35-
Ser40 to yield a salt bridge between the new �-amino group and
the first of two conserved aspartates in helix �C; (iv) this aspar-
tate is bound to the family-specific serine; (v) the aspartate
immediately downstream binds two main chain amides of the
Met turn; (vi) the inhibitory segments run across the cleft in
the opposite direction to a genuine substrate and metal block-
age occurs through the side chain of an intervening residue, not
through a chain terminus; and (vii) the catalytic moiety is
largely preformed in the zymogen. All these features are related

to the highly conserved CD itself. In contrast, all features of the
mechanism related to the segment preceding this conserved
CD diverge: (i) in pKly the propeptide spans just 14 residues and
does not contain repetitive secondary structure elements,
whereas eukaryotic MMPs feature a true protein prodomain
that folds into a pseudosymmetric three-helix bundle followed
by a segment in extended conformation; (ii) no relevant
sequence similarity is found between the proregions; (iii) in
eukaryotic MMPs activation occurs through a cysteine-switch
mechanism exerted by residues from a conserved sequence
motif, whereas in pKly18 this motif is absent and activation
follows an aspartate-switch mechanism; (iv) multiple cleavages
are apparently required in eukaryotic MMPs to liberate the CD,
whereas a single cleavage suffices in pKly; and (v) the prodo-
main is not required for (re)folding of the catalytic moieties in
eukaryotic MMPs, whereas it is in karilysin. In addition, pKly
shares parts of its mechanism of latency with otherwise unre-
lated MPs from the astacin and fragilysin families. Accordingly,
this overall novel mechanism unveiled for MMPs supports pre-
vious hypotheses, according to which Kly18 originated from an
animal MMP CD co-opted through horizontal gene transfer by
T. forsythia. This transfer was fostered by the intimate coexis-
tence of the latter with the human blood-irrigated gingival crev-
ice. Subsequently, Kly18 would have evolved in a bacterial envi-

FIGURE 3. Structural comparison with mammalian pro-MMPs. A, schematic depicting of the structure of pro-MMP-2 (PDB 1EAK (89); MMP-2 residues in italics
with superscripted numbering), shown only for its CD (Tyr110-Asp52 in cyan; the fibronectin type-II domains spanning Gln219-Asp92 have been omitted, the black
arrows pinpoint the insertion points) and prodomain (Pro43-Asn109 in pink, without the first 11 residues in extended conformation). The orientation displayed
corresponds to that of Fig. 2A after applying a horizontal rotation of 15°. Residues of the conserved motif (Pro100-Asp106) key for structural integrity of the
inhibitory segment are depicted for their side chains. B, close-up of A after removal of prodomain segment Pro43-Asn66 to provide insight into the interactions
of the conserved motif. Key electrostatic interactions are shown as green lines. The catalytic glutamate, Glu404, is replaced by a glutamine, the histidines from
the CSBZ are His403, His407, and His413. C and D, scheme depicting the interaction modi of the propeptides of pro-MMP-2 through a cysteine-switch mechanism
(C) and pKly18 through an aspartate-switch mechanism (D). The catalytic zinc ions are shown as magenta spheres and relevant interactions are shown as yellow
dashed lines.
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ronment, where it was furnished with unique flanking domains
that contribute to a mechanism of zymogenicity similar to dis-
tantly related MPs only (9).
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proteinases: fold and function of their catalytic domains. Biochim. Bio-
phys. Acta 1803, 20 –28

48. Springman, E. B., Angleton, E. L., Birkedal-Hansen, H., and Van Wart,
H. E. (1990) Multiple modes of activation of latent human fibroblast
collagenase: evidence for the role of a Cys73 active-site zinc complex in
latency and a “cysteine switch” mechanism for activation. Proc. Natl.
Acad. Sci. U.S.A. 87, 364 –368

49. Van Wart, H. E., and Birkedal-Hansen, H. (1990) The cysteine switch: a
principle of regulation of metalloproteinase activity with potential appli-
cability to the entire matrix metalloproteinase gene family. Proc. Natl.
Acad. Sci. U.S.A. 87, 5578 –5582

50. Vallee, B. L., and Auld, D. S. (1990) Zinc coordination, function, and
structure of zinc enzymes and other proteins. Biochemistry 29,
5647–5659

51. Rosenblum, G., Meroueh, S., Toth, M., Fisher, J. F., Fridman, R., Mo-
bashery, S., and Sagi, I. (2007) Molecular structures and dynamics of
the stepwise activation mechanism of a matrix metalloproteinase zy-
mogen: challenging the cysteine switch dogma. J. Am. Chem. Soc. 129,
13566 –13574

52. Loechel, F., Overgaard, M. T., Oxvig, C., Albrechtsen, R., and Wewer,
U. M. (1999) Regulation of human ADAM 12 protease by the prodo-
main: evidence for a functional cysteine switch. J. Biol. Chem. 274,
13427–13433

53. Grams, F., Huber, R., Kress, L. F., Moroder, L., and Bode, W. (1993)
Activation of snake venom metalloproteinases by a cysteine switch-like
mechanism. FEBS Lett. 335, 76 – 80

54. Leonard, J. D., Lin, F., and Milla, M. E. (2005) Chaperone-like properties
of the prodomain of TNF�-converting enzyme (TACE) and the func-
tional role of its cysteine switch. Biochem. J. 387, 797– 805

55. Tallant, C., García-Castellanos, R., Seco, J., Baumann, U., and Gomis-
Rüth, F. X. (2006) Molecular analysis of ulilysin, the structural prototype
of a new family of metzincin metalloproteases. J. Biol. Chem. 281,
17920 –17928
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