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Abstract

With a wide array of multi-modal, multi-protocol, and multi-scale biomedical data available for 

disease diagnosis and prognosis, there is a need for quantitative tools to combine such varied 

channels of information, especially imaging and non-imaging data (e.g. spectroscopy, proteomics). 

The major problem in such quantitative data integration lies in reconciling the large spread in the 

range of dimensionalities and scales across the different modalities. The primary goal of 

quantitative data integration is to build combined meta-classifiers; however these efforts are 

thwarted by challenges in (1) homogeneous representation of the data channels, (2) fusing the 

attributes to construct an integrated feature vector, and (3) the choice of learning strategy for 

training the integrated classifier. In this paper, we seek to (a) define the characteristics that guide 

the 4 independent methods for quantitative data fusion that use the idea of a meta-space for 

building integrated multi-modal, multi-scale meta-classifiers, and (b) attempt to understand the 

key components which allowed each method to succeed. These methods include (1) Generalized 

Embedding Concatenation (GEC), (2) Consensus Embedding (CE), (3) Semi-Supervised Multi-

Kernel Graph Embedding (SeSMiK), and (4) Boosted Embedding Combination (BEC). In order to 

evaluate the optimal scheme for fusing imaging and non-imaging data, we compared these 4 

schemes for the problems of combining (a) multi-parametric MRI with spectroscopy for prostate 

cancer (CaP) diagnosis in vivo, and (b) histological image with proteomic signatures (obtained via 

mass spectrometry) for predicting prognosis in CaP patients. The kernel combination approach 

(SeSMiK) marginally outperformed the embedding combination schemes. Additionally, intelligent 

weighting of the data channels (based on their relative importance) appeared to outperform 

unweighted strategies. All 4 strategies easily outperformed a naïve decision fusion approach, 

suggesting that data integration methods will play an important role in the rapidly emerging field 

of integrated diagnostics and personalized healthcare.

Index Terms
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1. INTRODUCTION

A major challenge to overcome when quantitatively integrating heterogeneous data types 

(which may not be directly combined) lies in the significant differences in dimensionality 

and scale that exist between disparate modalities, especially imaging and non-imaging 

modalities. Most existing work on multi-modal data integration is targeted towards purely 
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homogeneous image-based data (which may be directly combined), such as for the fusion of 

Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) [1] or fusing 

different MRI protocols for disease characterization [2]. Combination of Interpretation 

(COI) [3] strategies aim to combine independent classifications made based on each 

modality; however, such a combination may prove sub-optimal as inter-modality 

dependencies are not accounted for.

A major limitation in constructing integrated meta-classifiers for imaging and non-imaging 

data streams is having to deal with different data representations (differing in both scale and 

dimensionality). A possible solution to overcome these representational differences is to first 

project the data streams into a space where the scale and dimensionality differences are 

removed; we refer to this space as a meta-space. For example, proteomics and imaging data 

(Figure 1) could be homogeneously represented in the format of eigenvectors in a PCA 

reduced meta-space [3]. A second challenge in constructing meta-classifiers from imaging 

and non-imaging data is to weight the relative contributions of the different channels. While 

one could naïvely concatenate the original (or meta-space) based representations to construct 

a fused attribute vector, learning strategies could be leveraged to optimally weight and then 

combine the individual data streams.

The third challenge is to build a predictor based off the multi-attribute vector, following 

meta-space fusion. The predictor (meta-classifier) could be trained by a range of supervised, 

unsupervised, or semi-supervised learning strategies; the choice of training strategy usually 

being a function of the amount of labeled, annotated data available.

Recently, our group [3–6] and a few others [7, 8] have begun to develop multi-modal data 

fusion strategies with the express purpose of building such integrated meta-classifiers. In 

[3], Lee et al proposed the Generalized Fusion Framework (GFF) for homogeneous data 

representation and subsequent fusion in the meta-space using dimensionality reduction 

techniques. Alternatively, multi-kernel learning (MKL) schemes [7] have also been 

proposed where the meta-space representation is decided by choice of kernel.

The goal of this paper is twofold. Firstly we aim to describe some of the challenges in meta-

space representation, fusion, and meta-classifier construction in the context of imaging and 

non-imaging data (Section 2). The second objective is to describe and compare 4 state of the 

art embedding and kernel combination-based data integration schemes and quantitatively 

evaluate their performance in the context of two important diagnostic and prognostic 

applications. In the first application, we evaluate the 4 schemes in their ability to combine 

multi-parametric MRI and MR spectroscopy data for prostate cancer diagnosis in vivo. The 

second problem is focused on quantitative fusion of imaging and proteomic signatures 

obtained from the tumor nodule on radical prostatectomy sections; the aim being to build 

meta-classifiers that can accurately distinguish between which patients are at risk for disease 

recurrence versus those who are not (following prostate surgery).

2. DESIGNING A MULTI-MODAL DATA INTEGRATION METHOD

In the following discussion, we define the feature descriptors associated with samples ci and 

cj for modality ϕm as Fm(ci) and Fm(cj), where i, j ∈ {1, …, N}, m ∈ {1, …, M}, N is the 
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total number of samples, and M is the total number of modalities. After transforming the 

data for homogeneous representation, we will have Em(ci) and Em(cj) respectively.

2.1. Meta-Space Representation Approaches

To overcome the problem where heterogeneous data cannot be directly combined, meta-

space representation (methods which transform such data into a homogeneous space), 

allows for direct combination of modalities.

1. Embedding Projections (EP): EP methods involve transforming the high 

dimensional modality feature space into a homogeneous low dimensional 

representation such that relative local proximities between sample points are 

optimally preserved. Such relative proximities are captured via a confusion matrix 

W, traditionally formulated as  for each modality 

ϕm.  then undergoes eigenvalue decomposition to result in non-linear 

projections (Em(ci)) of the input feature space.

2. Kernel space Projections (KP): Kernels allow for an implicit form of data 

representation where object similarities are captured in a gram matrix K formulated 

as a simple dot product, Km(i, j) = 〈Φ(Fm(ci), Φ(Fm(cj))〉. Φ is the implicit pairwise 

embedding between the sample feature vectors for modality ϕm. Kernels may be 

fine tuned based on the choice of data modality, hence allowing different kernels to 

be employed for imaging and non-imaging data.

2.2. Meta-Space Fusion Approaches

Following meta-space representation, meta-space fusion strategies examine how to combine 

these homogeneous representations, such that maximal relevant information captured by 

each data source is preserved:

1. Confusion Matrix Combination (CC): Proximities between samples are 

calculated based on Em(ci) and Em(cj) for each modality ϕm to construct 

(similar to ), in the homogeneous meta-space calculated via EP. These 

confusion matrices may then be combined in a linear or weighted manner to yield 

, based on weights βm. A final fused EP representation 

may then be calculated based on .

2. Kernel Combination (KC): The kernel transformation of information from each 

modality ϕm results in a corresponding kernel gram matrix Km. These may then be 

combined in a linear or weighted manner as  based on 

weights γm. Re-projecting the data based on this  yields the final fused KP data 

representation.

3. Embedding Concatenation (EC): The vectors obtained via EP of from each 

modality ϕm, m ∈ {1, …, M} can be directly concatenated as 

. This is similar to concatenating 

intensity values at every pixel between registered images.
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2.3. Learning Strategies for Meta-Space Classification

These learning approaches refer to the framework within which the fused meta-space 

representation is used to construct an integrated meta-classifier.

1. Unsupervised (U): No label information is utilized for either meta-space 

representation or meta-space fusion.

2. Semi-supervised (SS): This approach is utilized when partial label information is 

available [9]. A nearest neighbor graph, , is constructed for all the samples. The 

confusion matrix  is then modified in a pairwise fashion such that points in 

with the same class labels are given high weights and points with different labels 

are given low weights. If the points are not in , the corresponding edges are 

given a weight of 0 (i.e. disconnected).

3. Supervised (S): All available label information is incorporated when calculating 

optimal projections (for meta-space representation) or optimal weighting 

parameters (for meta-space fusion).

3. REVIEW OF RECENT DATA INTEGRATION METHODS

3.1. Generalized Embedding Combination (GEC)

GEC makes use of EP for homogeneous meta-space representation of the features 

corresponding to each modality. Meta-space fusion is then accomplished via EC of the 

resulting embedding representations. This technique was presented in [3] previously.

3.2. Consensus Embedding (CE)

Constructing low-dimensional embeddings directly from the individual high-dimensional 

modality vectors may be a suboptimal approach since the low dimensional representation 

may be susceptible to noise in the high dimensional data, and/or to choice of parameters. We 

therefore construct an ensemble of embeddings (similar in flavor to constructing an 

ensemble classifier in machine learning [10]). First, a number of bootstrapped feature 

subsets culled from the entire multi-modal feature space are constructed. These are then 

individually projected via EP to yield corresponding subset embeddings. Based on label 

information available, those subset embeddings are selected which optimally discriminate 

between classes in the data. Selected subset embeddings are then combined via unweighted 

CC, resulting in the final consensus embedding representation [4].

3.3. Semi-Supervised Multi Kernel(SeSMiK)

SeSMiK [5] leverages the interplay between EP and KP schemes, to inherently represent 

and combine the data in an integrated approach. First, for each modality ϕm, a corresponding 

Km is constructed using an unique base kernel function for each of the M different 

modalities. Partial labels are then incorporated to construct a confusion matrix 

associated with each modality, in a semi-supervised manner [9]. M different Km and  are 

then combined (via KC and CC) to yield  and , respectively. These are then substituted 

in an eigenvalue decomposition problem to yield the final homogeneously fused SeSMiK 

representation.
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3.4. Boosted Embedding Combination (BEC)

BEC is a semi-supervised extension to GEC. This approach makes use of EP to calculate 

embeddings based on each modality ϕm. These embeddings are then combined via a 

weighted CC approach, where optimal weights are calculated based on the classification 

accuracy of these embeddings (using partially-labeled data for evaluation). The weighted 

confusion matrix is subsequently input to an active learning technique [6], which iteratively 

utilizes available partial-label information to yield the final BEC representation.

4. EXPERIMENTAL DESIGN

4.1. Multiparametric MRI classifiers for CaP detection

A total of 36 1.5 Tesla T2w MRI, MRS studies (S1) were obtained prior to radical 

prostatectomy from University of California, San Francisco (UCSF). All of these studies 

were biopsy proven prostate cancer patient datasets that were clinically referred for a 

prostate cancer MR staging exam. Expert labeled regions (as cancer and benign) on a per 

voxel basis were used as a surrogate for the ground truth annotation. The goal of this 

experiment was to distinguish between CaP and benign regions on a per voxel basis, via 

quantitative integration of the T2w MRI and spectroscopy (MRS), where MRS is a 

metabolic vector (non-imaging) reflecting the concentration of key metabolites in the 

prostate.

Feature extraction from MRS—Radiologists typically assess presence of CaP on MRS 

based on the choline (Ach), creatine (Acr), citrate peaks (Acit), and associated ratios. 

Variations in these values from predefined normal ranges (Ach+cr/Acit > 1) is highly 

indicative of the presence of CaP. A metabolic feature vector was obtained for MRS, by 

calculating Ach, Acr, and Acit for each MRS spectrum and recording the corresponding ratios 

(Ach, Acr, Acit, Ach+cr/Acit, Ach/Acr).

Feature extraction from T2-w MRI—36 texture features were calculated from each T2w 

MRI image based on responses to various gradient filters and gray level co-occurrence 

operators. These features were chosen based on previously demonstrated discriminability 

between CaP and benign regions on T2w MRI [4].

4.2. Combining histology and proteomics for CaP prognosis

A cohort of CaP patients at the Hospital at the University of Pennsylvania (UPENN) were 

identified, all of whom had gland resection (S2). Half of these patients had biochemical 

recurrences following surgery (within 5 years) and the other half did not. For each patient, a 

representative histology section was chosen and the tumor nodule identified. Mass 

Spectrometry (MS) was performed at this site to yield a protein expression vector. The aim 

of this experiment was to combine quantitative image descriptors on histology of the tumor 

with the proteomic vector to build a meta-classifier to distinguish the patients at risk of 

recurrence from those who are not.

Feature extraction from Histology Images—Following an automated gland 

segmentation process used to define the gland centroids and boundaries, architectural and 
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morphological image features (quantifying glandular arrangement) were extracted from 

histology, as described in [3].

Feature extraction from proteomic data—Protein data from a high resolution mass 

spectrometry procedure underwent quantile normalization, log(2) transformation, and mean 

and variance normalization on a per-protein basis. A t-test feature selection is then utilized 

to prune the protein feature set to the 10 most discriminatory proteins across the 19 patient 

studies.

4.3. Experimental Setup

For each method described in Section 3, we construct a 3-dimensional fused representation 

of the input data. Gaussian kernels were employed for kernel representation. For the semi-

supervised approaches, 40% of the labeled information was used when constructing the 

fused meta-space representation. The Random Forest (RF) classifier [10] was then employed 

in conjunction with each data representation. A randomized three-fold cross validation was 

performed by dividing our datasets (S1 and S2) into three parts, where 2/3 of the dataset was 

used for training and 1/3 for testing. This is repeated until all the samples are classified 

within each dataset. This randomized cross-validation was then repeated a total of 25 times. 

Additionally, a COI classifier is constructed by combining individual classification results 

(h1, …, hM) from modalities ϕ1, …, ϕm by invoking the independence assumption: hd = h1 

× h2 × … hM. Note that M = 2 for both our datasets, S1 and S2. The classifier accuracy at the 

operating point of the ROC curve for each meta-space fusion strategy (including COI) was 

recorded. The mean and standard deviation of classifier AUC (μAUC ± σAUC) and accuracy 

values (μAcc ± σAcc) were then calculated over the 25 runs.

5. RESULTS & DISCUSSION

As may be observed in Table 2, the meta-space fusion methodologies (GEC, CE, SeSMiK, 

BEC) outperform a COI approach. This finding reiterates the limitation of COI strategies in 

that a significant loss of relevant information is probably occurring when reducing each 

modality to a single decision. On the other hand, transforming the data to a meta-space 

representation followed by fusion and classification, results in a significantly improved 

classification performance.

Amongst the data-fusion strategies, SeSMiK and BEC outperform CE. This may be due to 

the fact that SeSMiK and BEC strategies optimally weight the contributions from different 

modalities, such that the more discriminatory modality receives a higher weight. Further, 

since CE assumes that each modality should receive an equal contribution in meta-space, it 

may be unable to appropriately leverage contributions from overachieving modalities. 

SeSMiK and BEC also appear to have a distinct advantage over CE in that they leverage a 

semi-supervised approach in constructing the meta-space representation, potentially 

boosting discriminability. Therefore, adaptively weighting contributions of the individual 

modalities and incorporating partial labels when calculating the meta-space representation 

may play significant roles in optimal heterogeneous data fusion. GEC also outperforms CE, 

suggesting that perhaps there is some merit in using an unsupervised, embedding 

concatenation strategy.
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Overall, SeSMiK was observed to perform marginally better compared to all the other data 

fusion methods. SeSMiK uniquely utilizes both kernel and embedding projections in an 

integrated fashion to produce the final fused meta-space representation. Additionally, 

SeSMiK leverages the semi-supervised learning approach when constructing the meta-space 

representation, potentially enabling greater class separability. A final unique aspect of 

SeSMiK is that since it combines multiple kernels, unique kernels optimized to the specific 

data modality could be chosen for improved discriminability.

6. CONCLUDING REMARKS

In this paper, we examined the significant challenges in quantitative, heterogeneous multi-

modal data integration. Specifically, we reviewed the challenges in (1) meta-space 

representation, (2) meta-space fusion, and (3) learning strategies for meta-classifier 

construction, in the specific context of integrating imaging and non-imaging data. We also 

reviewed and evaluated 4 different state-of-the-art data fusion methods in the context of 

building meta-classifiers by: (1) combining histology with mass-spectrometry to predict 

prostate cancer recurrence, and (2) combining MRS with MRI data to predict prostate cancer 

presence. We found that methods which explicitly attempt to overcome the challenges of 

heterogeneous data fusion result in improved classifications as compared to a naïve COI 

approach. Methods such as SeSMiK, which integrate multiple representation (EP,KP) and 

fusion approaches (KC,CC) within a semi-supervised (SS) framework appeared to 

outperform all other approaches. However, it is important to note that this paper only serves 

to highlight recent strategies and methods which have been successful for multi-modal 

fusion. As can be deduced from Table 1, many potentially useful data fusion methods using 

unexplored combinations of strategies have yet to be developed. With the increasing 

relevance of fused diagnostics in personalized healthcare, it is expected that such 

heterogeneous fusion methods will play an important role in combining and interpreting 

multiple imaging and non-imaging modalities.

Acknowledgments

This work was made possible via grants from the Wallace H. Coulter Foundation, National Cancer Institute (Grant 
Nos. R01CA136535, R01CA140772, and R03CA143991), The Cancer Institute of New Jersey, and Department of 
Defense (W81XWH-09). Special thanks to our clinical collaborators at UCSF and UPENN for providing the data.

References

1. Slomka PJ. Software Approach to Merging Molecular with Anatomic Information. J Nucl Med. 
2004; 45(1):36S–45. [PubMed: 14736834] 

2. Liu X, et al. Prostate Cancer Segmentation With Simultaneous Estimation of Markov Random Field 
Parameters and Class. IEEE Trans Med Imag. 2009; 28(6):906–915.

3. Lee G, et al. A knowledge representation framework for integration, classification of multi-scale 
imaging and non-imaging data: Preliminary results in predicting prostate cancer recurrence by 
fusing mass spectrometry and histology. ISBI. 2009:77–80.

4. Viswanath S, et al. A consensus embedding approach for segmentation of high resolution in vivo 
prostate magnetic resonance imagery. SPIE Med Imag. 2008; 6915(1):69150U.

5. Tiwari P, et al. Semi Supervised Multi Kernel (SeSMiK) Graph Embedding: Identifying Aggressive 
Prostate Cancer via Magnetic Resonance Imaging and Spectroscopy. MICCAI. 2010; 6363:666–
673. [PubMed: 20879458] 

Tiwari et al. Page 7

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2015 February 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



6. Lee G, Madabhushi A. Semi-Supervised Graph Embedding Scheme with Active Learning 
(SSGEAL): Classifying High Dimensional Biomedical Data. Pat Recog in Bioinf. 2010; 6282:207–
218.

7. Lanckriet GR, et al. Kernel-based data fusion and its application to protein function prediction in 
yeast. Pac Symp Biocomput. 2004:300–11. [PubMed: 14992512] 

8. Mandic D, et al. Sequential Data Fusion via Vector Spaces: Fusion of Heterogeneous Data in the 
Complex Domain. J VLSI Sig Proc. 2007; 48(1):99–108.

9. Zhao H. Combining labeled and unlabeled data with graph embedding. Neurocomputing. 2006; 
6(9):16–18. 2385–2389.

10. Breiman, Leo. Arcing Classifiers. The Annals of Statistics. 1998; 26(3):801–824.

Tiwari et al. Page 8

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2015 February 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1. 
Sample image and non-image data, (a) prostate tissue specimen with a region-of-interest 

(ROI) outlined in white, (b) proteomic spectra associated with this ROI, (c) quantification of 

the image ROI with nuclear arrangement features. Note the significant differences in 

dimensionality (1000s of proteomic spectra vs 100s of histology features) preventing direct 

combination of such heterogeneous data.
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Fig. 2. 
Flowchart showing various system components of the Generalized Fusion Framework. 

Homogeneous meta-space representations (EP or KP) of the heterogeneous modalities ϕ1, 

…, ϕM are used to facilitate integration via meta-space fusion (CC, KC or EC). Learning 

strategies (U, SS, or S) are then used to construct the integrated meta-classifier.
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Table 1

Table showing different meta-space representation, meta-space fusion and meta-classifier construction 

strategies used for each of GEC, CE, SeSMiK and BEC.

Method Representation Fusion Learning Strategies

GEC EP EC U

CE EP CC S

SeSMiK EP,KP KC,CC SS

BEC EP CC SS
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Table 2

Quantitative results obtained via data integration methods GEC, CE, SeSMiK, BEC, and COI for S1 and S2.

Method S1 (MRS + MRI) S2 (Histology + Proteomics)

μAUC + σAUC μAcc + σAcc μAUC + σAUC μAcc + σAcc

GEC 0.88 ± 0.05 0.87 ± 0.05 0.89 ± 0.03 0.83 ± 0.01

CE 0.82 ± 0.19 0.82 ± 0.14 0.73 ± 0.03 0.70 ± 0.04

SeSMiK 0.90 ± 0.05 0.89 ± 0.05 0.89 ± 0.01 0.83 ± 0.01

BEC 0.86 ± 0.07 0.78 ± 0.11 0.88 ± 0.04 0.87 ± 0.01

COI 0.73 ± 0.19 0.79 ± 0.13 0.73 ± 0.04 0.68 ± 0.03
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