
Complete Genome Sequence of the Nitrogen-Fixing and Solvent-
Producing Clostridium pasteurianum DSM 525

Anja Poehlein,a Alexander Grosse-Honebrink,b Ying Zhang,b Nigel P. Minton,b Rolf Daniela

Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germanya; The Clostridia Research Group, BBSRC/EPSRC
Synthetic Biology Research Centre, School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdomb

Here, we report on the closed genome sequence of Clostridium pasteurianum DSM 525, which is an anaerobic, Gram-positive
and endospore-forming organism. C. pasteurianum can fix N2 and produce solvents such as butanol and 1,3-propanediol from
carbohydrates. The genome consists of a single 4,350,673-bp replicon.
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The Gram-positive anaerobic spore-forming bacterium Clos-
tridium pasteurianum DSM 525, is able to produce butanol

from carbohydrates (1). In contrast to most other solventogenic
clostridia, C. pasteurianum is able to grow with glycerol as sole
carbon and energy source (1, 2) and couple glycerol breakdown
with a highly active butanol-producing pathway The major prod-
ucts during glycerol degradation are 1,3-propanediol, ethanol,
and butanol (1, 3).

Strain DSM 525 was derived from the DSMZ (Braunschweig,
Germany). Chromosomal DNA of C. pasteurianum DSM 525 was
isolated using the MasterPure complete DNA purification kit
(Epicentre, Madison, WI, USA). Subsequently, 454-shotgun and
Illumina paired-end libraries were generated from the isolated
DNA as described by the manufacturers. The libraries were se-
quenced using a 454 GS-FLX system (Titanium GS70 Chemistry,
Roche Life Science, Mannheim, Germany) and MiSeq Illumina
system (Illumina, San Diego, CA, USA), respectively. Sequencing
yielded 201,156 454-shotgun and 1,215,244 paired-end Illumina
reads. Assembly of the reads using the Roche Newbler assembly
software 2.9 and the MIRA software (4) resulted in 139 contigs.
For scaffolding and contig ordering, the move contigs tool of the
Mauve genome alignment software (5) was used. The closed ge-
nome of C. pasteurianum ATCC 6013 (CP009267) served as the
reference. Remaining gaps were closed by PCR-based techniques
and Sanger sequencing of the products using BigDye 3.0 chemistry
and an ABI3730XL capillary sequencer (Applied Biosystems, Life
Technologies GmbH, Darmstadt, Germany). For this purpose,
the Gap4 (v4.11) software of the Staden package (6) was em-
ployed. The complete genome of C. pasteurianum DSM 525 con-
sists of a single chromosome of 4,350,673 bp with an overall G�C
content of 30%. Automatic gene prediction was performed with
the software tool prodigal (Prokaryotic Dynamic Programming
Genefinding Algorithm) (7). Identification of rRNA and tRNA
genes was done with RNAmmer (8) and tRNAscan (9), respectively.
An integrated microbial genomes/expert review (IMG/ER) system
(10, 11) was used for automatic annotation, which was subsequently
manually curated by using the Swiss-Prot, TREMBL, and InterPro

databases (12). We identified 10 rRNA operons, 81 tRNA genes,
3,220 protein-encoding genes with function prediction, and 768
genes coding for hypothetical proteins. Genes coding for key enzymes
of butanol fermentation such as butyryl-CoA dehydrogenase (bcd),
electron transfer flavoprotein (eftAB), 3-hydroxybutyryl-CoA dehy-
drogenase (hbd), and 3-hydroxybutyryl-CoA dehydratase (crt) form
a cluster that is identical to those identified in other solventogenic
clostridia, such as C. acetobutylicum, C. saccharoperbutylacetoni-
cum, or C. saccharobutylicum (13–15). In addition, the genome of
C. pasteurianum DSM 25 harbors a cluster coding for CoA trans-
ferase (ctfAB), acetoacetate decarboxylase (adc), and alcohol/alde-
hyde dehydrogenase (adhE), which showed the identical arrange-
ment as the sol operon of C. acetobutylicum (16). We also
encountered genes encoding acetate kinase (ackA), phosphate
acetyltransferase (pta), butyrate kinase (buk), and phosphate bu-
tyryltransferase (ptb). In addition, the presence of the previously
described genes encoding key enzymes for 1,3-propanediol pro-
duction such as B12-dependent glycerol dehydratase (17) and 1,3-
propanediol dehydrogenase (2) was confirmed.

Nucleotide sequence accession number. The complete ge-
nome sequence has been deposited in GenBank under the acces-
sion no. CP009268.
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