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Abstract

Objective—Because each patient’s baseline (pre-treatment) characteristics differ (e.g., age, sex, 

socioeconomic status, ethnicity/race, biomarkers), treatments do not work the same for every 

patient-some can even cause detrimental effects. To improve patient care, it is critical to identify 

such heterogeneity of treatment effects. But the standard analytic approach dichotomizes baseline 

characteristics (low vs. high) which often leads to a loss of critical patient-care information and 

power to detect heterogeneity, as the results may depend strongly on the cut-points chosen. A 

more powerful analytic approach is to analyze baseline characteristics (i.e., covariates) measured 

on a continuous scale that retains all of the information available for the covariate.

Methods—In this article, we show how the Johnson-Neyman (J-N) method can be used to 

identify the prognostic and predictive value of baseline covariates measured on a continuous scale 

- findings that often cannot be determined using the traditional dichotomized approach. As an 

example, we used the J-N method to explore treatment effects for varying levels of the biomarker 

salivary mutans streptococci (MS) in a randomized clinical prevention trial comparing fluoride 

varnish with no fluoride varnish for 376 initially caries-free high-risk children, all of whom 

received oral health counseling.

Results—The J-N analysis showed that children with higher baseline MS values who were 

randomized to receive fluoride varnish had the poorest dental caries prognosis and may have 

benefitted most from the preventive agent.
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Conclusion—Such methods are likely to be an important tool in the field of personalized oral 

health care.
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To assess preventive and therapeutic benefits, modern dental research relies on clinical trials 

that are extremely expensive and time consuming. It is therefore critical that the greatest 

amount of information be extracted from them. At the same time, it is well known that the 

treatments evaluated in these trials, including those that are preventive and curative, do not 

work the same for every patient and that some may experience detrimental effects (1–6). To 

identify who may or may not benefit from a particular treatment, investigators frequently 

use subgroup analyses to evaluate 'treatment-effect heterogeneity' according to patients' 

baseline characteristics.

We define "subgroup analysis" here as any treatment effect evaluation for a specific end 

point in subgroups of study participants, while subgroups are constructed according to 

participants' baseline characteristics (e.g., socioeconomic status, age, sex, race/ethnicity, 

biomarkers). The end point is usually the primary endpoint, such as a measure of treatment 

efficacy or safety. The treatment effect, a comparison between the treatment groups, is either 

measured on the absolute scale (e.g., arithmetic difference) or relative scale (e.g., relative 

risk or odds ratio). Subgroup analyses are often listed as a primary or secondary study 

objective, and the research question usually posed may depend on how the baseline 

characteristic is measured: continuous versus dichotomized. Baseline characteristics 

measured on a continuous scale are often categorized into two (dichotomized) or more 

groups (e.g., salivary mutans streptococci (MS) level dichotomized as low vs. high), 

resulting in a loss of information and power (7), while the results from these dichotomized 

analyses may depend on the chosen cut-point. However, for baseline characteristics 

measured on a continuous scale (e.g., age, baseline MS), an investigator can ask how 

treatment effects vary by the levels of those characteristics.

Identifying treatment-effect heterogeneity provides critical patient information needed to 

tailor treatments according to an individual's characteristics and to ultimately lead to more 

effective oral health care delivery for personalized medicine (6). The purpose of this article 

is to show how baseline characteristics measured on a continuous scale can be analyzed 

using the Johnson-Neyman (J-N) method (8–18). This method has been applied to many 

different types of studies in education, psychology and medicine (19–22), but to our 

knowledge has not been applied to oral health. We illustrate this J-N method with an 

analysis of the Center to Address Disparities in Oral Health (often referred to as CAN DO) 

fluoride varnish trial, a randomized clinical prevention trial (RCT) that evaluated the 

efficacy of fluoride varnish with oral health counseling to reduce caries incidence in 376 

initially caries-free high-risk children aged 6 to 44 months (23, 24). In this article, we used 

the J-N method for the first time in this fluoride varnish RCT to explore the predictive and 

prognostic value of the biomarker, salivary mutans streptococci (MS).
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This article is organized as follows. In the Methods section, we first describe the standard 

approach that is used to evaluate treatment-effect heterogeneity. We then show how the J-N 

method can be used to model baseline characteristics (i.e., covariates) on a continuous scale 

that retains all of the available information in the covariate. In the results for Applications 

section, we illustrate how the J-N method can be used to evaluate treatment-effect 

heterogeneity in the CAN DO fluoride varnish RCT. The Discussion, with further 

consideration of how to avoid erroneous conclusion and other matters, is presented below. 

Final remarks are provided in the conclusion.

METHODS

The Standard Approach

The standard approach usually assesses treatment-effect heterogeneity, also called 

"interactions", "treatment-effect modification" or "moderation", by first defining (often 

arbitrarily) study-participant subgroups based on categorized (usually dichotomized) 

baseline characteristics (e.g., low MS levels vs. high MS levels). After the baseline variable 

is dichotomized, the results are assessed for heterogeneity by testing the statistical 

interaction between treatment and the dichotomized baseline characteristic for significance. 

But it is well known that modeling covariates on a continuous scale is more powerful than 

categorizing covariates into two or more groups (7), since this can diminish the effect of the 

baseline characteristic as a predictor of treatment effectiveness.

A common mistake is to claim heterogeneity on the basis of separate tests of treatment 

effects within each level of the baseline variable (2, 3). For example, testing the hypothesis 

that there is no treatment effect in high MS levels, and then testing it separately in study 

participants with low MS levels does not address the question of whether treatment 

differences vary according to MS levels. Another common error is to ignore the uncertainty 

of the estimates of the treatment effect (e.g., standard error).

The Johnson-Neyman Approach

A more accurate statistical method for assessing the heterogeneity of treatment effects is the 

Johnson-Neyman (J-N) approach (8–16). Recent developments to this methodology include 

applications to both longitudinal data with normally distributed continuous outcomes (e.g., 

hierarchical linear (multi-level models)) (17), as well as non-normally distributed data 

suitable for generalized linear (mixed) models with adjustment for multiple testing, which 

protects against erroneous conclusions (18). In Appendix A, we describe how the J-N 

method can be applied to generalized linear models (GLMs), particularly logistic regression 

models that assume a logit link and Bernoulli distribution (see Lazar and Zerbe (18) for 

additional details about the J-N method for generalized linear mixed models). Appendix B 

provides additional details about the J-N approach that are applicable to the CAN DO 

fluoride varnish trial described in the Results-Applications section. Appendix C provides a 

SAS macro based on SAS version 9.3 GLIMMIX procedure that can be used to perform the 

J-N analysis for logistic regression models with cross-sectional data. It also includes the 

SAS code used to perform the J-N analysis presented in the Results-Applications section.
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To give a brief overview of the method to evaluate heterogeneity of treatment effects, the J-

N approach compares the relationship between the treatment effect (e.g., odds ratio) and 

baseline characteristic (e.g., pre-treatment or pre-intervention variables that do not vary over 

time) of interest by evaluating whether the fitted regression curves differ significantly 

among treatment groups, while optionally adjusting for other characteristics. When there is 

evidence of a heterogeneous treatment effect, then the 'significance region' (the range of the 

values of the baseline characteristic that significantly differ between the fitted regression 

curves) can be determined. Determining the significance region involves comparing the 

treatment curves at each value of the characteristic, which results in statistical tests for every 

value of the characteristic. In dentistry studies, this can sometimes be well over 1000 tests. 

Rather than evaluate a potentially infinite number of tests, the J -N analysis can determine 

the significance region explicitly with adjustment for multiple testing that protects against 

erroneous conclusions (see Appendix A and Appendix B). While this 'explicit solution' 

assumes that the patient characteristic (or co-variate) has linear effects, an alternative 

solution as well as the standard dichotomized approach does not require linearity in the 

covariates (see Appendix A). A plot of the treatment effect against the baseline 

characteristic (i.e., covariate) together with the 95% confidence band graphically illustrates 

heterogeneity of treatment effects.

One advantage of this approach is that by evaluating the prognostic and predictive value of a 

co-variate, J-N can make more detailed and substantial descriptions than the standard 

approach. The J-N method makes statements about a significant ‘interaction’ effect and also 

about the values of the covariate that are significant (e.g., 'There were significant differences 

between treatments over the whole range of the covariate, and treatment effects increased 

with increasing value of the covariate'; or possibly, 'Treatment effects increased with 

increasing value of the covariate, and groups were significantly different for values of the 

covariate above' (25)). Another advantage over the standard approach that distills 

heterogeneity of treatment-effects to a not very intuitive p-value is that the J-N method can 

graphically illustrate the treatment-effects as a function of a continuous covariate.

RESULTS - APPLICATION

Dental caries in children remains a significant public health problem (WHO, 2011). Since 

caries incidence can be greatest in children and adolescents, dentists need various tools to 

predict the occurrence of new carious lesions. Some studies have shown that the number of 

salivary mutans streptococci (MS) is associated with caries onset and progression (26–29), 

but researchers have questioned whether it is a reliable predictor for dental caries risk in 

children (30).

Using the J-N method described in the Methods section, we can evaluate the prognostic and 

predictive value of MS in the CAN DO fluoride varnish study, a controlled dental examiner 

masked phase III RCT that evaluated the efficacy of fluoride varnish (FV) with oral health 

counseling versus counseling alone to reduce caries incidence in 376 initially caries-free 

high-risk children aged 6 to 44 months from predominantly low-income Chinese and 

Hispanic San Francisco families. The participants underwent dental examination at baseline 

prior to the intervention and at one and two years post intervention. Intent-to-treat analyses 
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showed a fluoride varnish protective effect in caries incidence, p<0.001 (23). Caries 

incidence was significantly higher for counseling only (0 FV) vs. the groups assigned 

counseling + FV once/year (OR=2.20, 95% CI: 1.19–4.08) and twice/year (OR=3.77, 95% 

CI 1.88–7.58))(23).

The study had baseline MS measurements (0 FV per treatment per year: n=89; 1 FV 

treatment per year n=78; 2 FV treatments per year n=82) for 249 caries-free children. To 

illustrate the J-N approach more clearly, we collapsed the two FV treatment groups into a 

single group. We then simultaneously fit two logistic regression curves of any caries 

incidence, the primary outcome, to evaluate the prognostic and predictive value of MS, 

which was logarithmically transformed in base 10 (log10 MS). In Figure 1A, the best fitting 

curves of any caries incidence for the two treatment groups are:

• −1.15+0.52 log10 MS (colony forming units per milliliter or CFU/ml) for no FV, 

and

• −1.93+0.33 log10 MS (CFU/ml) for FV with associated standard error lines (dashed 

lines).

Figure 1A summarizes the log odds of caries incidence for FV compared to no FV 

treatments as MS increases. The figure suggests that higher log10 MS levels were associated 

with higher log odds of caries incidence, especially for children who were randomly 

assigned to no FV treatment.

Using the J-N method, we can evaluate the particular values of log10 MS that result in a 

statistically different (heterogeneous) caries incidence and, most importantly, which children 

may benefit most from FV treatment. This question may be particularly important, for 

instance, for parents who are weighing the benefits of their children receiving a treatment 

against any potential risks. In Appendix B, we show how to use a decision guide to 

determine whether caries incidence differs between the treatment groups.

Figure 1B displays the relative treatment effectiveness based on odds ratios across 

individual levels of log10 MS. For high log10 MS values, the estimated odds ratio of caries 

was lower for children receiving FV than for those not receiving FV (an odds ratio less than 

one indicates that fluoride varnish was more protective against caries than no FV). The J-N 

analysis results show evidence for heterogeneity of relative treatment effects (joint test or 

interaction test: P<0.0001, Fig 1B). We conclude that: 1) when log10 MS is between 0.6 and 

6.9, children assigned fluoride varnish had significantly lower odds of caries, after 

adjustment for multiple testing; and 2) children who had the highest values of log10 MS 

benefitted the most from receiving preventive FV treatment.

To compare the results from the J-N method, we also evaluated treatment-effect 

heterogeneity using the standard approach, as described in the Methods section. Levels of 

the biomarker MS were dichotomized as no MS (MS = 0) vs. any (MS >0). We fit a 

standard logistic regression model of any caries incidence, the primary outcome, to evaluate 

a treatment by covariate (i.e., dichotomized MS) interaction effect. The interaction test 

detected borderline statistically significant heterogeneity (P = 0.06). We also evaluated MS 

using the same dichotomization as described in Ramos-Gomez et al.(31) (i.e., log10 MS < 3 
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vs. log10 MS ≥ 3), and the interaction test between treatment and this dichotomized version 

of MS detected no statistically significant heterogeneity (P = 0.21). SAS version 9.3 

GLIMMIX procedure was used to perform both the Johnson-Neyman analysis, as described 

in Appendix C, and the standard analysis assessing the interaction between treatment and 

dichotomized baseline characteristic log10 MS.

DISCUSSION

The CAN DO fluoride varnish RCT example illustrates how the Johnson-Neyman analysis 

addresses research questions that are important for both investigators and parents. Using this 

method, we were able to evaluate for the first time the heterogeneity of an oral health 

biomarker, MS, in children enrolled in this study. Our results suggest that children with 

higher levels of MS who were assigned to receive no fluoride varnish had a poorer 

prognosis, and that these children may benefit most from fluoride varnish treatment 

compared with no treatment. This benefit could be explained by the fluoride concentration 

in saliva that works as the driving force to decrease the rate of enamel demineralization and 

enhance the rate of mineralization (32–34). Nevertheless, despite the biological plausibility 

of the observed results, the fluoride varnish protocol did not a priori specify examination of 

the role of MS as a predictive factor, and these results should be interpreted cautiously. As 

documented in the primary report of the fluoride varnish trial (23), an unexpected protocol 

deviation resulted in some children receiving less active fluoride varnish than assigned, and 

the preventive effects of FV may even be stronger.

The evaluation of treatment-effect heterogeneity has been associated with well-documented 

problems, such as multiple testing that can lead to erroneous conclusions. However, not 

presenting evaluations of treatment-effect heterogeneity is a "steep price to pay for a 

problem that can be remedied by more responsible analysis and reporting." as Lagakos put it 

(2). To protect against erroneous conclusions that can lead to over-interpreted results, 

researchers should use a method that accounts for multiple testing, such as Johnson-

Neyman. However, the safest approach is to validate exploratory analyses using an 

independent data set known as "replication" or "external validation". Guidelines have also 

been proposed to address the challenges associated with the analysis and presentation of the 

results (3). While these guidelines focus on the reporting of randomized clinical trials, the 

issues discussed can also apply to observational studies. Therefore, these guidelines are 

appropriate to apply to any presentation of results that evaluates treatment-effect 

heterogeneity, including results generated from the Johnson-Neyman approach.

We highlighted in this article how the approach of categorizing baseline characteristics 

measured on a continuous scale can fail to identify the value of the baseline characteristic as 

a predictor of treatment effectiveness. While we focused on characteristics measured on a 

continuous scale, the J-N method can also be applied to other types of numeric 

characteristics, including discrete count or ordinal (with many categories) scaled baseline 

characteristics. Subgroup analyses that are properly analyzed and reported can provide 

useful information for the care of study participants and for future research, but only if the 

analytic method retains all of the information in the covariate and protects against erroneous 

conclusions from multiple testing, as the Johnson-Neyman method does. Most importantly, 
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regardless of the analytic method used, exploratory results generated from these subgroup 

analyses need to be confirmed before the results are applied to patients in the clinical setting. 

Identification and confirmation of baseline characteristics that predict treatment 

effectiveness may ultimately lead to personalized oral health care or precision medicine that 

improves patient health (6).

CONCLUSION

The Johnson-Neyman method enables us to evaluate the prognostic and predictive value of a 

patient’s characteristics. Using methods that predict heterogeneity of treatment effects can 

improve treatment decisions for individual patients and is becoming an important tool in the 

field of personalized oral health care.
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APPENDIX A

The Johnson-Neyman Approach Suitable for Logistic Regression Models

The Johnson-Neyman (J-N) approach was recently developed for the generalized linear 

model (GLM) and the generalized linear mixed models (GLMM) [1]. The GLM is a special 

case of GLMM, and it can be extended to the GLMM with the addition of random effects 

that account for the correlation among longitudinal responses. The methodology for the 

Johnson-Neyman method suitable for either the GLM and GLMM, which assumes any 

normal or non-normal distribution from the exponential family, can be found in Lazar and 

Zerbe [1]. A brief overview is described below about this particular case of the J-N approach 

for GLM, and this overview is directly applicable to the CAN DO fluoride varnish trial 

described in the Application Section, particularly logistic regression models of dichotomous 

outcomes with a logit link and Bernoulli distribution.

Before we provide an overview of the particular case of the J-N approach for logistic 

regression models for dichotomous outcomes suitable for cross-sectional data, we will first 

describe how to build a GLM. GLM is a broad class of models suitable for analyzing a 

diverse type of outcomes (e.g., Bernoulli distribution for dichotomous outcomes or Poisson 

distribution for counts). (See McCullagh and Nelder [2] and McCulloch and Searle [3] for 

more information about GLM and GLMM, respectively.) Three decisions are required to 

build a GLM: the distribution of the data that can be from any probability distribution of the 

exponential family, the systematic component of the model, and the link function. The 

distribution can be any member of the exponential family such as Bernoulli, Poisson, 

negative binomial, or Normal (Gaussian). The systematic component of the model specifies 

the effect of the covariate, X, on the mean of the distribution, Y. This is known as the linear 

predictor, η = Xβ, such that η is linear in β, the regression parameters. The link function, g(.), 

describes the relationship between the mean of Y or m and η, where E(Y) = m and g(m) = Xβ. 

Any differentiable monotonic link function can be chosen, such as the Bernoulli distribution 

link function, which is usually the logistic or logit link function, g(m) = log(m/(1 − m)). 

Logistic regression is one specific kind of GLM with Bernoulli distribution, systematic 

component(s), X, and logit link function.

Johnson-Neyman Approach for Comparing Logistic Regression Models

Consider two typical logistic regression models fit simultaneously with dichotomous 

outcomes:

(A.1)

where xij denote the measurement of the jth subject for the ith treatment group (here, we 

consider two treatment groups i = 1 or 2 but more than two groups can be considered 

without loss of generality). Πij is the probability that the outcome yij = 1, such that 

yij~Bernoulli(Πij), ηij is the linear predictor, and αi and βi are the fixed intercepts and slopes 
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for each of the i treatment groups. The log  expression is usually referred to as the 

logit or log-odds.

Consider comparing the curve from treatment group 1, (α1 + β1x), with the curve from 

treatment group 2, (α2 + β2x), from models (A.1). The joint hypothesis of equality of the 

intercepts, α1 and α2, and slopes, β1 and β2, of two logistic regression curves can be 

expressed in terms of the difference in the intercepts and the difference in the slopes: Hk = 

(α1 − α2) + (β1 − β2)xk = θC + θAxk, where θC = (α1 − α2) and θA = (β1 − β2), for distinct k 

covariate valuesx1, x2,x3,….

In general, when testing a null hypothesis, , for a fixed 

contrast matrix, C, where β represents the regression parameters, a t- or F-statistic can be 

used. When the rank of C is one, , where V̂
θ̂ = CL̂C′ and L̂ is the empirical 

covariance matrix of β̂ − β. The null hypothesis can be tested with an F-statistic if the rank 

of C is greater than or equal to one,  with s numerator degrees of 

freedom and v denominator degrees of freedom. The denominator degrees of freedom are 

often estimated from the data [4], and in some cases, v denominator degrees of freedom may 

be simply the sample size (n) minus the number of parameters (e.g., for comparing two 

logistic regression curves as described in A.1, v = n − 4). Certainly the usual model 

assumptions must hold to make valid inference about θ that accounts for the variance-

covariance matrix selected by the investigator [5, 6]. A single null hypothesis of the form, 

, can be rejected, , if , where the t-statistic associated 

with hθ̂ is  and F1−α,1,v is the 1 − α percentage point of an F 

distribution with 1 and v numerator and denominator degrees of freedom, respectively.

Multiple null hypotheses of the form, hθ = 0, can be rejected (hθ ≠ 0) whenever the t-

statistic associated with hθ exceeds the Scheffé’s criterion, ,

(A.2)

where F1−α,s,v is the 1 − α percentage point of an F distribution with s and v numerator and 

denominator degrees of freedom, respectively. In our application, , 
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where , and null 

hypotheses are therefore rejected whenever . The vertical difference 

between the two logistic regression equations at any X can be expressed as 

, 

and multiple null hypotheses can be tested simultaneously at two or more unique values of X 

by repeating A.2 for each value of X. Scheffé’s method for multiple comparisons controls 

the family-wise type I error rate for tests of all linear functions, hxθ, at level α, and the price 

of multiple comparisons adjustment is always the same no matter how many values of X are 

tested. In our application, Scheffé’s constant is , where s = 2, which is 

determined from the number of rows in the C matrix, θ is a 2 × 1 vector containing the 

differences in the intercepts and the differences in the slopes, and hxθ are selected to be 

vertical differences between the lines at specified values of xk’s. This solution that proposes 

to compare each X’s test statistic with Scheffé’s criterion does not require linearity in X. The 

above solution is the same solution described in Lazar and Zerbe for GLM and GLMM 

except in this application we focus on the special case of comparing logistic regression 

models.

Rather than test a potentially infinite number of hypotheses (one at each xk) that requires a 

separate calculation for each xk, we can determine the significance regions explicitly, as 

described in Lazar and Zerbe. By re-writing A.2, a quadratic form in X is yields 

. If we let , where θC denote the difference in the 

intercepts and θA denote the difference in the slopes and Vθ(C), Vθ(A) and Covθ(A)θ(C) denote 

the empirical error variances (Vθ) and covariance (Cov) of θC and θA, then the quadratic 

inequality is: 

 or 

Ax2+Bx+C > 0, where , B = 2(θAθC − 2F1−α,2,VCovθ(A)θ(c)), 

, D = B2 - 4AC. Here we focus on two treatments groups, but more 

than two groups can be compared.

After estimating A, B, C and D, one of three possible cases is used to determine the 

significance regions explicitly.
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Case I

If A>0 (implies D>0), then the tests are significant for the X’s satisfying: 

or .

Case II

If A<0 and D>0, then the tests are significant for the X’s satisfying: 

.

Case III

If D<0 and A<0, then the tests are never statistically significant for any X. The case where 

A>0 and D<0 cannot occur.

The ‘explicit’ solution described above is the same solution described in Lazar and Zerbe 

[1], which assumes that the two regression functions are linear in X. Additional clarification 

about the cases is described in Lazar and Zerbe.

APPENDIX B

J-N decision guide for determining the significance regions with 

application to the CAN DO fluoride varnish trial

We illustrate how a decision guide useful for determining the appropriate case can be used 

in the fluoride varnish study (Figure 2). This guide provides a facile way to evaluate whether 

the curves are statistically different with adjustment for multiple comparisons and without 

calculation of components A, B, C, or D. In addition, this decision guide supplies additional 

tests to validate the selection of the appropriate case.

The first step of the decision guide evaluates the joint test, which is a simultaneous test of 

the equality of the intercepts and the equality of the slopes. If the joint test is not statistically 

significant, then the lines do not differ in either intercepts or slopes. This is Case III, and it is 

not necessary to calculate A, B, C, or D. If the joint test is statistically significant, as in the 

fluoride varnish (FV) study (F-value = 10.15, s = 2, v = 243; P<0.0001), then D is greater 

than zero, which agrees with the results from the FV study. The next step tests whether the 

equality of the slopes using Scheffé’s criterion (2F1−α,2,v) is statistically significant. Case I 

(A>0) occurs if, and only if, the slopes differ by Scheffé’s criterion. Case II (A<0 and D>0) 

occurs when the slopes do not differ by Scheffé’s criterion, and the simultaneous test of 

equality of the intercepts and slopes is significant by the F-test.

For the fluoride varnish study, the estimates of A, B, C and D are a = −0.1023, b = 

+0.81356, c = −0.48512 and d = +0.46389, respectively. Since a<0 (implies d >0), we then 

select Case II. Case II is verified by checking whether the slopes do not significantly differ 

(p > 0.05) using Scheffé’s criterion, where the |t-value| < Scheffé’s criterion: 
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. After plugging in a, b, c and d for Case II, as described in 

Appendix A, the results are 0.649 < log10MS (CFU/ml)<7.324. We restrict our inference to 

the MS range where the data were collected. Therefore, we conclude that the results are 

0.649 < log10 MS (CFU/ml)< 6.99.

As shown for the fluoride varnish study, the explicit solution eliminates testing at every 

value of the covariate. For two or more covariates of interest, this explicit solution is thought 

to be intractable [7,8]. Hunka and Leighton [9] developed a solution for three covariates by 

casting an equation within a general linear model framework, which cannot be solved 

directly. Symbolic processing capabilities of computational software, such as Mathematica, 

can be used to provide a solution. Hunka and Leighton’s solution is limited to the analysis of 

covariance framework for non-correlated data and it does not consider the problem of 

evaluating treatment-effect heterogeneity for baseline characteristics, as described in this 

paper.

APPENDIX C

SAS macro for evaluating treatment-effect heterogeneity using the 

Johnson-Neyman methodology

The following SAS macro was used to analyze the CAN DO fluoride varnish data using the 

Johnson-Neyman logistic regression analysis of any caries incidence vs. no caries incidence 

(outcome), a dichotomous outcome with a continuous covariate of interest, MS.

The SAS Code starts on the next page.

/***************************START SAS CODE*****************************/

/* SignificanceRegion.sas

Macro for performing Johnson-Neyman for a logistic regression model.

(Similar SAS code adapted from the generalized linear mixed model de-

scribed by Lazar and Zerbe 2011)

The input parameters are:

SignificanceRegion

datasetname = data set name

outcome = Dichotomous outcome variable (0 or 1)

treatment = Treatment Indicator (0 or 1)

continuousvar= baseline continuous variable of interest

*/

%macro SignificanceRegion(datasetname,outcome,treatment,continuousvar);

proc glimmix data=&datasetname oddsratio ;

class &treatment;

model &outcome(event='1')= &treatment &treatment*&continuousvar /s

dist=bin link=logit noint;

/*Joint Test*/
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contrast 'contrast Fixed' &treatment 1, &treatment*&continuousvar

1 ;

/*Difference in Slopes to Calculate A*/

estimate 'slope' &treatment*&continuousvar −1 1;

/*Difference in the Intercepts to Calculate C*/

estimate 'int' &treatment −1 1 ;

/*Used to Calculate the Covariance for B*/

estimate 'intslope' &treatment −1 1 &treatment*&continuousvar −1 1;

/* Outputs the above information using the output delivery system*/

ods output estimates=estimates;

/*Alternative way to determine the Significance Region is to compare

Scheffe's Constant to the t-value based on the following calculation

/*

estimate 'check 0' &treatment 1 &treatment *&continuousvar 0/or;

estimate 'check 3.5' &treatment 1 &treatment *&continuousvar 3.5/or;

estimate 'check 6' &treatment 1 &treatment *&continuousvar 6/or;

*/

run;

proc sort data=estimates;by df;

data f;set estimates;by df;

/*Denominator degrees of freedom determined from the joint test speci-

fied in the model*/

if first.df;

/*F-statistic*/

F=finv(0.95,2,df);

/*Use Scheffe to compare to the t-statistic*/

Scheffe = sqrt(2*f);

match=1;

keep f match Scheffe;

run;

proc print data=f;run;

data estimates2;set estimates;match=1;run;

data estimates3;merge f estimates2 ;by match;

data intestimates;set estimates3;

if label='int' then do;InterceptEst=estimate;IntVar=StdErr**2;

C = (InterceptEst**2)−(2*f*IntVar);output;end;

keep C InterceptEst IntVar f;

run;

data slopeestimates;set estimates3;

if label='slope' then do;SlopeEst = estimate;SlopeVar=StdErr**2;

slopesq=SlopeEst**2;

A = (slopesq)−(2*f*SlopeVar);output;end;

keep A SlopeEst SlopeVar ;

run;
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data intslope;set estimates3;if label='intslope' then do;IntSlopeEst =

estimate;IntSlopeVar=StdErr**2;output;end;

keep f IntSlopeEst IntSlopeVar;

run;

data all;merge intestimates slopeestimates intslope;

/* could calcuate cov using formula as described in Lazar & Zerbe

(2011);

Form 1: V((a1−a2)+(b1−b2))=V(a1−a2)+V(b1−b2)+2Cov((a1−a2),(b1−b2))

So Cov((a1−a2),(b1−b2)) =( V((a1−a2)+(b1−b2))−V(a1−a2)−V(b1−b2))/2

Or use this formula; same formula as described in Lazar & Zerbe (2011);

Form 2: V((a1−a2)−(b1−b2))=V(a1−a2)+V(b1−b2)−2Cov((a1−a2),(b1−b2))

So Cov((a1−a2),(b1−b2))=(V(a1−a2)+V(b1−b2)−V((a1−a2)−(b1−b2)))/2*/

covariance=(IntSlopeVar-intvar-slopevar)/2; /*using form 1*/

run;

data all1;set all;

B=2*((InterceptEst*SlopeEst)−(2*f*Covariance));

D=(B**2)−(4*A*C);

f2sqrt=sqrt(f*2);

if A>0 then do; Case1lower=((−B−sqrt(D))/(2*A));Case1upper = ((−B+sqrt

(D))/(2*A));end;

if A<0 and D>0 then do; Case2lower=((−B+sqrt(D))/(2*A)); Case2upper=((−B

−sqrt(D))/(2*A));end;

label Case1Lower= 'Case I X< ';

label Case1Upper ='Or X>';

label Case2Lower = 'Case II';

label Case2Upper = '<X< ';

F_To_Compare_to_T=sqrt(f*2);

label F_To_Compare_to_T = 'Scheffe Constant For Comparing to T-Value';;

run;

proc print data=all1 noobs label;var A B C D Case1Lower Case1Upper

Case2Lower Case2Upper F_To_Compare_to_T;run;

%mend;

/*

Macro call for CANDO fluoride varnish dataset

Intended is the name of the dataset, dfs1 is the outcome variable,

intended1 is the treatment variable, mutansStrep is the variable of in-

terest measured on a continuous scale;

*/

%SignificanceRegion(intended,dfs1,intended1,mutansStrep);

/*************************END SAS CODE*********************************/

Before using the above macro, we suggest that the appropriate model be fitted to the data 

using the usual model fitting criteria. Examples of the Johnson-Neyman approach for 

longitudinal data suitable for generalized linear mixed models using SAS GLIMMIX with 

associated SAS code can be found in Lazar and Zerbe (1).
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Figure 1. 
Johnson-Neyman analysis of the treatment effect of fluoride varnish (FV) versus no fluoride 

varnish (No FV) treatment as measured by (A) log odds of caries incidence with standard 

error lines (dashed lines) (B) odds ratio (less than one indicates FV better; otherwise No FV 

better) with corresponding 95% confidence band using Scheffé’s method (dashed lines). The 

x-axis indicates the values of the children’s Log10 salivary mutans streptococci (CFU/ml).
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Figure 2. 
Decision guide applied to the fluoride varnish study described in Application section.
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