
Novel mutations expand the clinical
spectrum of DYNC1H1-associated spinal
muscular atrophy

ABSTRACT

Objective: To expand the clinical phenotype of autosomal dominant congenital spinal muscular
atrophy with lower extremity predominance (SMA-LED) due to mutations in the dynein, cytoplas-
mic 1, heavy chain 1 (DYNC1H1) gene.

Methods: Patients with a phenotype suggestive of a motor, non–length-dependent neuronopathy
predominantly affecting the lower limbs were identified at participating neuromuscular centers
and referred for targeted sequencing of DYNC1H1.

Results: We report a cohort of 30 cases of SMA-LED from 16 families, carrying mutations in
the tail and motor domains of DYNC1H1, including 10 novel mutations. These patients are
characterized by congenital or childhood-onset lower limb wasting and weakness frequently
associated with cognitive impairment. The clinical severity is variable, ranging from general-
ized arthrogryposis and inability to ambulate to exclusive and mild lower limb weakness. In
many individuals with cognitive impairment (9/30 had cognitive impairment) who underwent
brain MRI, there was an underlying structural malformation resulting in polymicrogyric appear-
ance. The lower limb muscle MRI shows a distinctive pattern suggestive of denervation char-
acterized by sparing and relative hypertrophy of the adductor longus and semitendinosus
muscles at the thigh level, and diffuse involvement with relative sparing of the anterior-
medial muscles at the calf level. Proximal muscle histopathology did not always show classic
neurogenic features.

Conclusion: Our report expands the clinical spectrum of DYNC1H1-related SMA-LED to include
generalized arthrogryposis. In addition, we report that the neurogenic peripheral pathology and
the CNS neuronal migration defects are often associated, reinforcing the importance of
DYNC1H1 in both central and peripheral neuronal functions. Neurology® 2015;84:668–679

GLOSSARY
ADHD 5 attention deficit hyperactivity disorder; BICD2 5 bicaudal D homolog 2 (Drosophila); CBCL 5 Child Behavior
Checklist; DYNC1H1 5 dynein, cytoplasmic 1, heavy chain 1; LED 5 lower extremity predominance; Loa 5 legs at odd
angles; MCD 5 malformation of cortical development; SMA 5 spinal muscular atrophy.

Autosomal dominant congenital spinal muscular atrophy with lower extremity predominance
(SMA-LED) has been described for decades1–4 and is characterized by congenital or early child-
hood onset, motor neuron degeneration, and lower limb–predominant weakness. Mutations in
dynein, cytoplasmic 1, heavy chain 1 (DYNC1H1) (OMIM #158600) and bicaudal D homolog
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2 (Drosophila) (BICD2) (OMIM #615290)
underlie many cases of SMA-LED.5–9 Origi-
nally, 3 missense mutations in the tail domain
of DYNC1H1 were reported as causative.8

Another tail domain mutation, p.His306Arg,
was initially reported in a family with Charcot-
Marie-Tooth type 2 in which some had proxi-
mal weakness10 and has since been found in a
Japanese family with SMA-LED.11 DYNC1H1
mutations outside the tail domain have also
been identified, primarily in patients with cog-
nitive impairment and neuronal migration
abnormalities.12,13 Malformations of cortical
development (MCDs) were found in 10 indi-
viduals from 2 separate studies.14,15

Three tail domain mutations in the mouse
homolog of DYNC1H1 have been described:
“legs at odd angles” (Loa), “crawling” (Cra1),
and “sprawling” (Swl),16,17 all sharing motor
and sensory deficits and the Loa mice demon-
strating cortical migration defects.18 Phenotypic
differences among these models and the emerg-
ing diversity of reported patients, suggests that
the human DYNC1H1 clinical spectrum ex-
tends beyond SMA-LED. This report describes
30 affected patients from 16 families with mu-
tations in DYNC1H1. Although they are pre-
dominantly affected by SMA-LED, some have
severe generalized arthrogryposis and one-third
have cognitive impairment, which is frequently
associated with MCDs.

METHODS Subjects. Patients with non–length-dependent

motor neuronopathies predominantly affecting the lower limbs

were identified at participating neuromuscular centers and

referred for DYNC1H1 sequencing.

Standard protocol approvals, registrations, and patient
consents. Informed consent for clinical study and molecular genetic

analysis was obtained from patients or their parents/legal guardians at

all referring institutions. Local ethics committees approved this study.

Molecular genetic analysis. DYNC1H1 sequencing. Most

subjects underwent Sanger sequencing of the tail domain of

DYNC1H1 (exons 5–15) at either the Institute of Neurology,

UCL, or at Washington University in St. Louis. Twelve primer

pairs were used to amplify exons and flanking intronic sequences

and were sequenced bidirectionally (primer details available on

request). Five pedigrees (families UK4, 8, 9, US3, and NL1) had

DYNC1H1 mutations identified from whole-exome analysis

followed by Sanger sequencing validation.

Bioinformatics. All identified variants were referenced to

NM_001376.4 using HGVS (Human Genome Variation Society)

nomenclature (http://www.hgvs.org/mutnomen) and compared

against the National Heart, Lung, and Blood Institute Exome

Sequencing Project, Exome Variant Server (http://evs.gs.

washington.edu/EVS/). In silico analyses of mutations were

performed using PolyPhen2 (http://genetics.bwh.harvard.edu/

pph2/),19 SIFT (http://sift.jcvi.org/),20 PROVEAN (http://sift.

jcvi.org/),21 MutationTaster (http://www.mutationtaster.org/),22

andMutationAssessor (http://mutationassessor.org/)23 (table e-1 on

the Neurology® Web site at Neurology.org).

Haplotype analysis. To determine whether the p.Val612Met

mutation stems from a founder mutation or represents a mutational

hotspot, 3 microsatellites flanking DYNC1H1 (D14S985,

D14S1051, and D14S1007) and spanning 10.1 cM were geno-

typed in all carriers of this variant. Rare and novel polymorphisms

segregating with the p.Val612Met variant in US4 were identified

from exome sequencing data and genotyped in other pedigrees.

Clinical investigations. Case-notes review. Medical records

were reviewed for all affected individuals, and available subjects

were re-examined. The patients followed at the Dubowitz Neu-

romuscular Center who presented with cognitive impairment

and/or behavioral difficulties completed the Child Behavior

Checklist (CBCL) and Conners 3 for parents questionnaires.24,25

Subjects with Conners t scores in the abnormal range (t, 65) on

the hyperactivity and/or inattention indexes were categorized as

meeting criteria for attention deficit hyperactivity disorder

(ADHD). The CBCL is a parent-report measure, including scales

indicating the presence of externalizing symptoms (including

hyperactivity). Subjects with a cutoff score of 19 were considered

as having externalizing symptoms.

Ancillary clinical testing. Nerve conduction studies and

EMG were conducted in 23 subjects. Muscle biopsies had been

performed in 13 patients, with frozen sections stained according

to standard procedures.26 MRI of the lower limbs was performed

in 9 subjects using conventional T1-weighted spin-echo sequences

according to reported methodology.27 Noncontrast images were

obtained from the pelvis, thighs, and legs. Fifteen patients had

undergone brain MRI.

RESULTS Subjects and mutational spectrum. Thirty
subjects with DYNC1H1 mutations were included
in this study (table 1), 25 of whom came from 11 dif-
ferent families and 5 of whomwere apparently sporadic.
Thirteen different DYNC1H1 mutations were found:
10 are novel, with 8 located in the tail domain and 2 in
the motor domain (table 1, figure 1). Twenty-three
cases demonstrated autosomal dominant inheritance
with appropriate variant segregation. De novo
heterozygous mutations were confirmed in 2 sporadic
subjects. Four families carried the same p.Val612Met
mutation, but haplotype analysis showed that the
potentially shared region between US3 and the
Spanish pedigree was ,700 kb (0.9 cM) and argued
against a common founder (supplemental material and
table e-2. We found a codominant homozygous tail
domain mutation (p.Arg399Gly) in UK1-II: both
parents were heterozygous and the homozygous
offspring was much more severely affected.

Thirteen of 14 families had mutations in the tail
domain of DYNC1H1. It should be noted, however,
that most cases only had this domain sequenced and
additional subjects with mutations elsewhere in the
gene may have been missed. Within the tail domain
itself, however, a cluster of mutations occurs in exon 8,
which encodes part of the tail dimerization domain.
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Table 1 Clinical and genetic features of patients with cytoplasmic dynein heavy chain 1 (DYNC1H1)-associated spinal muscular atrophy

Patient/
family

Mutation and
inheritance

Age at onset,
y Presentation

Age at
examination, y

Maximum
motor
abilities Muscle atrophy

Muscle
weakness DTR Joint contractures

Cognitive
impairment Other

UK1a

I AD heterozygous,
p.R399G, exon 8

Adult Weakness LL 40s WI Dist LL Dist LL 1UL, 6LL TAs ND —

II AD homozygous,
p.R399G, exon 8

Birth Arthrogryposis LL
. UL, axial
hypotonia

9.5 SI, SWS,
crawling

Dist LL Prox LL 1UL, 6LL Hips, knees, ITBs Moderate and ADHD Valgus feet

UK2a

I De novo
heterozygous,
p.R264Q, exon 5

Birth Arthrogryposis
LL . UL

10 SI, SWS Dist LL LL prox . dist 1UL, 6LL Hips, knees, ITBs, TAs Mild and ADHD Valgus feet

UK3

I AD heterozygous,
p.Y970C, exon 11

,2 MD, abnormal gait 5 WI, WG LL dist . prox LL prox 1UL, 6LL Hips, knees, TAs Mild and ADHD —

II AD heterozygous,
p.Y970C, exon 11

,2 MD, abnormal gait 9 WI, NRCS Dist LL and UL LL prox . dist 1UL, 6LL End of range hips Mild and ADHD —

UK4a

I AD heterozygous,
p.R598C, exon 8

Childhood WG 40s WI LL dist . prox LL ND ND No ND

II AD heterozygous,
p.R598C, exon 8

Birth Talipes 16 WI, best with
KAFOs

LL dist . prox LL prox . dist 1UL, 6LL Hips, knees, ITBs No Valgus feet

UK5a

I Heterozygous,
p.M581L, exon 8

Birth Talipes 8 WI, WG, NRCS LL dist . prox Prox LL 1UL, 6LL Knees, TAs No Valgus feet

UK6a

I AD heterozygous,
p.W673C, exon 8

Utero CHD, talipesb 5 WI, WG, using
AFOs

LL LL 2LL Hips, knees, TAs No —

UK7a

I AD heterozygous,
p.E603V, exon8

Utero Talipesb 3.5 WI using AFOs LL dist 5 prox LL 1LL Hips, TAs No —

II ND Birth Talipes 6 WI LL dist 5 prox ND 1LL TAs No —

UK8a

I De novo
heterozygous
p.R1603T, exon
23

Utero Talipes and leg
contractures

2.5 CC, SS LL dist LL prox 5 dist 2LL Knees, TAs ND,
neurodevelopmental
delay

Epilepsy,
exotropia,
valgus feet

UK9a

I Heterozygous,
p.D338N, exon 6

Utero Talipes,b

arthrogryposis
LL 5 UL, need
ventilation

3 SI UL 5 LL dist LL . UL, bulbar ND Hips, knees, and
adducted thumbs

ND, speech delay Nissen 1
PEG at 1 y
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Table 1 Continued

Patient/
family

Mutation and
inheritance

Age at onset,
y Presentation

Age at
examination, y

Maximum
motor
abilities Muscle atrophy

Muscle
weakness DTR Joint contractures

Cognitive
impairment Other

SP1

I AD heterozygous,
p.V612M, exon 8

Late 40s Right leg limp 80s WI LL dist 5 prox Prox LL 1LL No No PC

II AD heterozygous,
p.V612M, exon 8

Childhood GMD 50s WI No Prox LL 1LL No No PC

III AD heterozygous,
p.V612M, exon 8

20s DCS 50s WI Prox LL LL prox . dist 1LL No No PC

IV AD heterozygous,
p.V612M, exon 8

20s Leg cramps, quad
fasciculations

22 WI No No 1LL No No, ADHD on
methilphenidate

PC

V AD heterozygous,
p.V612M, exon 8

Childhood GMD 37 WI LL dist 5 prox Prox LL 1LL No No PP

US1

I AD heterozygous,
p.I584L, exon 8

,2 MD 10 WI LL prox . dist LL prox . dist 1LL No Mild Exotropia

II AD heterozygous,
p.I584L, exon 8

,2 MD 9 WI LL dist 5 prox LL prox 5 dist 1LL No Mild Hydroceph,
NS

III ND ,2 MD 1.5 Cruising LL dist 5 prox LL prox 5 dist 1LL No ND PP

US2

I Heterozygous,
p.V612M, exon 8

Birth Talipes 15 Wl, WG, best
with cane

LL dist 5 prox LL prox . dist 2Knees No Mild Exotropia,
CHD

US3

I AD heterozygous,
p.V612M, exon 8

25 Weakness LL prox 56 WI No LL prox . dist 111LL No No —

II AD heterozygous,
p.V612M, exon 8

32 Weakness LL prox 62 WI No LL prox 5 dist 111LL No No —

Sw1

I AD heterozygous,
p.V612M, exon 8

Birth Externally rotated
and small feet

1 WI, on toes No LL mild prox 11 No No —

II AD heterozygous,
p.V612M, exon 8

,1 CHD 30s WI, never run/
hop

No LL prox . dist,
axial

11 TAs No —

Sw2a

I AD heterozygous,
p.R598L, exon 8

,1 MD 11 WI, WG LL dist LL prox . dist 2Knees, 6TA TAs No Equinovarus
feet

II AD heterozygous,
p.R598L, exon 8

Childhood GMD 45 WI LL dist, asymmetric LL prox 1LL TAs No PC
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The distribution of DYNC1H1 mutations from this
study and the literature is shown in figure 1.

Clinical spectrum of DYNC1H1 mutations. To better
characterize the phenotypic spectrum caused by
DYNC1H1 mutations, clinical data for all affected
individuals were obtained (table 1). Symptom onset
ranged from in utero to late adulthood. Thirty-seven
percent presented at birth with lower limb
malformations, including 4 severe patients (UK1-II,
UK2-I, UK8-I, and UK9-I) who presented at birth
with congenital arthrogryposis affecting both the
upper and lower limbs, with predominant lower limb
involvement associated with respiratory and feeding
difficulties in one case; 23% presented in infancy
(motor delays and abnormal gait), and 17% in
childhood (gross motor difficulties or frequent falls).
One-fifth of subjects presented in adulthood with a
variable degree of lower limb weakness. In family
UK1-II with a codominant homozygous tail domain
mutation (p.Arg399Gly), the heterozygous father showed
lower limb denervation and positive family history for
cognitive impairment, while the heterozygous mother
only had positive family history for neurodevelopmental
delay. Of note, the homozygous child of this couple was
one of the most severely affected subjects: born with
arthrogryposis, she never achieved independent
ambulation and had mental retardation in association
with ADHD. Four severely affected patients never
walked. The remaining subjects achieved independent
but abnormal ambulation, ranging from waddling to
frequent falls and difficulties with stairs, and required
bracing in some cases. None of the subjects lost
ambulation with aging.

As in the original description of SMA-LED, most
subjects showed more pronounced involvement of
the lower limbs in comparison to the upper limbs.
Although distal muscles were atrophic, weakness in
proximal leg muscles predominated (figure 2). Muscle
function was largely preserved in the arms and hands.
Minimal distal hand weakness could be detected in
a minority, but only the most affected subjects showed
compromised hand function (UK2-I had tremor,
grasp, and fine motor difficulties with wasting of the
thenar eminence; UK9-I had tremor and adducted
thumbs). Deep tendon reflexes were present in the
upper limbs and diminished or absent in the lower
limbs. Foot deformities (equinovarus or valgus feet
and pes cavus or planus) and joint contractures (hips,
knees, and ankles) were each detected in approximately
half of the subjects.

Electrophysiology. Nerve conduction studies and
EMG were performed in 23 subjects and showed a
motor neuropathy/neuronopathy without sensory
involvement in all cases. All 4 subjects who had upper
limb EMG showed neurogenic changes there as well,
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and 2 were also found to have neurogenic changes in
the bulbar muscles (table e-3).

Muscle histology. Thirteen subjects had undergone
muscle biopsy, usually of a quadriceps muscle. Most
biopsies showed chronic denervation but other heter-
ogeneous features were also noted in some muscles
(table e-3). Two previously reported cases8 showed
type 2 muscle fiber predominance. Two biopsies from
2 members of family UK1 (carrying respectively a
heterozygous and a homozygous p.Arg399Gly muta-
tion) were initially considered compatible with a
myopathic process because of the presence of core-
like areas. Finally, in family US3, the presence of
increased internal nuclei and rimmed vacuoles was
also reported.

Muscle MRI. MRI of the lower limb muscles in 9 sub-
jects (6 children and 3 adults) demonstrated a common
pattern of involvement. In the thigh, the quadriceps
muscles showed diffuse involvement with selective
sparing and relative hypertrophy of the adductor mag-
nus and/or longus and of the semitendinosus muscles.

In the lower leg, there was diffuse involvement with
relative sparing of the anterior-medial muscles. In a
few subjects with more mild lower leg involvement,
the anterior-medial compartment appeared preserved
compared with the posterior compartment (figure 3).
One of our cases (UK4-II) was described before
mutations in DYNC1H1 were found in SMA-LED.4

CNS involvement and brain imaging. Ten subjects had
some degree of cognitive impairment. Among the 5
subjects with mild to moderate cognitive impairment
followed at the Dubowitz Neuromuscular Center, an
association with ADHD traits, according to the scores
in the CBCL and Conners 3 questionnaires, was
documented in 4 subjects, one of whom was already
treated with methylphenidate. Another 5 subjects had
mild cognitive impairment and one subject had a
diagnosis of ADHD, treated with methylphenidate,
with normal cognitive ability (table 1).

MRI of the brain showed similar abnormalities in 4
of 15 subjects. Each subject showed a common pattern
of brain malformation resembling polymicrogyria,

Figure 1 Position of mutations in DYNC1H1 relative to the structure of the dynein complex

DYNC1H1 is a large gene encoding the heavy chain 1 of the cytoplasmic dynein protein complex, a ubiquitously expressed multisubunit molecular motor
involved in retrograde axonal transport, cell migration, nucleokinesis, Golgi localization, and autophagy. The dynein complex consists of 2 heavy chains (dark
blue), 2 intermediate chains (dark green), 4 light intermediate chains (light green), and a number of light chains (light blue). The tail domain, located in the
N-terminus, is required for heavy chain dimerization. The dynein heavy chain motor domain (C-terminus) possesses adenosine triphosphate hydrolase
activity and is required for movement along microtubules. This figure shows the position of all mutations described in this report and in the published
literature. The mutations identified in this study to cause both SMA-LED and MCD can be seen to span the entire length of the protein. The cluster of
mutations in the dimerization domain may be explained by the selective screening for mutations in this domain. *Novel mutation. CMT2 5 Charcot-Marie-
Tooth disease type 2; LD 5 learning disability with cognitive/behavioral impairment; MCD 5 malformation of cortical development; SMA-LED 5 spinal
muscular atrophy with lower extremity predominance.
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characterized by cortical nodularity or gyral overconvo-
lutions (figure 4, table e-3), best seen in the frontal and
perisylvian cortex. The sylvian fissures extended poste-
riorly as a parietal cleft in 3 subjects (unilateral in 1 and
bilateral in 2). All subjects with abnormal brain MRI
had cognitive impairment or neurodevelopmental
delay and 3 had ADHD traits.

DISCUSSION Autosomal dominant or sporadic con-
genital SMA-LED is characterized by nonprogressive
congenital or early-onset lower limb–predominant

weakness and wasting, and mutations in DYNC1H1
are a common cause of this disease. Mutations located
in the tail domain of DYNC1H1 are mostly
associated with SMA-LED8,13 or a Charcot-Marie-
Tooth phenotype with proximal weakness,10 while
mutations in the motor domain have previously only
been identified in patients with cognitive impairment
but no motor neuron disease.12,13 More recently, MCDs
have been documented in 8 individuals carrying
DYNC1H1 mutations, 2 of which were located in the
tail domain. Of note, 3 subjects from that study had

Figure 2 Phenotypic characteristic of spinal muscular atrophy with lower extremity predominance caused by mutations in DYNC1H1

Distal wasting in lower limbs, Achilles tendon tightness, and foot deformity (A, B) in case UK1-I at the age of approximately 50 years; hypotonic at birth and
proximal contractures at birth (C), distal muscle wasting, proximal weakness, stands with support at 9 years, disproportion between trunk and legs (D, E) in
patient UK1-II; arthrogryposis affecting upper and lower limbs and talipes at birth (F), good neck control at 5 months (G), standing with support at 3 years of
age, disproportion between trunk and legs, feet deformity (H) in case UK2-I; standing unaided, disproportion between trunk and legs, hips and knees con-
tractures, foot deformity (I) in case UK4-II at the age of 15 years; hyperlordosis, disproportion between trunk and legs (J) and proximal weakness (K), in case
NL1-I at the age of 8 years; distal wasting (L) and pes cavus (M) at the age of approximately 40 years in case NL1-II. (N, O) Case SW1-I at age 12 years, feet
deformity (operated), short legs, proximal . distal weakness.
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clinical features evocative of a neuropathy, although no
detailed clinical or electrophysiologic information was
provided.14 Two additional unrelated cases with novel
DYNC1H1 mutations, located in the neck and motor
domains, respectively, have been described in
association with an SMA-LED phenotype and brain
cortical malformation.15

In this study, we report a large cohort of children
and adults affected by SMA-LED due to DYNC1H1
mutations, expanding the clinical spectrum to include
severe cases with generalized arthrogryposis and milder
cases with onset in adulthood. The detection of cogni-
tive/behavioral impairment and cortical malformations
in a proportion of affected individuals demonstrates the
frequent co-occurrence of central and peripheral pathol-
ogy. As in the earlier studies,8,28 a significant proportion
of our subjects had clinically apparent symptom onset
at birth or within the first years of life (63%); in about
one-quarter of cases (7/30), onset was in adulthood.
However, some patients in our case series were so
severely affected that they never walked, and also had

evidence of congenital involvement of the upper limbs
and hands, expanding the spectrum of SMA-LED to
encompass generalized neurogenic arthrogryposis. All
the remaining subjects remained ambulant, confirming
the stable course of the disease. Our cases showed pro-
nounced involvement of the lower limbs in comparison
to the upper limbs confirming previous reports7,8,11 but
now adding that the upper extremities can be involved
in severe cases.

Despite the clinical appearance of distal muscle
wasting and foot deformities, the proximal muscles,
especially the hip extensors, were the weakest. This is
in contrast to the distal weakness reported in dominant
SMA families with TRPV4mutations, suggesting this is
a key clinical aspect in the differential diagnosis.1,3,5,6

Joint contractures were not a predominant clinical fea-
ture of the originalDYNC1H1 families, but were noted
in almost half of our cohort (46.4%). In many cases,
contractures were a presenting feature, were found
almost exclusively in the lower limbs, and did not pro-
gress with time. In the most severe cases, the severity of

Figure 3 Muscle imaging of lower limbs

All cases demonstrate a distinctive feature of diffuse involvement of the quadriceps muscles and relative sparing of the adductor compartments with rel-
ative hypertrophy of the adductor longus (single white arrow) and of the semitendinosus muscle (black arrow) at the thigh level, while at the calf level there
was diffuse involvement (double white arrow) with sparing of the anterior-medial muscles. Cases SW2.I and NL1.I show amilder pattern of involvement at the
calf level but with relative sparing of the medial-anterior compartment.
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the hips, knees, and ankles contractures contributed
with the weakness to compromise the ability to walk.

Because the diagnosis was not obvious at presenta-
tion, several subjects underwent muscle biopsy. The
histopathology showed variable features ranging from
classic neurogenic features of fiber-type grouping and
fascicular hypertrophy and atrophy, to type 1 or type 2
predominance with or without fiber atrophy as previ-
ously reported in molecularly unconfirmed SMA-LED
kindreds.29 Excessive connective tissue was also present
in several cases, a feature not seen in typical 5q-SMA.
Of note, in a few cases, the predominance of slow
fibers and the presence of “core-like” areas originally
suggested a congenital myopathy. However, the pres-
ence of target fibers is a well-recognized feature in re-
innervated muscle as well as a variety of other lesions,

including moth-eaten fibers, mini-cores, larger cores,
and even vacuolation. Such cases demonstrate the
importance of considering clinical, electrophysiologic,
and radiologic correlation with the biopsy findings.

The muscle MRI of the lower limbs showed a
striking pattern in all patients who had this test, ap-
pearing to be highly suggestive of this condition. At
the thigh level, there was selective sparing and relative
hypertrophy of the adductor compartment and of the
semitendinosus muscles. Before the identification of
mutations in DYNC1H1 in SMA-LED, we described
this imaging pattern in a cohort of 11 patients with
genetically unclassified dominant congenital SMA
with predominant involvement of the lower limbs.4

It is of interest that this imaging pattern is different
from that described in another form of congenital

Figure 4 Brain imaging

Brain MRI at the age of 3 years in case UK2.I shows a polymicrogyric pattern of frontal lobe cortex (A, B), sylvian fissure extending to the parietal lobe espe-
cially on the right side (C), and thin corpus callosum (D). Brain MRI at the age of 2 years in case UK3.I shows immature white matter, polymicrogyria-like
pattern of sylvian and frontal cortex (A, B), posterior extension of sylvian fissure (C), and mild cerebellar hypoplasia (D). Brain MRI at the age of 4 years in
case UK3.II shows a polymicrogyric pattern of the right frontal lobe (A, B), thin corpus callosum (C), and gyral overconvolution with posterior extension of
the right sylvian fissure (D). All these subjects had underdeveloped white matter with thinning of the corpus callosum.
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SMA due to mutations in TRPV4,30 but is very sim-
ilar to the pattern we recently described in association
with mutations in BICD2 encoding a key adaptor pro-
tein that interacts with the dynein-dynactin motor
complex leading to a combination of SMA-LED and
upper motor neuron features.9 The consistent pattern
of muscle imaging in our cohort suggests that the mus-
cle MRI together with the clinical findings is a valuable
tool to facilitate appropriate molecular analyses.

In one-third of patients, we detected mild to mod-
erate cognitive impairment and/or behavioral comor-
bidities consistent with ADHD traits. The prevalence
of ADHD in our cohort is higher than that described
in the general population31,32 and did not appear to be
related to the severity of the motor impairment. Of
note, cognitive involvement and ADHD are not fea-
tures we have observed in similarly impaired patients
affected by BICD2 mutations (personal observation of
the authors). It has previously been reported that mu-
tations in the motor domain of DYNC1H1 can cause
severe intellectual disability associated with neuronal
migration defects12,13 while only 2 cases have been
described with learning difficulties associated with
Charcot-Marie-Tooth disease type 2 due to a mutation
in the tail domain of DYNC1H1.10 In our cohort, 9 of
the 10 patients with cognitive impairment and/or
behavioral comorbidities underwent brain MRI, which
showed in 4 cases a pattern of cortical malformation.
This is in keeping with recent reports that mutations in
DYNC1H1 are a common cause of malformations of
cortical development (apparently in isolation).13,14 Our
cases not only indicate that there is often coexistence of
central and peripheral pathology, but furthermore
showed novel features such as an extended parietal cleft
with posterior extension of the sylvian fissure and mild
cerebellar hypoplasia.

Our findings confirm that heterozygous missense
DYNC1H1 mutations can lead to a wide range of
neuronal migration defects in association with a var-
iable degree of cognitive/behavioral impairment. The
Loa mice with a p.Phe580Tyr point mutation in the
tail domain of DYNC1H1 show abnormalities of cor-
tical and hippocampal development attributed to
impaired radial migration and a reduction in axonal
outgrowth.18 It is likely that the missense mutations
identified in this study act in a similar way to the Loa
mutation and impair cortical radial migration and
lumbar motor neuron axonal outgrowth giving rise
to the combined phenotype of SMA-LED and mal-
formation of cortical development.

No clear genotype/phenotype correlations were
found in relation to age at onset and severity, but in
all cases the conditions remained essentially stable
over time.

Our study provides additional information on the
inheritance pattern of SMA-LED due to mutations in

the tail and motor domains of DYNC1H1. We have
reported both de novo mutations and for the first
time a codominant homozygous mutation associated
with a severe phenotype. We have also expanded the
clinical spectrum, both regarding the range of severity
to include generalized arthrogryposis and the age at
onset, and provided further information on the long-
term functional outcome. Furthermore, we confirm a
characteristic pattern of muscle involvement both
clinically and by MRI, which is useful diagnostically.
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