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Abstract

With the wide array of multi scale, multi-modal data now available for disease characterization, 

the major challenge in integrated disease diagnostics is to able to represent the different data 

streams in a common framework while overcoming differences in scale and dimensionality. This 

common knowledge representation framework is an important pre-requisite to develop integrated 

meta-classifiers for disease classification. In this paper, we present a unified data fusion 

framework, Semi Supervised Multi Kernel Graph Embedding (SeSMiK-GE). Our method allows 

for representation of individual data modalities via a combined multi-kernel framework followed 

by semi- supervised dimensionality reduction, where partial label information is incorporated to 

embed high dimensional data in a reduced space. In this work we evaluate SeSMiK-GE for 

distinguishing (a) benign from cancerous (CaP) areas, and (b) aggressive high-grade prostate 

cancer from indolent low-grade by integrating information from 1.5 Tesla in vivo Magnetic 

Resonance Imaging (anatomic) and Spectroscopy (metabolic). Comparing SeSMiK-GE with 

unimodal T2w, MRS classifiers and a previous published non-linear dimensionality reduction 

driven combination scheme (ScEPTre) yielded classification accuracies of (a) 91.3% (SeSMiK), 

66.1% (MRI), 82.6% (MRS) and 86.8% (ScEPTre) for distinguishing benign from CaP regions, 

and (b) 87.5% (SeSMiK), 79.8% (MRI), 83.7% (MRS) and 83.9% (ScEPTre) for distinguishing 

high and low grade CaP over a total of 19 multi-modal MRI patient studies.

1 Introduction

With the rapid growth of new imaging modalities and availability of multi-scale, multimodal 

information, data fusion has become extremely important for improved disease diagnostics. 

However one of the major challenges in integrating independent channels of heterogeneous 

information is representing them in a unified framework prior to data integration [1]. 
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Typically, information fusing algorithms may be categorized as being either combination of 

data (COD) or interpretation (COI) methodologies [2]. In COD, features Fm1 and Fm2 from 

two disparate modalities m1 and m2 may be combined as Fm1m2 = [Fm1, Fm2]. However 

directly aggregating data from very different sources without accounting for differences in 

the number of features and relative scaling can lead to classifier bias towards the modality 

with more attributes. In [3], Lanckriet et al transformed data from amino acid sequences, 

protein complex data, gene expression data, and protein interactions into a common kernel 

space. Kernels are positive definite functions which capture the similarities of the input data 

into a dot product space such that K(F(ci), F(cj)) = 〈ΦK(F(ci), ΦK F(cj))〉, where Φ is the 

implicit pair-wise embedding between points F(ci) and F(cj). This multi-kernel learning 

(MKL) (Figure 1(a)) involves similarity matrices for kernels from individual modalities 

being combined and used to train classifiers (within the fused kernel space) in order to make 

meta-predictions. However, due to the large amount of information present in each input 

source, all COD methods, including MKL, suffer from the curse of dimensionality.

In [1], we introduced ScEPTre (Figure 1(b)) which employed graph embedding (GE) [4] to 

combine low dimensional data representations obtained from individual modalities. GE 

accounts for the non-linearities in the data by constructing a similarity graph G = (V, W), 

where V corresponds to the vertex between pairwise points and W is a n × n weight matrix of 

n data points. However GE, like most other dimensionality reduction (DR) schemes, is 

unsupervised and does not include any domain knowledge while transforming the data to 

lower dimensions which often leads to overlapping embeddings. A few supervised DR 

schemes such as linear discriminant analysis (LDA) employ class label information to obtain 

low dimensional embeddings. However obtaining labels for biomedical data is extremely 

expensive and time consuming. Recently semi-supervised DR (SSDR) schemes based on 

GE have been proposed [5], which construct a weight matrix leveraging the known labels 

such that higher weights are given to within-class points and lower weights to points from 

different classes. The proximity of labeled and unlabeled data is then used to construct the 

low dimensional manifold.

In this work, we present a unified data fusion DR framework called Semi Supervised Multi 

Kernel Graph Embedding (SeSMiK-GE), a novel data fusion and dimensionality reduction 

scheme that leverages the strengths of GE, semi-supervised learning, and MKL into a single 

integrated framework for simultaneous data reduction, fusion, and classification. Only the 

work of Lin et al [6], that we are aware of, has used MKL in conjunction with GE. However 

their approach does not leverage learning in constructing the embeddings. SeSMiK-GE 

involves first transforming each individual modality in a common kernel framework, 

followed by weighted combination of individual kernels as , where Km, m 

∈ {1, 2, …, M} is the kernel obtained from each modality, βm is the weight assigned to each 

kernel, and M is the total number of kernels employed. DR is then performed on K̂ using 

semi-supervised GE (SSGE) which incorporates partial labels to provide a better low 

dimensional representation of the data allowing for better class separation and hence 

improved classification with limited training samples.
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In this paper we show an application of SeSMiK-GE to combine structural information 

obtained from T2-weighted Magnetic Resonance (MR) Imaging (T2w MRI) and metabolic 

information obtained from MR Spectroscopy (MRS) for detection of high-grade prostate 

cancer (CaP) in vivo. The Gleason grading system is the most commonly used system world-

wide for identifying aggressivity of CaP, and hence patient outcome. High Gleason scores 

are associated with poor outcome, while lower scores are typically associated with better 

patient outcome. Recently, researchers have been attempting to identify MR imaging 

signatures for high- and low-grade CaP in vivo [7,8].

2 Graph Embedding Framework

The aim of GE [4] is to reduce the data matrix  ∈ ℝD into a low-dimensional space y ∈ ℝd 

(D ≫ d), such that object adjacencies are preserved from ℝD to ℝd. Let  = [F(c1), F(c2), 

…, F(cn)] ∈ ℝD be a data matrix of n objects, i ∈ {1, …, n}, with dimensionality D, and y = 

[y1, y2, …, yn] be the corresponding optimal low dimensional projection matrix. y can be 

obtained by solving,

(1)

where W = [wij] is a similarity matrix which assigns edge weights to characterize similarities 

between pairwise points ci and cj, i, j ∈ {1, …, n}. The minimization of Equation 1 reduces 

it to an eigenvalue decomposition problem,

(2)

where  is a diagonal matrix,  = Σi Wij. According to the Representer Theorem [9], to 

calculate the kernel representation K(F(ci), F(cj)) of input data, it is assumed that the optimal 

embedding y lies in the input space such that . Thus, the kernel 

formulation of Equation 2 can be re-written as,

(3)

where K is a valid positive semi-definite kernel and α is the d dimensional eigenvector of 

the kernel representation in Equation 3.

3 Semi-Supervised Multi-kernel Graph Embedding (SeSMiK-GE)

1. Constructing Kernels for each modality: Kernel functions embed input data in the 

implicit dot product space, evaluating which yields a symmetric, positive definite 

matrix (gram matrix). A kernel gram matrix Km defining the similarities between n 

data points in each modality m may be obtained as Km = [K(F(ci), F(cj))] ∀i, j ∈ {1, 

…, n}.
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2. Combining Multiple kernels: A linear combination of different kernels has the 

advantage of also yielding a symmetric, positive definite matrix. Assuming we 

have M base kernel functions for M modalities, , corresponding 

individual kernel weights βm, the combined kernel function may be expressed as,

(4)

3. Constructing the adjacency graph using partial labels: Assuming the first l of n 

samples are labeled ωl ∈ {+1, −1}, we can incorporate the partial known labels into 

the similarity matrix W = [wij]. A  nearest neighbor graph,  > 0, is created to 

obtain W such that pairwise points in  neighborhood with same labels are given 

high weights and points with different class labels are given low weights [5]. If the 

points are not in , the corresponding edges are not connected. Thus the weight 

matrix is,

(5)

where  and σ is the scaling parameter. The weight matrix Wm 

obtained from each modality may be averaged to obtain .

4. Obtaining the low dimensional embedding: The combined kernel K̂ and associated 

weight matrix Ŵ obtained from Equations (4) and (5) can be used to reduce 

Equation (3) to the eigenvalue decomposition problem,

(6)

where  = Σj ŵji. The optimal d dimensional eigenvectors α {α1, α2, …, αn} are 

obtained using standard kernel ridge regression optimization as described in [10].

4 SeSMiK-GE for Prostate Cancer Detection and Grading

4.1 Data Description

A total of 19 1.5 Tesla (T) T2w MRI and corresponding MRS pre-operative endorectal in 

vivo prostate studies were obtained from the University of California, San Francisco. The 3D 

prostate T2w MRI scene is represented by  = (Ĉ, f̂), where Ĉ is a 3D grid of voxels ĉ ∈ Ĉ 
and f̂ (ĉ) is a function that assigns an intensity value to every ĉ ∈ Ĉ. We also define a 

spectral scene  = (C, F) where C is a 3D grid of MRS metavoxels, c ∈ C, and F is a 

spectral vector associated with each c ∈ C. Note that multiple MRI resolution voxels are 

present within the region Rcd between any two adjacent MRS resolution metavoxels c, d ∈ 
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C. An expert spectroscopist (JK) manually annotated individual MRS metavoxels across all 

19 patient studies as firstly (a) CaP/benign, and secondly, (b) as low/high grade CaP. The 19 

1.5 T studies comprised a total of (a) 573 CaP and 696 benign metavoxels, and (b) 175 low 

and 96 high grade CaP metavoxels.

4.2 Feature Extraction from MRI and MRS

a. Feature extraction from MRS: For each c ∈ C, F(c) = [fa(c)|a ∈ {1, … U}], 

represents the MR spectral vector, reflecting the frequency component of each of U 

metabolites. The corresponding spectral data matrix is given as  = [F1(c); F2(c), 

…; Fn(c)] ∈ ℝn×U where n = |C|, |C| is the cardinality of C.

b. Feature extraction from MRI: 38 texture features were extracted to define CaP 

appearance on in vivo T2w MRI [11]. We calculated the feature scenes  = (Ĉ, f̂u) 

for each  by applying the feature operators Φu, u ∈ {1, …, 38} within a local 

neighborhood associated with every ĉ ∈ Ĉ. 13 gradient, 12 first order statistical and 

13 Haralick features were extracted at each ĉ ∈ Ĉ. We define a T2w MRI texture 

feature vector for each metavoxel c ∈ C by taking the average of the feature values 

within the corresponding metavoxel as . The 

corresponding feature vector is then given as G(c) = [gu(c)|u ∈ {1, …, 38}], ∀c ∈ 

C, and the MRI data matrix is given as  = [G1; G2; …; Gn] ∈ Rn×38.

4.3 SeSMiK-GE for Integration of MRI and MRS

A Gaussian kernel K(F(ci),  was employed within SeSMiK-

GE to obtain KMRS and KMRI from input MRS data  and MRI data . 40% of the total 

samples were randomly selected to train the algorithm over 25 iterations of cross validation. 

WMRI and WMRS were obtained using Equation (5) and averaged to obtained the fused gram 

matrix Ŵ. The algorithm was evaluated over different values of β ∈ [0, 1] over intervals of 

0.1 to obtain 11 embedding outputs αq, q ∈ {1, …, 11}, where α1 represents the embedding 

obtained purely from KMRS (β = 0) and α11 represents the embedding obtained purely from 

KMRI (β = 1). A probabilistic boosting tree (PBT) classifier [12], was then trained using the 

same set of samples exposed for SeSMiK over each iteration of 25 cross validation runs. 

During each iteration, the optimal αq which results in the maximum classification accuracy 

is selected as the final embedding result. The algorithm for SeSMiK-GE is presented below.

Algorithm

SeSMiK-GE

Input: , , , d

Output: α

begin

 0. Obtain KMRS ←  and KMRI ← 

 1. Obtain WMRI and WMRS using ; obtain Ŵ using Equation (6)

 2. Initialize β = 0, q = 1
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 3. while β = 1, compute K̂
q = β × KMRI + (1 − β) × KMRS

 4.  Substitute K̂
q and Ŵ in Equation (3)

 5.  Obtain d-dimensional αq by solving Equation (7)

 6.  return αq

 7.  β = β + 0.1, q = q + 1

 8. endwhile

end

The algorithm above was applied to the problems of (a) discriminating CaP vs. benign 

regions, and (b) identifying high-grade CaP using multi-protocol MRI.

5 Results and Discussion

5.1 Qualitative

A PBT classifier [12] was trained on the low dimensional embedding representations 

obtained from application of SeSMiK-GE to the 19 MRI, MRS studies. Figure 2(a) shows a 

T2w MRI slice with high grade CaP, while Figure 2(b) shows signature spectra 

corresponding to low and high grade CaP, in turn illustrating the difficulty in visually 

identifying high grade CaP on in vivo MRI and MRS. Figures 2(c)–(d) show the PBT 

classifier prediction results (as red regions) on the same T2w MRI slice using SeSMiK-GE 

for identifying CaP (Figure 2(c)) and high-grade CaP (Figure 2(d)). Note the high detection 

accuracy obtained using SeSMiK-GE for both CaP (Figure 2(c)) and high-grade CaP (Figure 

2(d)) identification. Ground truth for CaP and high-grade CaP extent is shown via a white 

ROI on Figures 2(c) and 2(d).

Embedding plots obtained from SeSMiK-GE for cancer (red)/benign (blue) and high 

(red)/low (blue) grade CaP are shown in Figures 2(e)–(h). Figures 2 (e), (g) show the partial 

labels provided to SeSMiK-GE, allowing for better separation between the classes (green 

squares represent the unlabeled samples). Figures 2(f), (h) show corresponding PBT 

classification labels for identifying CaP (2(f)) and high-grade CaP (2(h)). Note that in 

Figures 2(f) and (h), a majority of the unlabeled samples are accurately identified by our 

scheme, despite using limited partial labels for training.

5.2 Quantitative

Table 1(a) shows mean area under the ROC curve (AUC) and accuracy results averaged 

over 19 studies for identifying cancer vs. benign using SeSMiK-GE on (a) only MRI, (b) 

only MRS, and (c) in combining MRS and MRI (results shown are for optimal αq obtained 

at β = 0.8). We compared our results with ScEPTre [1], where GE [4] was first performed on 

each of  and  followed by concatenation of the resulting low dimensional eigenvectors. 

Note the high detection accuracy obtained using SeSMiK-GE for CaP (Table 1(a)) and high-

grade CaP (Table 2(a)) detection. Table 1(b) shows the low variability in AUC and accuracy 

results over different values of reduced dimensions (d). Similar results for discriminating 

high and low grade CaP are shown in Table 2(b).
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6 Conclusions and Future Work

We presented a novel semi-supervised multi-kernel (SeSMiK) scheme which is well 

integrated in a graph embedding framework for simultaneous data fusion and dimensionality 

reduction. Multi-kernel learning is first used to combine heterogeneous information from 

various data sources in a common kernel framework. The method leverages partial domain 

knowledge to create an optimal embedding from the combined data such that object classes 

are optimally separable. We demonstrated the application of our scheme in discriminating 

cancer/benign and high/low grade prostate cancer regions using metabolic information 

obtained from MRS and anatomic information obtained from T2w MRI. Quantitative results 

demonstrate a high detection accuracy in identifying cancer and high-grade prostate cancer 

regions, suggesting that SeSMiK can serve as a powerful tool for both computer aided 

diagnosis and prognosis applications. In future work we intend to explore the application of 

SeSMiK in other domains and problems.
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Fig. 1. 
(a) MKL employs a kernel combination strategy, (b) ScEPTre-based data fusion where low 

dimensional embedding representations are combined, and (c) SeSMiK-GE method where 

MKL is performed to first combine the data in a common kernel space followed by semi-

supervised GE. The two colors in each 3D embedding plot represent two different classes.
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Fig. 2. 
(a) Original T2w MRI, (b) MRS signatures for high/low grade CaP. Red regions on (c)–(d) 

show the classification results obtained using SeSMiK-GE for identifying CaP and high 

grade CaP on in vivo MRI, MRS. White ROI delineates the ground truth for CaP extent in 

(c) and high-grade CaP in (d). (e), (g) show 3D embedding plots obtained from SeSMiK-GE 

(with partial training labels for each class) for cancer metavoxels (red) and benign 

metavoxels (blue). The spectra in the evaluation (test set) are shown via green squares. (f), 

(h) illustrate the classification results via PBTs on the same embedding for detection of CaP 

((f)), and high-grade CaP ((h)).
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Table 1

(a) Average AUC and accuracy for CaP detection, compared to MRI-MRS alone, and ScEPTre [1] based data 

fusion, averaged over a total of 19 MRI-MRS studies using the 30 top-ranked eigen values, (b) Average CaP 

detection accuracy and AUC results of SeSMiK-GE and ScEPTre for different dimensions d ∈ {10, 20, 30}.

(a)

Method AUC Accuracy

T2w MRI 66.1 ± 1.5 61.9 ± 1.3

MRS 82.6 ± 1.3 76.8 ± 1.3

ScEPTre 86.8 ± 1.26 78.2 ± 1.2

SeSMiK-GE 91.3 ± 0.2 83.0 ± 0.1

(b)

d AUC Accuracy

SeSMiK ScEPTre SeSMiK ScEPTre

10 89.8 ± 0.8 86.8 ± 0.9 84.2 ± 1.1 80.6 ± 1.3

20 90.7 ± 0.9 87.5 ± 0.8 84.6 ± 0.1 79.1 ± 1.2

30 91.3 ± 0.2 86.8 ± 1.26 83.0 ± 0.1 78.2 ± 1.2

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2015 February 20.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Tiwari et al. Page 11

Table 2

(a) Average AUC and accuracy for high-grade CaP detection, compared to MRI or MRS alone, and ScEPTre 

[1] data fusion averaged over a total of 19 MRI-MRS studies using the 10 top-ranked eigen values, (b) high-

grade CaP detection accuracy and AUC results of SeSMiK-GE and ScEPTre for different dimensions d ∈ {10, 

20, 30}.

(a)

Method AUC Accuracy

T2w MRI 79.8 ± 3.3 74.1 ± 4.0

MRS 83.7 ± 3.5 78.5 ± 3.0

ScEPTre 83.9 ± 3.5 76.8 ± 3.1

SeSMiK-GE 87.5 ± 2.5 82.5 ± 2.6

(b)

d AUC Accuracy

SeSMiK ScEPTre SeSMiK ScEPTre

10 86.9 ± 2.2 84.4 ± 2.7 80.5 ± 2.6 79.1 ± 3.6

20 87.5 ± 2.5 83.9 ± 3.5 82.5 ± 2.6 76.8 ± 3.1

30 86.5 ± 2.8 83.8 ± 3.5 79.5 ± 3.3 77.2 ± 3.5
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