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Multidrug resistance constitutes a threat to the medical achievements of the last 50 years. In this study, we demonstrated the
abilities of two de novo engineered cationic antibiotic peptides (eCAPs), WLBU2 and WR12, to overcome resistance from 142
clinical isolates representing the most common multidrug-resistant (MDR) pathogens and to display a lower propensity to select
for resistant bacteria in vitro compared to that with colistin and LL37. The results warrant an exploration of eCAPs for use in
clinical settings.

Very few if any medical discoveries have had a larger impact on
modern medicine than the discovery and development of an-

tibiotics (1–3). However, the success of this medical achievement
is being threatened due to the increasing frequency of antibiotic
resistance (4, 5). Alarmingly, the development of novel classes of
antibiotics has been limited in the last 4 decades (6, 7). As a result,
the diversity of bacterial resistance mechanisms has largely out-
performed our current classes of antibiotics. Currently, the En-
terococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa, and Entero-
bacter species (ESKAPE) pathogens, the most common multi-
drug-resistant (MDR) and extensively drug-resistant (XDR) bac-
teria (8), represent a serious threat to patients who are frequently
in an immunocompromised state (e.g., those undergoing trans-
plantation, cancer, and critically ill patients) (7, 9–11). Hence,
more antimicrobial research is required to overcome this critical
deficit.

Cationic antimicrobial peptides (AMPs) (12) are ubiquitous
and structurally diverse effector molecules representing the first
line of defense against microbial pathogens (13–15). AMPs gen-
erally recognize microbial organisms by electrostatic interactions
with highly electronegative bacterial surface lipids (e.g., lipid A in
Gram-negative bacteria and lipoteichoic acid [LTA] in Gram-pos-
itive bacteria) (16–18). These nonreceptor-mediated interactions
commonly resulting in pore-forming (among other) mecha-
nisms, coupled with a rapid killing kinetics, are largely responsible
for the broad success of AMPs against bacterial pathogens (19).

We previously demonstrated that two lead engineered cationic
antibiotic peptides (eCAPs), WLBU2 (a 24-mer containing Arg,
Val, and Trp) and WR12 (a 12-mer containing Arg and Trp only)
(Fig. 1), form amphipathic �-helices in a hydrophobic environ-
ment and display broad activities in vitro against diverse Gram-
negative and Gram-positive bacteria, including several highly
drug-resistant strains (20–22). Importantly, WLBU2 is the first
synthetic AMP to demonstrate an ability to eradicate otherwise
lethal P. aeruginosa septicemia in vivo in a systemic treatment
model in mice (23, 24).

Although previous studies indicated the unique clinical poten-
tial of the lead eCAPs, their efficacy against the most common
MDR/XDR pathogens and the propensity of eCAPs to invoke se-
lection of bacterial resistance remain uncharacterized. Thus, we

hypothesized that a de novo rational sequence optimization of
AMP amphipathic motifs, as demonstrated in WLBU2 and WR12,
would substantially potentiate their activities against MDR/XDR
pathogens and result in a lower propensity to invoke resistance
than that of conventional antimicrobial agents. To address this
prediction, we compared the activities of WLBU2 and WR12 with
those of the natural AMP LL37 and colistin, a bacterium-derived
cationic agent that is often used against hard-to-treat Gram-neg-
ative infections when other less toxic agents are inactive (25–29).
As shown in Fig. 1, the primary sequence of LL37 displays 14
different amino acids distributed as an imperfect cationic amphi-
pathic structure; in contrast, nature-inspired but sequence-opti-
mized eCAPs are composed of only three (WLBU2) or two
(WR12) different amino acids modeled to form idealized amphi-
pathic helices.

In a reference panel of 142 clinical isolates (see Table S1A and B
in the supplemental material) that we tested, 58% were the most
common MDR/XDR (ESKAPE) pathogens: 100 isolates were
from pediatric cystic fibrosis (CF) patients at Seattle Children’s
Hospital (SCH) with chronic pulmonary infections, and 42 iso-
lates were from hospitalized adult patients at the University of
Pittsburgh Medical Center (UPMC). These included 32 Gram-
positive and 110 Gram-negative clinical isolates. We first deter-
mined the MIC for each individual isolate, determined from three
independent experimental trials (for reproducibility) in Mueller-
Hinton broth (MHB), and then compared the mean MIC distri-
butions of all four cationic peptides, using 32 �M as the maximum
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concentration (Fig. 2). As expected, colistin and LL37 were more
effective against Gram-negative (Fig. 2B) than against Gram-pos-
itive (Fig. 2A) isolates, with mean MICs between 20 and 30 �M for
the Gram-positive clinical isolates and 10 to 20 �M for the Gram-
negative clinical isolates. In contrast, the mean MICs for the
eCAPs were �10 �M for both Gram-positive and Gram-negative
strains, with statistically significant differences indicated by a P
value of �0.0001 compared to those for colistin and LL37 (Fig. 2A

and B). Further examination of the breadth of activity, based on
susceptibility defined as an MIC of �32 �M, revealed no signifi-
cant differences between colistin and LL37 (P � 0.05), as they each
inhibited 51% (73/142) of the clinical isolates (Table 1). Colistin
inhibited the growth of 63% of the Gram-negative bacteria and
13% of the Gram-positive bacteria, while LL37 inhibited 56% of
the Gram-negative and 31% of the Gram-positive bacteria, with
no statistically significant difference between the activities of colis-
tin and LL37 (Table 1). In marked contrast, the eCAPs displayed
activities of 87% for WR12 and 91% for WLBU2. Of note, the
difference in bacterial resistance between WR12 (13%) and
WLBU2 (8%) is mainly due to the resistance demonstrated by the
20 Burkholderia cepacia complex isolates, of which 10 were resis-
tant to WR12, and 4 were resistant to WLBU2. Interestingly, most

FIG 1 Helical wheel analysis of the amphipathic structures of LL37, WLBU2,
and WR12 using HeliQuest (http://heliquest.ipmc.cnrs.fr/). The primary se-
quence of LL37 displays 14 different amino acids distributed as an imperfect
cationic amphipathic structure. In contrast, nature-inspired but sequence-
optimized eCAPs are composed of only three (WLBU2) or two (WR12) dif-
ferent amino acids modeled to form idealized amphipathic helices. The arrows
indicate the directions and magnitudes of the hydrophobic moments (�H)
determined for each peptide; N, amino terminus; C, carboxy terminus.

FIG 2 In vitro activities of colistin, LL37, WLBU2, and WR12 against 142 MDR/XDR clinical strains from CF (n � 100) and hospitalized (n � 42) patients.
Shown are the mean MIC distributions against Gram-positive (A) and Gram-negative (B) bacterial isolates. **, statistically significant differences between the
mean MICs of eCAPs (WLBU2 and WR12) and those of colistin and LL37 (P � 0.0001) using one-way analysis of variance (ANOVA) with multiple comparison
tests; there are no significant differences between colistin and LL37 (P � 0.05).

TABLE 1 Spectrum of activities of colistin, LL37, WLBU2, and WR12
against the MDR/XDR clinical strainsa

Bacterial strainsb

No. of strains that are susceptible to the
indicated antimicrobial agent/total no. of
strains

Colistin LL37 WLBU2 WR12

Gram positive 4/32 10/32 30/32 29/32
MRSA 4/26 4/26 25/26 25/26
VRE 0/6 6/6 5/6 4/6

Gram negative 69/110 62/110 101/110 95/110
Enterobacteriaceae 14/18 13/18 17/18 18/18
Acinetobacter baumannii 2/6 6/6 6/6 6/6
Achromobacter spp. 17/20 9/20 20/20 19/20
S. maltophilia 13/20 9/20 17/20 17/20
B. cepacia complex 3/20 4/20 16/20 10/20
P. aeruginosa 20/26 21/26 25/26 25/26

Total 73/142 72/142 131/142 124/142
a Susceptibility defined as mean MIC of �32 �M.
b MRSA, methicillin-resistant S. aureus; VRE, vancomycin-resistant enterococci.
Enterobacteriaceae includes K. pneumoniae, Enterobacter aerogenes/E. cloacae, and E. coli;
Achromobacter spp. includes A. xylosoxidans.
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colistin-resistant strains were also resistant to LL37 (75%), in
sharp contrast to the inhibition of 80 to 86% of the colistin- and
LL37-resistant isolates by eCAPs (Table 2; see also Table SA2 in
the supplemental material). In addition, almost all eCAP-resistant
strains also displayed resistance to colistin and LL37: 10 of the 11
WLBU2- and 14 of the 18 WR12-resistant isolates were also resis-
tant to colistin and LL37 (Table 2). As the 142 isolates were se-
lected because of their MDR/XDR properties (see Table SA1 in the
supplemental material), it is quite interesting that colistin and
LL37 were active against 51% of these isolates, particularly con-
sidering that these isolates have probably been exposed to LL37 in

TABLE 2 Spectrum of activities of colistin, LL37, WLBU2, and WR12
against the MDR/XDR clinical strains

Cross-resistance

No. of clinical strains that display cross-resistance to
cationic antimicrobial agents

Colistin LL37 WLBU2 WR12

Colistin-Ra 52/69 10/69 14/69
LL37-R 52/70 10/70 14/70
WLBU2-R 10/11 9/11 9/11
WR12-R 14/18 14/18 9/18
a -R, cross-resistance.

FIG 3 (A) Selection of resistance invoked by rifampin, LL37, colistin, WR12, and WLBU2 by serial passages in MHB at 50% of their corresponding MIC, using
three P. aeruginosa strains (PAO1 and two clinical isolates); the shaded areas indicate the development of resistance to the corresponding antimicrobial agents
(fold MIC, �10). (B) Cross-resistance displayed by experimentally derived resistant strains. S, susceptible; R, resistant.
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the context of an infected patient with an underlying pathophys-
iological condition, which reflects environment-dependent effi-
cacy (20, 30). With regard to colistin, the data are consistent with
its frequent use as a last-resort antibiotic against MDR bacterial
pathogens, given the fact that the panel of clinical isolates used in
this study is skewed toward MDR/XDR phenotypes (31, 32).

To further examine the difference in antimicrobial effective-
ness against MDR/XDR organisms between eCAPs and other an-
tibiotics, we compared rifampin, colistin, LL37, and eCAPs for
their propensity to select for bacterial resistance phenotypes in
vitro. Thus, we serially passaged three different P. aeruginosa
strains (PAO1 and 2 clinical isolates) in the presence of subinhibi-
tory concentrations (0.5� the MIC) of the respective test agents
and monitored the MIC daily, using standard growth inhibition
assays. As shown in Fig. 3, all three P. aeruginosa strains developed
resistance to rifampin (fold MIC, �10) within the first 3 days of
antibiotic exposure, while the development of LL37 and colistin
resistance phenotypes emerged by 9 and 13 days, respectively. In
contrast, resistance to eCAPs required up to 25 to 30 days to ap-
pear (Fig. 3A). We next examined whether the development of
resistance against one antimicrobial agent induced cross-resis-
tance to the other antibiotics. As expected from the different
modes of action, rifampin shared no cross-resistance with the cat-
ionic peptides (Fig. 3B). Importantly, the induction of resistance
to colistin resulted in cross-resistance to LL37 in two of the three
P. aeruginosa strains, consistent with a recent report (33), but had
no effect on the susceptibilities of any of the three strains to
eCAPs. In contrast to the cross-resistance patterns observed in the
clinical isolates (Table 1), the selection of resistance against LL37
in vitro unexpectedly resulted in eCAP- and colistin-resistant phe-
notypes as well. Similarly to the resistance patterns observed in the
clinical isolates (Table 2; see also Table S2 in the supplemental
material), however, experimentally derived resistance to eCAPs
led to resistances to the other cationic antibiotics LL37 and colistin
(Fig. 3B).

Taken together, the current data demonstrate that de novo
structural optimization leading to two idealized amphipathic pep-
tides significantly enhances the in vitro antimicrobial spectrum
against the most common clinical isolates of ESKAPE pathogens
compared to that with colistin and LL37. In addition, eCAPs are
less likely to invoke resistance when bacteria are exposed to sub-
inhibitory antibiotic concentrations. Importantly, the experimen-
tally derived resistance against the cationic antibiotic colistin had
no obvious effects on susceptibilities to the eCAPs, indicating dis-
tinct eCAP interactions with target bacteria compared to those
with colistin.

The prevalence of MDR/XDR bacteria requires the develop-
ment of both preventive and anti-infective countermeasures. It is
increasingly evident that the membrane-targeting antimicrobial
mechanisms of AMPs make them likely candidates for overcom-
ing bacterial drug resistance properties and warrant consideration
for development as effective antibiotics. Here, we report that the
optimization of AMP amphipathic structure, as shown in eCAPs,
results in the ability to overcome most AMP resistance by com-
mon MDR/XDR bacterial (ESKAPE) pathogens. The data also
suggest that further optimization is needed to address less com-
mon resistance mechanisms, which can be achieved once those
mechanisms are elucidated, a current goal of our laboratory.
While a single sequence-optimized eCAP is not predicted to be
effective against all MDR/XDR bacteria, continuing AMP or eCAP

development will result in more effective and potentially less toxic
therapeutic options than what is seen with the currently available
agents.
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