
BIOLOGY OF REPRODUCTION (2015) 92(2):50, 1–6
Published online before print 30 December 2014.
DOI 10.1095/biolreprod.114.125203

Minireview

Inhibitory SMADs: Potential Regulators of Ovarian Function1
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ABSTRACT

Transforming growth factor beta (TGFB) superfamily signaling
regulates essential reproductive functions. Dysregulation of
TGFB signaling results in cellular and molecular deficiencies in
the ovary, leading to reproductive diseases and cancer develop-
ment. SMAD proteins are canonical TGFB signaling components
consisting of receptor-regulated SMADs (SMAD1/2/3/5/9), a
common SMAD (SMAD4), and inhibitory SMADs (SMAD6/7).
Inhibitory SMADs are negative regulators of TGFB and bone
morphogenetic protein signaling, and their reproductive func-
tions are poorly defined. Emerging evidence supports that
inhibitory SMADs are potential regulators of ovarian function.
Further efforts and new genetic models are needed to unveil the
role of inhibitory SMADs in the ovary.
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INTRODUCTION

Transforming growth factor beta (TGFB) superfamily
signaling regulates essential female reproductive processes
and is indispensable for ovarian development and function [1–
8]. SMAD proteins are intracellular transducers of TGFB
superfamily signaling. In this Minireview, we summarize the
role of SMADs in development and female reproduction, with
an emphasis on the recent progress on inhibitory SMADs. The
emerging role of inhibitory SMADs as potential regulators of
ovarian function and the direction of future studies are
highlighted.

SMAD PROTEINS

SMA and mother against decapentaplegic (MAD)-related
proteins (SMADs) are intracellular components of TGFB
signaling pathway. In mammalian species, eight SMAD
proteins have been identified. SMADs consist of receptor-

regulated SMADs (R-SMADs; SMADs1/2/3/5/9), a common
SMAD (Co-SMAD; SMAD4), and inhibitory SMADs (I-
SMADs). For R-SMADs, SMAD2/3 generally mediate TGFB/
activin signaling, whereas SMAD1/5/9 transduce bone mor-
phogenetic protein (BMP) signals. I-SMADs are comprised of
SMAD6 and SMAD7, which antagonize TGFB and/or BMP
signaling in vitro [9–11]. SMADs usually share two conserved
domains, the N-terminal Mad homology (MH) 1 and the C-
terminal MH2 domains, connected by a linker region. MH1
domain binds to DNA [12], whereas MH2 domain interacts
with receptors to elicit signal transduction [13]. Of note, I-
SMADs have conserved MH2 domains, but divergent MH1
domains [14]. Moreover, these SMADs seem to lack many
secondary structural elements compared with R-SMADs, but
have distinct tertiary structure characterized by extended loops
[14].

SMAD6 can be induced by BMP signaling via SMAD1/5,
which serves as a negative feedback loop to terminate BMP
signaling [15]. Mechanistically, SMAD6 inhibits BMP signal-
ing by antagonizing activin receptor-like kinase (ALK6)-
mediated SMAD1 phosphorylation [16]. SMAD6 also acts as
a SMAD4 decoy to suppress BMP-induced SMAD1 activation
[17]. In the nucleus, SMAD6 inhibits BMP signaling by
interacting with homeobox C8 (Hoxc8) or binding to DNA and
recruiting histone deacetylases (HDACs) to repress gene
transcription [18, 19]. Furthermore, the associated molecule
with the SH3 domain of signal-transducing adaptor molecule
(AMSH), a binding partner for SMAD6, inhibits the binding of
SMAD6 to activated BMP type 1 receptor or SMAD1/5 [16].
In contrast, SMAD7 inhibits TGFB, activin, and BMP
signaling [10, 20]. SMAD7 interacts with TGFB type 1
receptor (TGFBR1/ALK5) to inhibit R-SMAD activation. The
stability/association of SMAD7-TGFBR1 complex can be
increased by serine-threonine kinase receptor-associated pro-
tein (STRAP), atrophin 1-interacting protein 4 (AIP4), and
Yes-associated protein (YAP65) [21–23]. Moreover, SMAD7
recruits SMAD ubiquitin regulatory factor 1 (SMURF1) and
SMURF2 to TGFBR1, resulting in receptor ubiquitination and
degradation [24, 25]. Thus, the activity of TGFB signaling can
be controlled via modulation of the stability or degradation of
SMAD7 [21–27]. For example, in the nucleus, transcriptional
coactivator p300 acetylates SMAD7, preventing its ubiquiti-
nation [28], while HDAC1 or silent information regulator 1
(SIRT1)-mediated deacetylation of SMAD7 promotes degra-
dation [29, 30]. In addition, SMAD7 binds to SMAD-binding
element (SBE; CAGA)-containing DNA sequence and affects
the formation of TGFB signaling-induced functional SMAD-
DNA complex [31]. Recent studies showed that Smad7 can be
targeted by micro-RNAs (miR), such as miR-106b-25 cluster,
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during epithelial-to-mesenchymal transition in breast cancer
development [32].

ROLE OF R-SMADS AND CO-SMAD IN DEVELOPMENT
AND FEMALE REPRODUCTION

The role of R-SMADs and Co-SMAD in development has
been clearly demonstrated by genetic studies. Smad1 knockout
(Smad1Dex3) mice are embryonically lethal (;E9.5) with
defective allantois formation [33]. The developmental function
of SMAD2 is supported by the fact that Smad2 null mice die
during embryonic development, with defects in a number of
developmental events, including, but not limited to, mesoderm
formation, left-right patterning, craniofacial development, and
egg cylinder elongation [34–38]. Smad3Dex1 mice show
reduced body size, but are viable [39]. Smad3Dex2 mice are
viable and fertile, but develop metastatic colorectal cancer [40].
In contrast, impaired fertility and mucosal immunity have been
found in Smad3Dex8 mice [41], accompanied by accelerated
wound healing, but impaired intestinal mucosal healing [42,
43]. Smad3Dex8 mice demonstrate ovulatory defects and lack
corpora lutea in the ovary. Altered ovarian cell differentiation
and compromised follicular growth and atresia have been
identified in these mice [8]. Furthermore, granulosa cells from
Smad3Dex8 mice express lower levels of FSH receptors and
respond poorly to FSH [6]. SMAD4 is frequently deleted in
pancreatic cancer [44], and Smad4 mutant mice show
gastrulation defects [45]. Smad5 null mice die at midgestation,
resulting from both embryonic and extraembryonic abnormal-
ities [46, 47]. Moreover, SMAD5 is indispensable for
primordial germ cell proliferation [48]. Although Smad9
knockout mice are viable and fertile, they demonstrate defects
in pulmonary vascular remodeling, characterized by medial
thickening and vascular smooth muscle hyperplasia [49].

The functions of several R-SMADs and SMAD4 in
reproduction have been recently identified using a conditional
knockout strategy to overcome the embryonic lethality
resulting from ubiquitous disruption of these genes (Table 1).
It has been recognized that SMAD1 and SMAD5 are tumor
suppressors with redundant roles in the ovary and testis. Loss
of SMAD1 and SMAD5 in the somatic cells of the gonad leads
to metastatic granulosa cell/testicular tumor formation [50]. To
explore the role of SMAD2 and SMAD3 in ovarian granulosa
cells, we have generated three independent conditional
knockout mouse lines using Smad2Dex9,10, Smad3Dex2,3, and
Smad2/3 and anti-Müllerian hormone receptor type 2 (Amhr2)-
Cre recombinase. We show that SMAD2 and SMAD3 function
redundantly to maintain female fertility by regulating follicular
development, ovulation, and cumulus cell expansion [5].
Disruption of SMAD4 signaling in the ovary using Amhr2-

Cre causes premature granulosa cell luteinization and impaired
ovulation and cumulus expansion [51]. Most recently, deletion
of Smad4 in late-stage follicles using cytochrome P450
aromatase (Cyp19)-Cre results in multiple ovulatory defects,
with no manifestation of premature luteinization [52]. It should
be noted that Amhr2-Cre and Cyp19-Cre lines delete
conditional alleles at different stages during folliculogenesis
[51, 52], suggesting that the ovarian function of SMAD4
depends on the differentiation stage of the granulosa cells. A
difference has also been observed during oocyte-specific
deletion of Smad4, where growth differentiation factor 9
(Gdf9)-iCre, but not zona pellucida glycoprotein 3 (Zp3)-Cre,
shows an effect on female fertility [53]. Since the expression of
Gdf9-iCre and Zp3-Cre starts from the respective primordial
and primary follicle stages, these findings argue for a role of
SMAD4 in oocytes during primordial follicle development.

FUNCTION OF INHIBITORY SMADS

In mouse embryos, SMAD6 and SMAD7 are coexpressed in
the developing cardiovascular system [54–56]. In noncardio-
vascular tissues, Smad6 is expressed in intramembranous bone,
whereas Smad7 is expressed in the seminiferous tubules of
testis [55]. Smad6 and Smad7 are also highly expressed in the
kidney and lung [9, 10]. To elucidate the role of SMAD6,
Galvin et al. generated Smad6 mutant mice, which show partial
lethality due to cardiovascular complications [54]. However,
little is known about the role of SMAD6 in the reproductive
system.

To date, there are four knockout mouse lines for Smad7
generated by independent research groups (Table 2):

1) Smad7Dex1 mice. Deletion of exon 1 of Smad7 eliminates the

N-terminal 204-aa residues of SMAD7 protein. However,

these mice can produce a truncated protein that suppresses

TGFB signaling, as demonstrated by a luciferase activity

assay in vitro. Phenotypically, the Smad7Dex1 mice are

viable and fertile. The mutant mice are smaller than controls,

and their B cell responses are altered due to an increase in

phosphorylated SMAD2 that activates TGFB signaling and

B cell apoptosis [57]. Moreover, SMAD7 is a negative

regulator of TGFB and NF-jB pathways that promote renal

fibrosis and inflammation following a unilateral ureteral

obstruction [58]. Consistently, enhanced renal fibrosis and

inflammation, along with increased activation of TGFB and

NF-jB, have been demonstrated in streptozotocin-induced

diabetic Smad7 knockout mice [59].

TABLE 1. Conditional knockouts of Smads in ovarian somatic cells and oocytes.

Conditional allele Cre-recombinase Major reproductive phenotype in females [reference]

Smad1flox Amhr2-Cre None [50]
Smad2flox Amhr2-Cre None [5]
Smad3flox Amhr2-Cre None [5]
Smad4flox Amhr2-Cre Impaired fertility; premature granulosa cell luteinization; defective cumulus expansion

and ovulation [51]
Smad4flox Cyp19-Cre Impaired fertility; increased follicular atresia; defective ovulation and luteal formation

[52]
Smad4flox Zp3-Cre None [53]
Smad4flox Gdf9-iCre A minor fertility reduction [53]
Smad5flox Amhr2-Cre None [50]
Smad1flox; Smad5flox Amhr2-Cre Impaired fertility; metastatic granulosa cell tumor development [50]
Smad1flox; Smad5flox; Smad9�/� Amhr2-Cre Impaired fertility; metastatic granulosa cell tumor development [50]
Smad2flox; Smad3flox Amhr2-Cre Impaired fertility; defective follicular development and ovulation [5]
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2) Smad7Dex4 mice. Deletion of the exon 4 of Smad7 eliminates

the entire MH2 domain. The majority of Smad7Dex4 mice

died in utero due to multiple cardiovascular defects [60].

The surviving adults demonstrate enhanced SMAD2/3

phosphorylation in the heart, accompanied by increased

apoptosis, impaired cardiac functions, and severe arrhyth-

mia.

3) Smad7 promoter-exon 1 knockout mice. Kleiter et al.

generated a Smad7 conditional allele by flanking the

promoter region and exon 1 of the Smad7 gene with two

LoxP sites. A Smad7 null allele was subsequently produced

using Cre-recombinase driven by a ubiquitously expressed

human cytomegalovirus minimal promoter [61]. Smad7
homozygous mice are embryonically lethal. Using CD4-Cre,

the authors generated Smad7 conditionally deleted mice in T

cells and showed that SMAD7 drives T helper 1 responses

in multiple sclerosis and experimental autoimmune enceph-

alomyelitis [62].

4) Smad7 mutant mice lacking MH2 domain and the poly (A)

sequence. This is the most recently developed Smad7
knockout mouse [63]. Interestingly, Smad7 null mice on a

C57BL/6 background die within a short time after birth.

However, mice on an ICR background survive to adulthood

with growth retardation. Counterintuitively, levels of

phospho-SMAD2/3, indicators of TGFB signaling activity,

are reduced in mouse embryonic fibroblast (MEF) cells from

the knockout mice, with no alterations in gene expression

for the plasminogen activator inhibitor-1 (PAI-1), a known

target of TGFB. Moreover, the activity of BMP signaling

does not appear to be altered, as evidenced by comparable

levels of phospho-SMAD1/5/9 and mRNA expression for

inhibitor of DNA binding 1 (Id1; a BMP target gene)

between Smad7-deficient MEF cells and controls [63]. The

discrepancies in the phenotype of these mice are currently

unknown, and are potentially associated with the different

targeting strategies utilized by different investigators and the

genetic background of the mice. Nevertheless, these studies

reveal a complex role of SMAD7 in vivo, suggesting

potential compensatory mechanisms that antagonize TGFB

signaling activity in the absence of SMAD7. Further

exploiting the available Smad7 knockout mouse models

will be beneficial to define the function of inhibitory

SMADs.

ARE INHIBITORY SMADS REGULATORS OF OVARIAN
FUNCTION?

The ovarian function of inhibitory SMADs is poorly
understood. In the ovary, SMAD6 protein is strongly expressed

in oocytes of primordial follicles, but weakly expressed in
growing oocytes, and theca and granulosa cells [64]. Smad6
and Smad7 mRNA levels are lower in fully grown oocytes
compared with those of growing oocytes [65]. In addition,
SMAD6 and SMAD7 are subject to gonadotropin regulation
[64, 66]. A comprehensive quantification analysis of SMAD6
and SMAD7 expression at different stages of follicular
development is currently unavailable. Inconsistent results of
SMAD6 and SMAD7 expression in mouse oocytes have been
reported, which may reflect the differences of antibodies,
experimental approaches, and models utilized [64–67]. A
definitive role of TGFB signaling in the oocyte remains
elusive, and conditional deletion of SMAD4 in the oocyte
produces minimal reproductive phenotype [53], suggesting that
TGFB signaling is tightly controlled during development. It is
tempting to speculate that SMAD6 and SMAD7 may act as
guardians in the oocyte to keep TGFB signaling in check and
prevent its overactivation, which could result in a catastrophic
outcome. However, this speculation must be experimentally
tested. The expression of inhibitory SMADs in ovarian tissues/
cells provides circumstantial evidence that SMAD6 and
SMAD7 may play a role in the ovary.

In 2012 and 2013, two reports, one of which is from our
group, suggested that SMAD7 is a potential regulator of
ovarian function [66, 67]. In one study, the McGee laboratory
elegantly demonstrated that SMAD7 serves as a mediator of
apoptosis induced by TGFB signaling in ovarian granulosa
cells in vitro [67]. TGFB activates Smad7 promoter and
induces Smad7 gene expression in granulosa cells via
interaction with a SMAD response element, the mutation of
which impairs TGFB action. By manipulating the expression
levels of Smad7 in mouse granulosa cells using overexpression
and a small interfering RNA (siRNA) knockdown approach,
the authors were able to provide compelling evidence
supporting that SMAD7 is essential for TGFB-induced
apoptosis. Since apoptosis is known to influence follicular
development, results of this study further imply that SMAD7
regulates ovarian folliculogenesis and function.

In the other report, we examined the potential function of
SMAD7 in the mouse ovary using siRNA knockdown and
primary mouse granulosa cell culture [66]. We showed that
SMAD7 is expressed in mouse granulosa cells and acts as a
negative regulator of TGFB1 and GDF9 signaling. As GDF9 is
a key oocyte-derived factor that regulates oocyte-granulosa cell
interaction, follicular development, and ovulation [1, 68], our
findings indicate that SMAD7 may function to precisely
control TGFB superfamily signaling essential for oocyte-
granulosa cell communication within the ovary. More
specifically, induction of SMAD7 may serve as a negative
feedback to limit the extent and duration of TGFB and GDF9
signaling and ensure optimal biological responses by ovarian
cells. To further define the function of SMAD7 in the ovary,
we generated a conditional knockout of Smad7 using mice
harboring a conditional allele of Smad7 [62] and Amhr2-Cre.
However, the Smad7 conditional knockout mice did not show

TABLE 2. Currently available Smad7 mutant mice.

Targeted deletion Smad7 transcript/protein Major phenotype [reference]

Smad7 exon 1 A truncated protein detected Reduced body size and abnormal B cell responses [57]
Smad7 exon 4 Transcripts corresponding to exons 1–3 detected Cardiovascular defects with severe embryonic lethality [60]
Smad7 promoter-exon 1 Deletion of Smad7 transcript Embryonic lethality [62]
Smad7 exon 4 No SMAD7 protein detected Postnatal survival of the mutants depends on genetic backgrounds;

an ICR background is permissive to postnatal development of the
mutant mice to adulthood with growth retardation [63]

INHIBITORY SMADS REGULATE OVARIAN FUNCTION
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an overt reproductive defect. Moreover, alterations of known
target genes of TGFB signaling were not detected in granulosa
cells isolated from these mice (data not shown). These data
argue for a potential compensatory mechanism that operates to
control the TGFB signaling activity in the absence of SMAD7.
Of note, a redundancy between SMAD6 and SMAD7 has been
hypothesized in heart development and function [60]. Since the
Smad6 mutant mice show partial lethality, and the viable ones
develop numerous cardiovascular abnormalities [54], a condi-
tional knockout approach appears to be a better strategy to
elucidate the potential redundancy between SMAD6 and
SMAD7 in the ovary.

PERSPECTIVES

TGFB superfamily signaling regulates essential female
reproductive functions. Dysregulation of TGFB signaling leads
to reproductive disorders and cancer development [50, 69–72].
The role of inhibitory SMADs in the ovary and female
reproductive tract remains elusive. Mouse models have been
widely used to interrogate the function of TGFB signaling.
However, the majority of models have been created to
inactivate genes of this superfamily pathway (i.e., loss of
function). Relevant mouse models with tissue/cell-specific
overactivation of TGFB signaling (i.e., gain of function) are
needed in view of the enhanced, instead of suppressed, TGFB
signaling in a number of diseases (e.g., fibrosis, Marfan

syndrome, and cancer at certain stages) [73–75]. Thus,
development of a mouse model with simultaneous disruption
of Smad6 and Smad7 may help to identify the function and
redundancy of inhibitory SMADs. Such a model is important
not only to elucidate the reproductive function of inhibitory
SMADs, but also to clarify the consequence of overactivated
TGFB signaling in the ovary. It is tantalizing to speculate that
conditional deletion of Smad6 and Smad7 in the ovary may
enhance TGFB signaling activity, which could potentially
affect cell cycle gene expression, leading to abnormal
granulosa cell proliferation, differentiation, and apoptosis.
Additional mouse models with enhanced TGFB signaling in
the ovary could be generated by taking advantage of a latent
constitutively active TGFBR1 [76] and specific Cre-recombi-
nases targeting the ovary. A hypothetical model has been
proposed to illuminate the function of inhibitory SMADs and
the consequence of enhanced TGFB signaling in the ovary
(Fig. 1). We envision that the availability of these novel mouse
models will help us to gain a more comprehensive under-
standing of TGFB signaling in both physiologic and patho-
logical conditions.
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FIG. 1. A hypothetical model depicting the role of inhibitory SMADs and the strategy to enhance TGFB signaling in the ovary. TGFB ligands bind to the
type 2 (RII) and type 1 (RI) receptors, which activate downstream SMAD2/3 proteins. SMAD2/3 then complex with SMAD4 and translocate into the
nucleus to regulate gene transcription in concert with coactivators and corepressors (Co-A/R). The TGFB signaling activity is controlled by inhibitory
SMADs (i.e., SMAD6 and SMAD7). SMAD6/7 inhibit TGFB signaling by promoting R1 ubiquitination and degradation, interfering with SMAD2/3-SMAD4
complex formation, and antagonizing SMAD2/3 action in the nucleus. In a physiologic condition, the TGFB signaling activity is finely tuned, with an
optimal signaling output in response to ligand stimulation (A). In the absence of ovarian SMAD6 and SMAD7, the suppressive effect imposed by inhibitory
SMADs is lost, and TGFB signaling activity is expected to be enhanced. Consequently, potentiated gene expression and/or altered ovarian development/
function will be anticipated (B). C) An alternative approach to induce enhanced TGFB signaling in the ovary. A glycine/serine-rich (GS) domain mutation
(i.e., T204D) renders the TGFBR1 constitutively active. Mice containing a latent constitutively active TGFBR1 allele [76] and Cre recombinase targeting
the ovary can be used to achieve such a goal. D, aspartic acid; P, phosphorylation.
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