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Types of skin afferent fibers and spinal opioid
receptors that contribute to touch-induced
inhibition of heart rate changes evoked by
noxious cutaneous heat stimulation
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Abstract

Background: In anesthetized rats and conscious humans, a gentle touch using a soft disc covered with microcones
(with a texture similar to that of a finger), but not with a flat disc, inhibits nociceptive somatocardiac reflexes.
Such an inhibitory effect is most reliably evoked when touch is applied to the skin ipsilateral and closest to
nociceptive inputs. However, the mechanism of this inhibition is not completely elucidated. We aimed to clarify
the types of cutaneous afferent fibers and spinal opioid receptors that contribute to antinociceptive effects of
microcone touch.

Results: The present study comprised two experiments with urethane-anesthetized rats. In the first experiment, unitary
activity of skin afferent fibers was recorded from the saphenous nerve, and responses to a 10-min touch using
a microcone disc and a flat disc (control) were compared. Greater discharge rate during microcone touch was
observed in low-threshold mechanoreceptive AS and C afferent units, whereas many AR afferents responded
similarly to the two types of touch. In the second experiment, the effect of an intrathecal injection of opioid receptor
antagonists on the inhibitory effects of microcone touch on heart rate responses to noxious heat stimulation was
examined. The magnitude of the heart rate response was significantly reduced by microcone touch in rats that
received saline or naltrindole (§-opioid receptor antagonist) injections. However, such an inhibition was not observed
in rats that received naloxone (non-selective opioid receptor antagonist) or Phe-Cys-Tyr-Trp-Orn-Thr-Pen-Thr-NH,
(CTOP; p-opioid receptor antagonist) injections.

Conclusions: Microcone touch induced greater responses of low-threshold mechanoreceptive Ad and C afferent
units than control touch. The antinociceptive effect of microcone touch was abolished by intrathecal injection of
p-opioid receptor antagonist. These results suggest that excitation of low-threshold mechanoreceptive AS and C
afferents produces the release of endogenous p-opioid ligands in the spinal cord, resulting in the inhibition of
nociceptive transmission that contributes to somatocardiac reflexes.
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Background

Noxious stimuli are transmitted to the cerebral cortex
and perceived as “pain,” such information is integrated
in the spinal cord and brain stem and influences auto-
nomic nerve activity (somatoautonomic reflexes) [1-6].
Sympathetic nerve activity induced by noxious stimula-
tion is thought to contribute to the onset and mainten-
ance of some type of chronic pain [7]. Therefore, it is
clinically important to manage autonomic responses to
noxious stimuli.

Recently, we have found that somatoautonomic re-
flexes are inhibited by gently touching the skin in anes-
thetized rats [8,9] and conscious humans [10]. In these
studies, the effect of touch using a soft disc filled with
microcones, which array regularly with a constant pitch
(a recently created device for continuously applying
touch effect with a fingertip), was compared with that
using a disc without microcones (i.e., a flat surface). In
conscious humans, microcone touch applied to the inner
ankle inhibited cardiovascular responses to noxious heat
stimulation applied to the plantar foot, whereas flat disc
touch had no influence [10]. Despite such different ef-
fects on the cardiovascular responses, texture discrimin-
ation was not possible [10]. A comparison of the human
brain activity (glucose metabolism) during these two
types of touch using positron emission tomography re-
vealed no difference in the somatosensory cortex [11]. In
anesthetized rats, the somatocardiac sympathetic reflex
evoked by the activation of tibial C afferent fibers (the
C-reflex) was selectively inhibited by microcone touch
applied to the thigh [8,9]. This inhibitory effect on the
C-reflex gradually appeared following the onset of con-
tinuous touch and slowly disappeared after termination
of the touch. However, such an effect was not elicited by
the touch using a flat disc [8].

Skin afferent fibers excited by microcone touch in-
clude low-threshold mechanoreceptive AP afferent
units in the skin, which are important for tactile per-
ception, as well as low-threshold mechanoreceptive A8
and C afferent units [8]. Considering that the inhibi-
tory effect on somatoautonomic reflexes was influ-
enced by a slight difference in texture that does not
affect sensation and metabolism in the somatosensory
cortex, AS and C afferent units, but not AP afferent
units, may contribute to the inhibitory effect of touch.
Therefore, the present study first aimed to identify the
type of cutaneous afferent units that contribute to the
inhibition of somatoautonomic reflexes by comparing
low-threshold mechanoreceptive AP, AS, and C affer-
ent units responses to microcone touch with those to
flat disc touch [8,10].

The inhibition by microcone touch appears to be a
segmental inhibition via the spinal opioid system, be-
cause the effect of touch was most reliably evoked when
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touch was applied to ipsilateral and closer in location
to the nociceptive input location and was attenuated by
an intravenous administration of opioid receptor antag-
onist [8]. To date, a few studies have reported that
intrathecal (i.t.) administration of exogenous opioids in-
hibits somatoautonomic reflexes [12-14]. For example,
i.t. administration of p- and §-opioid receptor agonists
inhibited cardiovascular responses to noxious heat
stimulation in lightly anesthetized rats, but the x-opioid
receptor agonist did not [13]. Hence, the spinal p-
and/or &-opioid receptors may contribute to the ef-
fect of touch. Therefore, the second aim of this study
was to examine in deeply anesthetized rats, the dif-
ferent subtypes of spinal opioid receptors contributing
to the effect of microcone touch on the cardiac response
induced by noxious cutaneous heat stimulation. In the
present study, we found that (1) microcone touch in-
duced greater responses of low-threshold mechanorecep-
tive AS and C afferent units and (2) spinal p-opioid
receptors contributed to an inhibitory effect of micro-
cone touch on heart rate (HR) response to noxious heat
stimulation. A part of this study has been reported else-
where as an abstract [15].

Results

Comparison of unitary activity between different types

of touch

To compare skin afferent unit responses to microcone
touch with that to flat disc touch, unitary activity was re-
corded from the saphenous nerve in 17 anesthetized
rats. In total, 40 low-threshold mechanoreceptive affer-
ent units with slowly adapting properties were recorded.
The conduction velocity that was obtained by applying
electrical stimulation near the receptive field of recorded
units was AP: 30.5+1.5 m/s (13 units from 8 rats),
A8: 10.7+1.0 m/s (12 units from 7 rats), and C:
0.74 +0.03 m/s (15 units from 9 rats). In all measured
units, the mechanical threshold obtained with von Frey
filaments was <0.4 g (i.e., within the innocuous range),
and the mean discharge rate during touch was <4 Hz. In
AP and A9 afferent units, some units exhibited a dynamic
response at the onset of touch (SAL 11 AP units as
shown in Figure 1A, 7 A8 units) and some did not (SAIL;
2 AP units, 5 Ad units as shown in Figure 1B). The char-
acteristics of abovementioned recorded units are in ac-
cordance with those of our previous study [8].

Microcone touch or flat disc touch was applied to the
receptive fields of recorded units for 10 min continu-
ously. As shown in examples of recorded units of each
group in Figure 1, responsiveness of AP afferent units
hardly differed for the microcone and flat disc touch
(Figure 1Ac,d), whereas A8 and C afferent units exhib-
ited greater responses to microcone touch (Figure 1Bc,d
and 1Cc,d, respectively). There were no differences in



Watanabe et al. Molecular Pain (2015) 11:4

Page 3 of 12

A AP afferent unit

a

A [a—

1ms

CV:24.6 m/s
Th:0.04 g

B AS afferent unit

| Microcone |

MWWHWWW
T 1|

100 pVv

15 Hz

touch (10 min).

I
Touch, 10 min

a b c
4 —_
5ms d
CV:4.1mls 5Hz
Th: 0449
0
C C afferent unit
a b c
N W WMMPO ny
[ l 0.2s I I 0.2s .
= 20 ms d [ 20 Hz
CV: 0.7 m/s
Th: 04 g

MIIMMMMO

I
Touch, 10 min

Figure 1 Specimen recordings of unitary activity from the saphenous nerve. Action potentials evoked by electrical stimulation applied on
the receptive field (Aa, Ba, Ca). A red triangle indicates the onset of electrical stimulation and a filled circle indicates a peak of recorded action
potential. Conduction velocity (CV) was calculated based on a latency and an interelectrode distance. Mechanical threshold (Th) was measured by
stimulating the receptive field of the recorded unit with von Frey filaments. Superimposed action potentials during a trial of microcone touch
(Ab, Bb, Cb). Recording of each afferent unit activity in responses to a 10-min touch using a microcone (left) and flat disc (right) (Ac, Bc). For C
afferent unit activity, only an enlarged view at the onset of touch is presented and the action potentials of the unit are indicated by filled circles
(Co). The histogram illustrates the discharge rate every second (Ad, Bd, Cd). A horizontal line below each histogram indicates a period of

response patterns (presence or absence of dynamic
response) to either type of touch in any units.

Of 13 AP afferent units, only 4 units (including two
SAII units) exhibited greater response to microcone
touch, whereas the majority (7 units) showed no differ-
ence and 2 units exhibited smaller response to microcone
touch. The discharge rate of AB afferent units during
microcone touch and flat disc touch was 0.60 + 0.82 Hz

and 0.86 + 1.20 Hz (the mean + the standard deviation),
respectively, and was not significantly different (p = 0.099)
(Figure 2A). In contrast, in A§ afferent units, of 12 units,
most units (except one SAI unit and two SAII units) exhib-
ited greater response to microcone touch. The discharge
rate of AS afferent units during microcone touch was twice
as high as that during flat disc touch (0.60 + 0.94 Hz
and 0.29 +0.73 Hz, respectively, p = 0.0093) (Figure 2B).
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Figure 2 Comparison of unitary activity of skin afferents in
response to microcone and flat disc touch. A hatched column
indicates data obtained during touch. Data are expressed as the
mean + the standard deviation. The discharge rate of AR, A5, and C
afferent units was compared (A-C, respectively) using a 2 X 2 repeated
measures analysis of variance (ANOVA) with “conditions” (pre-touch
and during touch) and “touch type” (microcone and flat disc) followed
by the Bonferroni's multiple comparison test. The results showed
no significant interaction between “conditions” and “touch type”
was observed in AB afferent units (p=0.16); however, significant
interactions were observed in AS and C afferent units (p =0.032
and p =0.048, respectively). * p <0.05, ** p <0.01, *** p <0.001; a
significant difference from a pre-touch value, ## p < 0.01; a significant

difference between microcone and flat disc touch. n.s; not significant.

Similarly, the discharge rate of C afferent units during
microcone touch was greater than that during flat disc
touch (0.53 £0.60 Hz and 0.39 + 0.46 Hz, respectively,
p =0.0064) (Figure 2C).

Page 4 of 12

The contribution of spinal opioid receptors to the effect
of microcone touch on noxious heat-induced HR response
Inhibition of noxious-heat induced HR response by
microcone touch

To evaluate the inhibitory effect of microcone touch on
nociceptive transmission, we examined the effect of
touch on HR response induced by noxious heat stimula-
tion. Noxious heat stimulation applied to the lower back
and rumps of the anesthetized rat altered HR (Figure 3A).
In rats i.t.-injected with saline (n = 7), HR responses to heat
stimulation were recorded twice without touch in each rat
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Figure 3 The effect of microcone touch in saline-injected rats.
Specimen records of heart rate (HR) response to heat stimulation
(A), and averages of changes in HR response (B) and in basal HR
(C) before, during, and after touch. Statistical analysis was performed
using the one-way repeated measures ANOVA followed by the
Bonferroni's multiple comparison test for HR response. The analysis
showed that there was a significant main effect of “conditions”
(pre-, during, and post-touch) (p=0.013). * p <0.05; a significant
difference from a pre-touch value. Data are expressed as the mean + the
standard error of the mean.
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and a total of 14 recordings was obtained. HR increased in
3 recordings for the first stimulation, but HR decreased in
the other 11 recordings. The magnitude of change with re-
spect to basal HR (average HR of 1 min before the start of
heat stimulation) was 5-17.5 bpm. In response to heat
stimulation, blood pressure was altered in the same direc-
tion as HR changed.

In rats it.-injected with saline, 10 min of microcone
touch applied unilaterally to the right inner thigh re-
duced the magnitude of HR response to noxious heat
stimulation (Figure 3A). The result of saline-injected
rats (n=7) is summarized in Figure 3B. The heat-
induced HR response (Abpm) was significantly inhibited
during microcone touch by approximately 37% (from
10.9 £ 1.2 bpm to 6.9+ 0.6 bpm, p =0.013). Such an in-
hibition continued even at 10-15 min after the touch
was terminated (7.3 + 1.1 bpm, p = 0.026).

The effect of flat disc touch on heat-induced HR re-
sponse was also tested in 4 rats without the spinal cath-
eter. As observed in our previous studies [8,10], HR
response (9.5 + 1.6 bpm) was not significantly influenced
during flat disc touch (8.3+ 1.8 bpm, p =0.80) or after
touch (9.0 + 1.6 bpm, p > 0.99).

Contribution of spinal opioid receptors to an inhibitory
effect of touch

To examine a possible contribution of the endogenous
opioid system in the spinal cord to an inhibitory effect of
microcone touch on noxious heat-induced HR response,
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opioid receptor antagonists were administered it. in ad-
vance. In the groups injected with naloxone (non-selective
opioid receptor antagonist), Phe-Cys-Tyr-Trp-Orn-Thr-
Pen-Thr-NH, (CTOP; p-opioid receptor antagonist), and
naltrindole (8-opioid receptor antagonist), the average of
HR responses (Abpm) before microcone touch were
10.6 +2.0, 10.3+2.4, and 10.5+ 2.1 bpm, respectively.
The magnitude of HR response before touch did not differ
between groups (including the saline-injected group).

In naloxone-injected rats (n =5), the HR response was
10.6 £ 2.0 bpm (before touch), 11.8+2.4 bpm (during
touch), and 8.8 + 1.4 bpm (after touch), and it was not
significantly influenced by microcone touch (Figure 4A).
In CTOP-injected rats (n = 5), HR response was not inhib-
ited by touch (Figure 4C). In contrast, in naltrindole-
injected rats (n=5), HR response (10.5+ 2.1 bpm be-
fore touch) was significantly inhibited during touch
(5.2+1.0 bpm, p=0.003) and tended to be attenuated
following the cessation of touch (7.9 + 0.9 bpm, p = 0.18)
(Figure 4E). The magnitude of HR response inhibition by
touch in the naltrindole-injected group was comparable
to the saline group (Figure 3B).

The effect of microcone touch on basal HR

To examine a potential influence of microcone touch on
basal HR, basal HRs obtained before, during, and after
touch were compared. Basal HR before touch was 316—
470 bpm. Basal HR was not influenced by touch in
any groups (saline, naloxone, CTOP, or naltrindole)
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Figure 4 Influence of opioid receptor antagonists on the effect of microcone touch. Averages of changes in heart rate (HR) response to
heat stimulation (A, C, E) and basal HR (B, D, F) before, during, and after touch in rats injected with naloxone, CTOP, and naltrindole, respectively. The
influence of it-injected drugs on the effect of touch on heat-induced HR response and basal HR was examined using a 3 x 4 mixed model ANOVA
followed by the Bonferroni's multiple comparison test; “conditions” (pre-touch, during touch, and post-touch) as the within-subject factor and “drugs”
(saline, naloxone, CTOP, and naltrindole) as the between-subject factor. The analysis shows that a significant interaction was observed in HR response
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and was not different among groups under any con-
ditions (pre-touch, during, and post-touch) (Figures 3C
and 4B, D, F).

Additionally, to examine an influence of i.t. adminis-
tration on basal HR, basal HR recorded immediately
before i.t. administration and before heat stimulation
(i.e., after administration) was compared. Basal HR
was not different before and after i.t. administration
in any groups; saline (394.0 + 12.0 and 380.3 + 13.5 bpm,
respectively, p = 0.23), naloxone (364.5+ 11.3 and 374.0 +
14.5 bpm, respectively, p = 0.34), CTOP (383.2 + 28.4 and
365.1 +22.6 bpm, respectively, p=0.18), or naltrindole
(356.3 + 8.3 and 366.3 + 10.7 bpm, respectively, p = 0.33).

Discussion

In the present study, we aimed to identify cutaneous af-
ferent units that contribute to the effect of gentle mech-
anical cutaneous stimulation (touch) with microcones
on somatocardiac reflexes. Furthermore, we investigated
neural mechanisms related to the spinal opioid system
for the effect of microcone touch on noxious heat-
induced HR response. Two novel findings were obtained.
First, among low-threshold mechanoreceptive afferent
units with slowly adapting properties, the discharge rate
of the A8 and C afferent units induced by microcone
touch was greater than that induced by control stimula-
tion (flat disc). Second, the inhibitory effect of micro-
cone touch on noxious heat-induced HR response was
abolished by it. injection of a non-selective opioid re-
ceptor antagonist and a selective p-opioid receptor an-
tagonist, but not influenced by a selective &-opioid
receptor antagonist. Therefore, the present study results
suggest that microcone touch-induced excitation of low-
threshold cutaneous mechanoreceptive A8 and C affer-
ent units inhibited nociceptive transmission into auto-
nomic reflex pathways via the spinal p-opioid system.

Afferent mechanisms for the effect of microcone touch

In the present study, the response of cutaneous afferent
units to microcone touch was compared with that elic-
ited by flat disc touch, which did not influence the
somatocardiac reflexes previously reported [8,10] and
confirmed in this study. As expected, such a comparison
revealed that microcone touch induced a greater re-
sponse of Ad and C afferent units, but not of AP
afferents.

AP afferent inputs ascend to the somatosensory cortex
and are considered to be important for perception and
discrimination of touch [16]. Thus, a similar discharge
rate of AP afferents during the two types of touch is
consistent with that of our previous studies with con-
scious humans showing that (1) glucose metabolism dur-
ing touch using microcone and flat discs was not
different in the somatosensory cortex [11], and (2) the
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types of touch applied were not perceptually distinguish-
able [10]. Furthermore, studies using electrical stimula-
tion showed that nociceptive transmission is inhibited by
high-frequency stimulation (5 Hz<) of AP afferents
[17,18], but not by low-frequency stimulation (<0.5 Hz)
[19]. Therefore, it is assumed that low-frequency activa-
tion of AP afferents induced by touch (microcone:
0.6 Hz, flat disc: 0.86 Hz) in this study does not elicit an
inhibition of nociceptive transmission.

Low-threshold mechanoreceptive A and C afferent
units in hairy skin are sensitive to gentle mechanical
stimuli, such as a breeze over the skin [16]. All experi-
ments of the present study were performed in vivo using
anesthetized rats. Therefore, body movement induced by
pulsation and respiration may vibrate microcones on the
skin [8] and elicit continuous stimulation where micro-
cone touch was applied. Vallbo et al. [20] reported that
some recorded low-threshold mechanoreceptive C affer-
ent units stopped firing immediately (within 4 s) after
the onset of stimulation using a probe with a rounded
tip, and those units responded longer to touch with a
finger. The texture of microcone and flat disc tools in
the present study is presumably similar to that of finger
skin and the stimulation probe in the study by Vallbo
et al. [20], respectively. Therefore, it is speculated that a
slight difference in texture, despite not being percep-
tually distinguishable, elicited different responses in
the low-threshold mechanoreceptive A§ and C affer-
ent units.

There are a number of studies suggesting that exci-
tation of A8 and C afferents induced by electrical
stimulation is related to an inhibition of nociceptive
transmission in the spinal cord [19,21-25]. Ikeda et al.
[19] reported that neuronal responses in the spinal dorsal
horn to C afferent nerve stimulation are inhibited by ex-
citation of AS and C afferents. In particular, such an in-
hibition is more robustly induced by afferent stimulation
at 0.5 Hz than that at 0.2 Hz. Electrical stimulation at
similar intensities may activate nerve fibers conveying
temperature and nociceptive information. However, the
slight difference in stimulation frequency producing a
different inhibitory effect in that study [19] is similar
to the difference in discharge rate during microcone
touch and flat disc touch in the present study (AS:
0.6 Hz vs. 0.29 Hz, respectively, C: 0.53 Hz vs. 0.39 Hz)
(Figure 2B, C). Therefore, the present study is the first
showing the possibility that low-threshold mechano-
receptive A8 and C afferent units contribute to the inhib-
ition of nociceptive transmission.

Touch-induced inhibition of somatoautonomic reflexes

In the present study, touch with microcone inhibited
heat-induced HR response whereas touch with flat disc
did not significantly influence HR response. This result
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is consistent with our previous studies [8,10] and the
time course of microcone touch-induced inhibition on
the heat-induced HR response was similar to that on the
C-reflex in our previous study [8]. Although noxious
heat stimulation primarily induced bradycardiac re-
sponses, the inhibitory (i.e., suppresive) effect of touch
on cardiac responses observed in the present study was
analogous to excitatory reflex discharges in anesthetized
rats [8,9] and to tachycardiac (bradycardiac, in some
cases) responses in conscious humans [10]. In addition,
although the skin area where noxious stimulation was
applied was different from our previous study (plantar
foot [10] vs. lower back and rumps in the present study),
an inhibitory effect was induced by touch applied to der-
matomes close to noxious stimuli [26]. These findings
suggest that the inhibitory effect of touch is a ubiquitous
phenomenon that segmentally influences an ascending
pathway of nociceptive inputs.

Somatocardiac reflexes are influenced by the location
of noxious stimulation and the depth of anesthesia [1].
Noxious stimulation applied to more distal part of the
body induces tachycardiac and pressor responses whereas
stimulation to more proximal part of the body may cause
bradycardiac and depressor responses [27,28]. In addition,
according to Gibbs et al. [27], the frequency of bradycar-
diac and depressor response increases when the concentra-
tion of inhalation anesthetics becomes higher. Thus, it was
assumed that bradycardiac responses were more likely to
be caused due to experimental conditions in the present
study (noxious heat stimulation applied to the lower back
and rumps and deeper anesthesia than conventional depth
[8,9]). A difference in cardiovascular responses to noxious
stimulation (bradycardia or tachycardia) was assumed to
be centrally mediated [27]. Since touch with microcone in-
hibits nociceptive transmission at the spinal level, both bra-
dycardiac and tachycardiac responses to heat stimulation
may be inhibited by the same mechanism.

The cardiac response induced by noxious heat stimula-
tion applied to the lower back and rumps in the present
study may have involved both spinal and supraspinal re-
flexes [29]. Among these reflex components, the suprasp-
inal C-reflex plays a major role in HR responses [30]. The
temperature of heat stimulation (46°C), which is similar to
that in the present study, predominantly stimulated unmy-
elinated C afferent fibers [31]. Thus, our results suggest
that microcone touch suppressed C afferent transmission
triggered by noxious heat stimulation, which induced
the supraspinal C-reflex, and consequently inhibited HR
responses.

The subtype of opioid receptor involved in the inhibitory
effect of touch

The present study further found that i.t. administration
of a selective p-opioid receptor antagonist completely

Page 7 of 12

blocked the touch effect. This result clearly showed that
activation of p-opioid receptors in the spinal cord is re-
sponsible for the inhibitory effect of touch on somato-
cardiac reflexes. Our result is supported by previous
studies demonstrating that i.t. administration of p-opioid
agonists inhibited the somatocardiac reflexes [13,14].

Although a contribution of spinal §-opioid receptors
to the touch effect was expected in the present study,
i.t. administration of naltrindole (a &-opioid receptor
antagonist) did not influence the inhibitory effect of
touch. This result suggests that spinal §-opioid recep-
tors do not contribute to the touch effect. A dose of
30 pg of naltrindole completely blocks the maximal ef-
fect of a 8-opioid receptor agonist on nociceptive be-
haviors [32], suggesting that the dose of naltrindole
used in the present study (25 pg) sufficiently blocked
spinal §-opioid receptors. The previous studies showed
that spinal §-opioid agonists were also effective for
inhibiting the somatocardiac reflexes [13,14]. However,
the present study is supported by a previous study [14]
stating that the effect of a 5-opioid agonist resulted from
non-specific or cross-reactive binding to p-opioid recep-
tors, because only larger doses of 5-opioid agonist were ef-
fective (1000 times that of p-opioid agonist). More
recently, it has been found that §-opioid receptors rarely
exist in unmyelinated C fibers with transient receptor po-
tential vanilloid 1 (TRPV1) channel [33,34], which are
heat-sensitive nerve fibers. However, one study reported
that §-opioid receptors are present in many heat-sensitive
neurons [35].

Hypothesis on inhibitory pathway associated with the
spinal p-opioid system

On the basis of the present results, we hypothesized that
afferent inputs arising from low-threshold mechano-
receptive AS and C afferent units in hairy skin drive the
spinal p-opioid system (Figure 5). In particular, such an
effect potentially occurs in the superficial layers (laminae
I-1I) of the spinal cord due to the following reasons:
(1) the nociceptive A§ and C afferent fiber terminals
[36], (2) the low-threshold mechanoreceptive A§ and C
afferent unit terminals [16,36,37], and (3) high density of
p-opioid receptors [38,39] (primarily on the afferent
terminals [40]) located in the superficial dorsal horn.
It has been reported that p-opioid receptors densly
exist in TRPVI1-positive unmyelinated afferents [34].
In addition, endogenous ligands for p-opioid receptors
(e.g., endomorphin-2 and enkephalins) are localized in
the primary afferent terminals [41-44] and enkephalin-
containing neurons are found in the superficial dorsal
horn [45,46]. Thus, it may be possible that low-threshold
mechanoreceptive A8 and C afferent units produce the
release of endogenous opioids. In the dorsal horn, a highly
complex neural network is constituted by functionally and
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Figure 5 A hypothesized mechanism of touch-induced inhibitory effect on spinal nociceptive transmission into somatocardiac reflex
pathways. Noxious heat-evoked sensory inputs were conveyed by nociceptive C afferent fibers and transmitted to the secondary neurons in the
spinal cord. Low-threshold mechanoreceptive Ad and C afferent units were excited by touch. Touch-induced sensory afferent excitation enhances
the release of endogenous opioids from opioid-containing interneurons (in light blue) and/or primary afferents (not shown) in the superficial
layers of the dorsal horn. Subsequently, y-opioid receptors (MORs) are activated, resulting in an inhibition of nociceptive transmission into
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neurochemically distinct types of neurons [36,44,47-49].
Future studies will provide more detailed association of
low-threshold mechanoreceptive A§ and C afferent units
with opioidergic neurons in the spinal cord.

Clinical implications

Yaksh and Elide [50] demonstrated that in anesthetized
cats, the release of methionine—enkephalin is increased
by the excitation of Ad and C afferents in the sciatic
nerve using electrical stimulation. Our results suggest
that activation of low-threshold mechanoreceptive Ad
and C afferents by touching the skin with microcones
(and possibly with fingers) may enhance the release of
endogenous opioids. Thus, our results may provide a
neurological explanation for the clinical observation that
microcone treatment is helpful in chronic pain relief
in patients with fibromyalgia (personal communication
with Katsutaro Nagata), accompanying with autonomic
dysfunctions.

Conclusions

In conclusion, activation of low-threshold mechano-
receptive A8 and C afferent units in the hairy skin,
induced by gentle mechanical cutaneous stimulation
(touch) using microcones, may inhibit nociceptive trans-
mission into autonomic reflex pathways via spinal p-opioid
receptors. These findings may help elucidating the role of
cutaneous receptors in functions other than discriminative
touch.

Materials and methods
The experiments were performed using 43 adult male
Wistar rats (285-455 g) bred at the Tokyo Metropolitan

Institute of Gerontology (Tokyo, Japan). Experimental
protocols were approved by the Animal Care and
Use Committee of Tokyo Metropolitan Institute of
Gerontology. The present study comprised two experi-
ments described below. Both experiments were per-
formed under urethane anesthesia. The initial induction
was performed subcutaneously or intraperitoneally. Suffi-
ciently deep anesthesia is indicated by the absence of
whisker movement, the lack of corneal reflex, and stable
blood pressure. Additional anesthetic (4%—19% of the ini-
tial dose) was given subcutaneously, intraperitoneally, or
intravenously as required to maintain deep anesthesia
throughout the experiment.

The preparatory surgery was described previously
[8,9]. In brief, the carotid artery and jugular vein were
catheterized for continuous arterial blood pressure re-
cording and administration of anesthetics and supple-
mental fluids, respectively. The trachea was cannulated
for artificial ventilation (SN-480-7; Shinano Seisakusho,
Tokyo, Japan). Ventilation was controlled to maintain
the end-tidal CO, level at approximately 3% (Microcap;
Oridion Medical, Jerusalem, Israel). Rectal temperature
was maintained between 37.0°C and 37.5°C using a heat
pad and lamp (ATB-1100; Nihon Kohden, Tokyo, Japan).

Touch

The fur on the inner thigh, where touch was applied,
was trimmed with a conventional clipper. Touch was ap-
plied using a soft elastomer disc containing approxi-
mately 400 microcones on a circular surface of 11-mm
diameter (microcone touch) (Somareson I, Toyoresin,
Shizuoka, Japan) (Figure 6A) or using a disc with a flat
surface, composed of the same material (prepared by
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Figure 6 A specification of microcone tool and a method for application of touch on the skin. A specification of microcones is shown in
an enlarged view of panel A. Approximately 400 microcones are arrayed on a circular disc, 11 mm diameter; the space between microcones is
04 mm. An application method for touch in panel B was referred to in our previous study [8].
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Toyoresin), as a control. The disc was applied with a
12 g weight for 10 min [8].

Touch stimulation was applied by placing an elastomer
disc (microcone or flat disc), stuck on the tip of the
touch stimulation probe, on the skin [8]. The touch
stimulation probe was suspended on the holder with a
weight attached on the top end of the probe (Figure 6B,
left). Touch stimulation was applied by lowering the
holder and the constant force was continuously applied
as long as the weight remained detached from the holder
(Figure 6B, right). At the onset and offset of touch
stimulation, the holder was moved either using a robotic
device or manually. In the case of manual operation, all
stimuli were performed by the same experimenter and
movement velocity was carefully controlled.

Recording of unitary activity from cutaneous afferents
Unitary activity of cutaneous afferents was recorded
from the saphenous nerve, and the responses to two
types of touch (microcone and flat disc) were com-
pared in 17 rats. Rats were anesthetized using ureth-
ane (1.1 g/kg, intraperitoneally). Gallamine triethiodide
(20 mg/kg) was intravenously injected for immobilization
during recordings.

Recording methods were described previously [8]. The
thigh branch of the saphenous nerve was cut close to the
inguinal ligament and covered with warm paraffin oil. The
distal cut end of the nerve was placed on a bipolar plat-
inum—iridium wire electrode for activity recording. The
nerve was dissected using forceps until clear unitary activ-
ity (single or multiple units) was obtained from the individ-
ual dissected nerve. The obtained unitary activity was
amplified 1,000-10,000 times (MEG-6100; Nihon Kohden)
and then monitored visually (on an oscilloscope) and
auditorily (through loudspeakers). The amplified signal
was sampled at 20 kHz (Micro 1401 mkIl; Cambridge
Electronic Design, Cambridge, England) and stored on a
personal computer for offline analyses, including spike sort-
ing using Spike2 software (Cambridge Electronic Design).

In the present study, we focused on slowly adapting
units with low-mechanical thresholds (<0.4 g; i.e., within

the innocuous range) responding to microcone touch,
according to our previous result [8]. For this experiment,
basically, mechanical threshold of the recorded afferent
unit was first measured, responses of the unit to touch
were then obtained, and the response to electrical stimu-
lation was finally recorded to determine conduction
velocity. The mechanical threshold of each unit was ob-
tained using von Frey filaments (0.003-0.4 g). Unitary
activity was recorded for 2 min before touch and for
10 min during touch. The location of touch was adjusted
as the receptive field of recorded units is within touch
area (11-mm diameter). The two types of touch were ap-
plied sequentially to the same skin area and the order of
stimuli was randomized. Conduction velocity was calcu-
lated by recording the latency of electrically evoked ac-
tion potentials and by measuring the inter-electrode
distance after the end of the experiment. For the evoked
action potential recording, the skin near the receptive
field of the recorded units was stimulated electrically
(square pulse, 0.5-ms duration) using a pair of needle
electrodes. The identity of the action potentials evoked
by touch and electrical stimulation was verified on the
basis of the amplitude and shape of the recorded signals
(e.g., Figure 1Aa,b). Classification of afferent groups was
determined by the conduction velocity: Ap was >15.6 m/s,
Ad was <15.6 m/s, and C was <2 m/s [8]. Responsiveness
of low-threshold mechanoreceptive C afferent units may
be reduced by repetitive stimulation with short rest periods
(fatigue) [51,52]. In the present study, touch stimuli were
separated by at least 5 min and we observed no systematic
reduction in responsiveness of the afferent units.

Noxious heat-induced HR response

To examine the effect of touch on noxious heat-induced
HR response and the contribution of spinal opioid re-
ceptors to the effect of touch, 26 rats (5-6 months old)
were used. Urethane (1.4 g/kg) was injected subcutane-
ously between the two scapulae, following an initial
inhalation of 3% halothane for approximately 3 min. Pre-
paratory surgery began at least 40 min following the ini-
tial urethane dose.
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Heat stimulation

Noxious heat stimulation was applied using a heat-
stimulation device equipped with a Peltier thermode
(DPS-777PH; Physio-Tech, Tokyo, Japan) [10]. The ther-
mode (heat area: 3 cm x3 c¢m) was placed under the
center of the lower back and rumps of the rat where
the skin had been gently trimmed (Figure 7A). Heat
stimulation was applied twice for each of three condi-
tions, pre-touch (at 0 and 5 min), during (at 15 and
20 min), and post-touch (at 30 and 35 min) (Figure 7B).
The temperature of the thermode was maintained at 33°C
during experiment. When heat stimulation was applied for
1 min, the temperature was increased at a rate of 1°C/sec
to peak temperature (46-48°C). Before the applica-
tion of touch, peak temperature was determined as the
temperature that induced HR changes ranging between 5
and 20 bpm (cf. [29,53,54]), with respect to basal HR
(provided below). The heat stimulation peak temperature
was first set at 46°C and increased when necessary. The
same peak temperature determined for each animal was
used through the course of the experiment.

Determination of HR response

The instantaneous HR was calculated from recorded
blood pressure waveforms (Figure 7A) (Spike2; Cambridge
Electronic Design). The HR waveform was smoothed with
a time constant of 5 s. The quantification of HR response
was based on our previous study [10]. A HR response
(Abpm) was determined by the peak of HR changes
(i.e., minimal or maximal value) during the peak tem-
perature of the heat stimulation with respect to basal HR
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value, which was an average of HR recorded 1 min before
heat stimulation (Figure 7C).

Blockage of spinal opioid receptors

The contribution of spinal opioid receptors to the effect
of microcone touch was examined by i.t. administration
of opioid receptor antagonists. Naloxone hydrochloride
(non-selective-opioid receptor antagonist; 10 pg in 10 uL
saline), Phe-Cys-Tyr-Trp-Orn-Thr-Pen-Thr-NH, (CTOP,
p-opioid receptor antagonist; 240 ng in 10 pL saline),
naltrindole hydrochloride (§-opioid receptor antagonist;
25 pg in 10 pL saline) and saline (control) were used (all
antagonists were purchased from Sigma-Aldrich, St
Louis, MO, USA). Doses of antagonists used in the
present study sufficiently antagonize the effects of opioid
receptor agonists [32,55,56]. The substances (10 pL)
were administered through a catheter implanted in the
subarachnoid space at the lumbar spinal cord level
(SP-8; Natsume Seisakusho, Tokyo, Japan). The method
for catheter implantation was based on previous stud-
ies [14,55,57]. The tip of the catheter was inserted
through the atlanto-occipital membrane and was then
positioned approximately 9 cm caudally (at the lumbar
enlargement of the spinal cord). Catheter implantation
was performed on the day of experiment. After each
experiment, a laminectomy confirmed that the catheter
did not penetrate the spinal cord. To avoid possible
catheter blockage by blood clots, the tip of the catheter
was filled with 2 pL of heparin (200 U/mL). Admin-
istration was performed manually at a rate of approxi-
mately 1 pL/10 s, guided by an auditory cue. Substance

A
Data acquisition > HR
system d recording
BP
waveform

Transducer

Heat
(dorsal)

Touch
(ventral)

basal HR (average HR of 1 min before the onset of heat stimulation) (C).

Figure 7 Summary of experimental methods for examining the effect of touch on noxious heat-induced heart rate (HR) response. Heat
stimulation was applied to the center of the lower back and rumps and touch was applied to the right inner thigh (A). A time point of heat
stimulation is indicated by a down arrow (B). HR response was determined as a maximal change of HR during heat stimulation with respect to
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B N
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y

|Touch,10min| |
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administration was completed at least 20 min before the
first heat stimulation.

Data analyses and statistics

Recording of unitary activity of cutaneous afferents

The discharge rate (Hz) of the afferent units was aver-
aged for 2 min before touch and for 10 min during
touch. The discharge rate was compared using a 2 x 2
repeated measures analysis of variance (ANOVA) with
“conditions” (pre-touch and during touch) and “touch
type” (microcone and flat disc) (Prism6; GraphPad
Software Inc.,, La Jolla, CA, USA). Post hoc analysis was
performed by the Bonferroni’s multiple comparison test.
The statistical significance level was set at 5%. Data were
expressed as the mean + the standard error of the mean,
unless otherwise stated.

Noxious heat-induced HR response

The values of HR response (Abpm) and basal HR were
averaged across the two stimuli for each condition
(pre-touch, during touch, and post-touch). First, in
saline-injected rats, the effect of microcone touch on
noxious heat-induced HR responses was examined with a
one-way repeated measures ANOVA, followed by the
Bonferroni’s post-hoc comparisons test (Prism6). The ef-
fect of flat disc touch was also tested in the same way.
The influence of i.t. administered drugs on the effect of
touch on heat-induced HR response and basal HR was
then examined using a 3 x 4 mixed model ANOVA with
“conditions” (pre-touch, during touch, and post-touch)
as the within-subject factor and “drugs” (saline, nalox-
one, CTOP, and naltrindole) as the between-subject
factor (Prism6). Post hoc analysis was performed by the
Bonferroni’s multiple comparison test. The influence of
i.t. administration on basal HR was examined by com-
paring averages of HR recorded 1 min before i.t. admin-
istration and heat stimulation (after i.t. administration)
using paired t-test. The statistical significance level was
set at 5%. Data were expressed as the mean * the stand-
ard error of the mean, unless otherwise stated.

Abbreviations

ANOVA: Analysis of variance; HR: Heart rate; i.t. intrathecal (intrathecally);
SAl: Slowly adapting unit with dynamic response at the onset of stimulation;
SAll: Slowly adapting unit without dynamic response at the onset of
stimulation; TRPV1: Transient receptor potential vanilloid 1.
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