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Abstract

In this paper, we present a dynamic programming algorithm that runs in polynomial time and 

allows us to achieve the optimal, non-overlapping segmentation of a long RNA sequence into 

segments (chunks). The secondary structure of each chunk is predicted independently, then 

combined with the structures predicted for the other chunks, to generate a complete secondary 

structure prediction that is thus a combination of local energy minima. The proposed approach not 

only is more efficient and accurate than other traditionally used methods that are based on global 

energy minimizations, but it also allows scientists to overcome computing and storage constraints 

when trying to predict the secondary structure of long RNA sequences.

1. Introduction

It is known that noncoding RNA sequences are important for many biological processes, 

where they play largely regulatory functions rather than being used to encode proteins. The 

secondary structures of these noncoding RNAs have been shown to be very important to 

their functions, much like the structure of a protein is important for its cellular function [1]. 

The secondary structure of RNA is defined as the set of hydrogen bonds that form between 

the bases of a linear RNA sequence. The most common forms of RNA found in cells and 

viruses are single stranded. Since single-stranded RNA is considered to be less stable than 

its double-stranded counterpart, it tends to fold back on itself to form local regions of 

double-stranded RNA, resulting in formation of secondary structure elements such as stem-

loops and pseuoknots. Stem-loop structures form when nucleotides within local areas of 

complementarity base pair with one another, forming a double-stranded stem topped by a 

single-stranded loop. Pseudoknots form when sequences in the single-stranded loop base 

pair with complementary sequences either up- or down-stream of the stem-loop.

Several available computer prediction programs can predict the secondary structure of an 

RNA sequence if given its primary sequence. Some of these programs use thermodynamic 

methods to find the structure with the lowest possible free energy (global energy minimum). 

These prediction programs employ known energy values for short RNA sequences 

(determined empirically in wet laboratories as a function of the temperature required to 

completely denature a given RNA sequence) [2] and use a dynamic programming algorithm 
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to build the secondary structure prediction. Although these programs are accurate for 

sequences a few hundred bases in length, their accuracies diminish for longer sequences due 

to a lack of experimental energy results for long RNA sequences. Therefore we sought to 

discover an alternative method that does not include these values in the prediction algorithm. 

In addition, many of the existing algorithms do not predict pseudoknot structures. If one 

considers arbitrary pseudoknots to a given sequence, the prediction problem becomes NP-

hard [3].

In our previous work, we used an alternative approach for predicting secondary structures in 

which we divided long sequences into overlapping chunks, predicted the structure of each 

chunk, and rebuilt the whole secondary structure from these component parts. Using this 

method, our predictions remain supported by the empirical thermodynamic evidence yet 

allow us to operate within existing limitations in computing power and memory. However, 

this raised the fundamental questions of how and where to subdivide the long sequence into 

chunks. We previously used a brute force approach in which we conducted a search of a 

small sub-space of overlapping chunks with fixed sizes by considering all the possible 

segmentations of the sub-space [4]. Although successful in terms of its accuracy, the 

approach was not optimal and was extremely time demanding. The investigation described 

in the present paper expands upon our previous results [4] and presents an optimal method 

using dynamic programming to segment a long sequence into non-overlapping sub-

segments. Not only does the method produce accurate secondary structure predictions, it 

also conducts the search more efficiently. Computer experiments show that the combination 

of the secondary structures of the individual chunks result in an overall sequence secondary 

structure that possesses higher sensitivity and selectivity than the secondary structure 

obtained with traditional programs that consider the sequence as a whole for their global 

energy minimizations. It is more efficient because, although the possible combinations of 

the segmentations is O(2N), which is intractable for any RNA sequence of a practical length 

N, we can use dynamic programming techniques to search this space in O(N2) time.

The contributions of this paper are as follows:

• We present an algorithm that explores the space of all the possible, non-

overlapping nucleotide chunks into which a long RNA sequence can be divided and 

finds the set of chunks that rebuilds into a long secondary structure by maximizing 

a given scoring function.

• We use our algorithm to find the optimal way to segment the sequence into non-

overlapping chunks that maximize the similarity of the predicted structure to the 

structure observed in the laboratory and show that these rebuilt structures have 

better accuracy when compared to using a single whole sequence prediction.

• We use our algorithm to predict secondary structures that could not otherwise be 

predicted due to lack of computing resources by limiting the size of the chunks 

while using energy as a scoring function and show that these predictions are 

comparable in accuracy to those using a single whole sequence prediction.

The remainder of this paper is organized as follows: in Section 2, we provide general 

background information and review related work. In Section 3, we describe the dynamic 
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programming algorithm we used to find the optimal segmentation of a sequence for 

prediction. In Section 4, we compare the accuracy of the secondary structure prediction 

based on global minimizations versus the accuracy of the optimal segmented predictions 

provided by our method in two different scenarios, i.e., when the chunk length (or window 

size) is unlimited and when it is limited by computer resources (e.g., memory or computing 

power).

2. Related Work

In MFE (minimum free energy) approaches [5, 6, 7, 8], the entire nucleotide sequence is 

folded in such a way that the structure with the lowest free energy is returned as the 

predicted secondary structure. Unfortunately, this structure is not always the most similar to 

the observed structure in nature [2]. Indeed, in nature a structure with higher free energy 

may be favored, for example when a given structure must exist in equilibrium with an 

unfolded form to provide for a biological function. During replication of viral RNA, a 

secondary structure element such as a pseudoknot may be required for recognition of an 

RNA template by the RNA-dependent polymerase enzyme that copies it, yet it must unwind 

so that this enzyme can copy it. In order to find a more optimal structure, we explore all 

possible combinations of non-overlapping chunks for a given long RNA sequence and apply 

the same algorithm to calculate the MFE for each chunk. We then rebuild the overall 

secondary structure prediction from a combination of local minima rather than from the 

single global minimum. Since some of the MFE algorithms may require times up to O(N6) 

to predict pseudoknots [8], it becomes worthwhile to split up the RNA sequence into smaller 

manageable chunks and predict their structures in parallel. In this paper, we show that using 

several non-overlapping chunks can increase the accuracy over a single whole sequence 

prediction.

The problem of finding the best sequence segmentation to use for a prediction is similar to 

some problems in natural language processing, i.e., problems with word recognition in 

recorded audio, finding paragraph breaks in a body of text, or any other optimal 

segmentation of non-overlapping information given a metric for scoring each segment. In 

the 1960s, Vintsyuk first proposed the use of dynamic [9] programming methods for time-

aligning a pair of speech utterances. Although the essence of the concepts of dynamic time 

warping, as well as rudimentary versions of the algorithms for connect-word recognition, 

were embodied in Vintsyuk's work, it was largely unknown in the West and did not come to 

light until the early 1980s – long after more formal methods were proposed and 

implemented by others. In our work, we used a similar approach to segment the input string 

(nucleotide sequence) and maximize the similarity between predicted structures from sub-

segments and the structure found in nature.

3. Methodology for Searching the Space of Local Predictions

3.1. Algorithm Overview

Dynamic programming is an optimization technique that can be used when the optimal 

solution of the overall problem is composed of optimal solutions to sub-problems. In our 

case, we want to find the optimal non-overlapping segmentation of a long primary 
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nucleotide sequence into chunks. In this case, the optimal segmentation is one that will 

provide us with the greatest similarity to the associated observed secondary structure once 

the secondary structure of each chunk has been predicted and combined into an overall 

secondary structure prediction for the long sequence. An initial approach to solve this 

problem is to enumerate all the possible segmentations and search for the segmentation that 

maximizes the similarity with the observed secondary structure among the 2N−1 alternatives, 

where N is the number of nucleotides in the RNA sequence. Since the search space grows 

exponentially, this approach is intractable for any practical value of N even on 

supercomputers. As an alternative approach, we can use dynamic programming to search the 

segmentation space in polynomial time, where optimal solutions for each chunk are part of 

the optimal solution for the whole sequence.

For the dynamic programming approach presented in this paper, given a nucleotide sequence 

x of length N with N ≫ 1 and j >= i, we first build an N by N predicted matrix that is filled 

as follows:

(1)

The function predict() takes the chunk starting at nucleotide i and terminating at nucleotide j 

and returns the predicted secondary structure of the chunk using the program prediction 

code. Any code for prediction can be used and, since the predictions are independent of one 

another, they can be performed in parallel and stored in a database. However, not all the 

chunks can be predicted for a very long sequence, due to resource constraints, such as limits 

in memory size and computing power. Each prediction code has a different Max_C length, 

which is the longest chunk length predictable. For example, the Pknots-RE [8] code can 

predict the structure of sequences up to 200 nucleotides in length, while Pknots-RG [7] can 

predict the structure of sequences up to 800 nucleotides long. Thus the predicted matrix is an 

upper triangular matrix. Furthermore, as Max_C ≪ N, this is actually an upper triangular 

band matrix, with band width Max_C.

The rebuilding process uses the upper right triangular band matrix, selects non-overlapping 

chunks and their predicted secondary structures from within the matrix, and combines them 

to build a secondary structure prediction for a nucleotide sequence longer than can be 

predicted otherwise. The selection of the chunks can be an a-posteriori or an a-priori 

selection.

A-priori selections are based only on the minimum energies of the chunks and can be used 

for blind predictions. In an a-priori selection using the prediction matrix, we build a score 

matrix and initialize its first row as follows:

(2)

where min_energy() is the lowest predicted energy of the chunk starting at nucleotide 1 and 

terminating at nucleotide j. Here we assume that j ≤ Max_C ≪ N. Using a recurrence 

relation, we complete the upper triangle of the score matrix as follows:
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(3)

For each cell of the score matrix, score(i, j), we also store a pointer to the cell that gave the 

best score among the matrix cells score(k, i − 1)∀k with 1 ≤ k < i − 1.

A-posteriori selections use experimentally obtained secondary structures as references for 

the scoring and can be used for validation purposes only. In an a-posteriori selection using 

the prediction matrix, we build a score matrix and initialize its first row as follows:

(4)

where compare() compares the predicted secondary structure of the sub-segment starting at 

nucleotide 1 and terminating at nucleotide j to the corresponding experimentally observed 

secondary structure, observed(1,j). The comparison can be based on different criteria, e.g., 

sensitivity and selectivity. Using a recurrence relation, we complete the upper triangle of the 

score matrix, assuming that j ≤ Max_C ≪ N as follows:

(5)

Again, as for the a-priori approach described above, for each cell of the score matrix we 

store a pointer to the cell that gave the best score among the matrix cells score(k, i − 1)∀k 

with 1 ≤ k <= i − 1.

Once the score matrix is completed, we select the best value along the Nth column that 

corresponds to the minimum energy in an a-priori approach or to the maximum similarity 

score of the input sequence x in an a-posteriori approach:

(6)

At this point we backtrack through the pointers and retrieve the segments that give the 

optimal similarity (best score). Figure 1 shows a mock example of a score matrix and the 

backtrack used to identify the optimal segmentation for a sequence of 4 nucleotides (N=4), 

with a code with maximum predictable length equal to 2 (Max_C=2). The values use are for 

demonstration purposes only and do not represent a real prediction scenario.

3.2. Algorithm Complexity

The search for this optimal non-overlapping segmentation can be performed in time O(N2), 

where N is the length of the sequence. Both the prediction and score matrices have sizes of 

O(N2); thus completing them takes time O(N2). Furthermore, it is important to note that, 

although every cell depends on the maximum score of the i − 1st column, the maximum 

score for every row is the same. This is because row k represents all segments starting at 

nucleotide k and thus we need only to compute the maximum score of the k − 1 column, 

representing all the segments that end at nucleotide position k − 1. Once the maximal score 
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for column k − 1 is computed, the value can be copied to every other cell in row k, keeping 

the running time at O(N2).

4. Evaluation Results

As part of the evaluation, we seek to understand whether predictions of a sequence set that 

consider each sequence as a whole is more or less accurate than predictions that consider 

each sequence as multiple, non-overlapping chunks. We also seek to understand whether the 

folding process favors local minimum energies rather than global minimum energies. This is 

relevant when the prediction of structures formed by very long sequences is not feasible. 

Therefore, when the global energy cannot be determined experimentally, the search for 

global energy must be replaced by the search across local minimum energies of shorter 

chunks.

4.1. Prediction Program, Scoring Metrics, and Data Set

Given the definition of our dynamic programming algorithm, any prediction code and score 

metric for RNA secondary structure prediction can be used. We choose to use a popular 

prediction tool such as Pknots-RG [7] because of its excellent performance in predicting the 

structure of sequences of up to 800 nucleotides and its ability to predict pseudoknot 

structures. We use this code to address questions of accuracy and sensitivity of our 

approach. Given both a predicted structure and an observed structure in parenthetical format, 

we measure the accuracy of the predicted structure in terms of sensitivity (i.e., ability to 

predict all true pairs) and selectivity (i.e., ability to only predict true pairs). Secondary 

structures of long RNA sequences, i.e., of the order of thousands of nucleotides, that have 

been experimentally validated are rare. Thus, for our analysis in this paper we used the 

longest nucleotide sequences from Group A in CONTRAfold [10], which have lengths 

ranging from 200 to 482 nucleotides.

4.2. Single-Segment Predictions vs. Predictions Using Chunks

To address whether predictions of a sequence set that consider each sequence as a whole are 

more or less accurate than predictions that consider each sequence as multiple, non-

overlapping chunks, we select chunk sizes for our data set that are not limited by the 

prediction program or by computing resources. Therefore, our chunk sizes or Max_C range 

from 1 to N, where N is the length of each sequence in terms of nucleotides. We also select 

sequences whose secondary structures have been experimentally-determined and are thus 

available for building the score matrix in Equations 4 and 5, based on an a-posteriori 

approach. Finally, we use the average value of sensitivity and selectivity of predicted 

secondary structures versus experimental secondary structures as our metrics.

We first predict the secondary structure of each entire sequence using Pknots-RG. We then 

use our method and the same prediction code to identify the set of non-overlapping chunks 

with highest sensitivity and selectivity, as described in Section 3.1, Equations 4 and 5. The 

comparison of the two techniques, i.e., prediction based on the entire sequence and 

prediction based on non-overlapping chunks, can result in two possible outcomes. One 

possible outcome is that our approach based on chunks always converges towards the 
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predictions based on the whole sequence. Alternatively, the best solutions are indeed 

combinations of chunks and in that case, the prediction can have higher, equal, or lower 

scores. Note that we do not assume any resource constraints and so we can always predict 

any chunk of any length. Also the scores are based on an a-posteriori approach and thus we 

are not driven by energy values in our selections. For each sequence, Table 1 presents the 

sequence name and length; the sensitivity and selectivity of the prediction considering the 

sequences as a single sequence (a single chunk); the sensitivity, selectivity, the number of 

optimal non-overlapping chunks used to rebuild the secondary structure, and the maximum 

chunk length (or maximum window size) used with our method.

With unlimited chunk sizes and no resource limits, the chunk sets range from 3 to 17 sub-

segments and their sizes are always smaller that the total sequence length. Only in 4 cases 

out of the 14 sequences considered (i.e, RF00010_A, RF00036_A, RF00024_A, and 

RF00177_A), did a single chunk cover the majority of the sequence. For these four cases 

Max_C = N. Our approach for these cases converges toward the whole-sequence prediction. 

In all the other cases, we observe equal or better sensitivity and selectivity when rebuilding 

the secondary structures from shorter non-overlapping sequence chunks. The better 

predictions can be either due to insufficiently accurate thermodynamic models for longer 

sequences (since the wet laboratory experiments are still missing or, in some cases, not 

feasible), or to the tendency for structures when folding to favor multiple localized 

minimum free energy structures rather than the global minimum free energy structure of the 

whole sequence, or it can be a combination of both.

4.3. Dealing with Resource Limits

To address the question of whether structures, when folding, tend to favor multiple localized 

minimum free energy structures rather than the global free energy structure, we explore all 

possible values for each sequence in our data set, of Max_C from 1 to N in Equations 2 and 

3. This results in N score matrices, each exploring window sizes only up to the Max_C 

associated with the matrix. Figure 2 shows a simple example for a sequence with 4 

nucleotides and four score matrices obtainable with this sequence (The scores are mock 

examples). For each score matrix we rebuild its lowest energy secondary structure given the 

limitation of the window size. Note that this time our scoring approach is an a-priori 

approach based on energy values only and not a comparison to the experimentally known 

structures as in the previous section.

In Figure 3, we present two case studies from our data set to show how sensitivity and 

selectivity grow as a function of the window size. In both examples, we see that the whole 

sequence is not necessary to predict the best secondary structure. For Sequence RF00024_A 

with length 451 nucleotides and Sequence RF00210_A with length 462, with windows of 

198 and 375 nucleotides respectively, we can already capture the best structures for the 

overall sequence. No further accuracy is gained by using longer chunks.

In Table 2, we compare sensitivity and selectivity of the prediction for all the 14 sequences 

in our data set using a global energy minimization (by feeding the whole sequence into the 

prediction code) with the sensitivity and selectivity of the prediction built from the best set 

of chunks obtained with our method. For the latter prediction, the table presents the number 
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of chunks and the length of the longest chunk (Max_C). Using chunks that are limited in size 

(i.e., within the limitations of the computer resources) allows us to overcome computing and 

memory constraints. At the same time, we observe that for all 14 sequences we examined, 

the combination of non-overlapping chunks can predict secondary structures with either 

equal or better sensitivity and selectivity than those determined using the entire sequence. 

For only two sequences out of the 14 (RF00177_A and RF00036_A), the value of Max_C is 

almost as long as N, indicating the convergence of our method to the search for the global 

energy minimum.

These preliminary results produced by our approach clearly indicate the need for more 

accurate energy computations in existing MFE methods. In addition, our a-posteriori 

approach can be used as training data for intelligent prediction tools based on machine 

learning techniques such as Hidden Markov Models (HMM) and neural networks.

5. Conclusions and Future Work

In this paper, we show that it is possible to find an optimal way to segment a long sequence 

of nucleotides using a polynomial time dynamic programming algorithm and to rebuild 

accurate secondary structures from the collection of non-overlapping chunks given a scoring 

function that can be based on energy only. The results show that our approach can 

outperform MFE methods using dynamic programming to search for global energy minima 

12 times out of 14 with the longest sequences in Group A in CONTRAfold. This suggests 

the need for more accurate energy computations in existing MFE methods for long 

nucleotide sequences.

Current work of the authors includes the design and training of HMM and neural network 

based tools to identify optimal segmentations when the experimental secondary structure is 

not available and the memory and computing resources are limited.
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Figure 1. Example of score matrix with backtrack to rebuild the optimal segmentation with N = 
4 and Max_C = 2
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Figure 2. 
Examples of 4 score matrixes obtainable with a sequence of 4 nucleotides.
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Figure 3. 
Sensitivity and selectivity as a function of the chunk length for two sequences in our data 

set.
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