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Abstract This review is a historical account about purinergic
signalling in the heart, for readers to see how ideas and
understanding have changed as new experimental results were
published. Initially, the focus is on the nervous control of the
heart by ATP as a cotransmitter in sympathetic, parasympa-
thetic, and sensory nerves, as well as in intracardiac neurons.
Control of the heart by centers in the brain and vagal cardio-
vascular reflexes involving purines are also discussed. The
actions of adenine nucleotides and nucleosides on
cardiomyocytes, atrioventricular and sinoatrial nodes, cardiac
fibroblasts, and coronary blood vessels are described. Cardiac
release and degradation of ATP are also described. Finally, the
involvement of purinergic signalling and its therapeutic po-
tential in cardiac pathophysiology is reviewed, including acute
and chronic heart failure, ischemia, infarction, arrhythmias,
cardiomyopathy, syncope, hypertrophy, coronary artery dis-
ease, angina, diabetic cardiomyopathy, as well as heart trans-
plantation and coronary bypass grafts.
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Introduction

This review is a historical account of purinergic signalling
research, which has led to our current understanding of its
roles in the complex cardiac physiology and pathophysi-
ology (comparable to retrospective art exhibitions). In
1978, Burnstock proposed that there were two families
of receptors for purines, which he named P1 receptors
(R) (receptors activated by adenosine) and P2R (receptors
activated by adenosine 5′-triphosphate (ATP) and adeno-
sine 5′-diphosphate (ADP)). Methylxanthines antagonised
effects mediated by P1R, but not P2R [1]. When the
actions of ATP were equipotent or less potent than that
of adenosine, this suggested that ATP was acting via P1R
after its enzymatic breakdown to adenosine. This could
then be confirmed by antagonism with methylxanthines,
such as theophylline or caffeine, non-selective P1R antag-
onists. The distribution of P1R and P2R in the guinea pig
and frog hearts was described on the basis of pharmacol-
ogy [2]. Current knowledge of receptor subtypes, based on
cloning, pharmacological characterisation and second mes-
senger systems published in the 1990s, is as follows: P1R
are G protein-coupled receptors (A1, A2A, A2B and A3
subtypes), P2XR are cationic channels (P2X1–7) and P2Y
are G protein-coupled receptors (P2Y1, P2Y2, P2Y4,

P2Y6, P2Y11, P2Y12, P2Y13 and P2Y14) (see [3, 4]).
The development of antibodies for P1R and P2R subtypes
led to their localisation using immunohistochemistry and
in situ hybridisation techniques, which led to subsequent
advances in the field. The effects of adenosine and ATP
acting on P1R and P2R on cardiomyocytes are
summarised below. Thus, by definition, purinergic
signalling means the actions of extracellular purine com-
pounds mediated by cell surface receptors (i.e. P1R and
P2R); moreover, the critical roles of intracellular purines in
cellular energetics and metabolism are not discussed in
this review.

Thousands of papers dealing with purines and the cardio-
vascular system in general and the heart in particular have
been published since the first report on the effects of adenine
compounds in the heart in 1929 [5], so it is inevitable that the
coverage of the multiple areas of research in this field is
limited and the citation of relevant papers is selective. Thus,
we apologise if our selection does not include papers that
others in the field feel should have been cited. The selection
of papers published in the last decade about purinergic signal-
ling in the heart is focused on pathophysiology. The vast
majority of studies in this field deal with the two major
purines: ATP and the product of its enzymatic degradation,
adenosine.

Many reviews on various aspects of purinergic signalling
in cardiac physiology and pathophysiology have been pub-
lished over the years, including the following:

& Physiological roles of cardiac P2X and P2Ypurinoceptors
[6–16];

& Roles of adenosine in health and disease [17–35];
& Effects of ATP and adenosine on coronary myocytes [12,

36];
& Purine degradation pathways in the myocardium [18, 37];
& Myocardial nucleotide transport [38];
& Non-adrenergic, non-cholinergic (NANC) neural control

of the atrial myocardium [39];
& Vagal cardiovascular reflexes [40];
& Genetic modulation of adenosine receptor function [41].

Pathophysiology

& Heart failure [16, 42];
& Coronary artery disease (CAD) [43];
& Congestive heart failure [44];
& Cardiac arrhythmia [45–47];
& Cardioprotection [48–54];
& Ischaemia [55, 56];
& Myocardial transplantation [57];
& Adenosine and kidney function in heart failure [58, 59];
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& Paroxysmal supraventricular tachycardia (PSVT) and fi-
brillation [60–63].

Broad reviews about purinergic signalling have been
published that include a section about the heart [64–78].

Early history

The seminal paper by Drury and Szent-Györgyi [5] reported
that extracellular purine compounds, in particular adenosine
5′-monophosphate (AMP), act on the coronary arteries of the
guinea pig, cat, rabbit and dog. Later, it was shown in the
perfused rabbit heart that adenosine is a powerful dilator of the
coronary vessels [79]. The effects of adenosine on the human
heart were also examined early on [80]. Honey et al. [81]
concluded that adenosine was not useful for the treatment of
heart disease. Intravenous administration of adenosine in pa-
tients led to paroxysmal tachycardia. A review summarising
these early studies was published by Drury in 1936 [82]. He
noted, in particular, unpublished observations that “ATP pro-
duces heart block in the guinea pig and appears to be more
active than adenosine”. Heart block by ATP in the rabbit was
also reported [83], and Gaddum and Holtz [84] found that
ATP was more than three times more potent than adenosine in
this regard. An important book entitled Biological Actions of
the Adenine Nucleotides was published in 1950 by Green and
Stoner [85], which described seminal studies of the effect of
ATP on the heart.

ATP injections were first used for the treatment of angina
pectoris associated with coronary disease in the 1940s and
AMPwas also employed for the treatment of angina [86]. ATP
was used early on for the treatment of patients with coronary
insufficiency ([87–90]; and see references from an article
published by RONA LABORATORIES Ltd. (1955) The in-
fluence of adenosine triphosphoric acid on coronary circula-
tion and heart muscle, pp. 1–16). Senile myocardial fibrosis
was treated with adenylic derivatives [91].

Since then until the early 1960s, relatively few publications
dealt with the actions of extracellular nucleosides and nucle-
otides in the cardiovascular system. In 1963, Berne [92], and
independently Gerlach [93], proposed that adenosine was the
physiological regulator of reactive hyperaemia in the heart,
what became known as Berne-Gerlach’s Adenosine
Hypothesis. In 1972, Burnstock’s proposal of purinergic neu-
rotransmission led to increased interest in this field [94]. He
reported that ATP exerts negative inotropic and chronotropic
effects on the mammalian heart and speculated that ATP could
be released from vagal nerve terminals. At that time, it was
shown in the isolated rat and guinea pig hearts that
dipyridamole inhibits the uptake of adenosine [95]. Adenosine
analogues were shown to be potent coronary dilators [96].

ATP and ADP were the only consistent releasers of prosta-
glandins from the isolated perfused rabbit heart, an action
abolished by indomethacin [97]. ATP, ADP, AMP and aden-
osine injected into the left atrium of the guinea pig produced a
period of heart block identical in both latency and duration,
which raised the possibility that ecto-enzymes degrade extra-
cellular nucleotides to adenosine, the active compound [98].
This was supported later by seminal studies by Schrader and
Gerlach [99].

Adenosine produced cyclic AMP (cAMP) accumula-
tion in guinea pig ventricular myocardium [100]. An-
other landmark paper showed the release of ATP from
isolated adult heart cells in response to hypoxia [101].
Inosine, in addition to having cardiostimulatory effects,
was reported to reverse β-adrenoceptor blockade [102].
AMP, as well as adenosine, was claimed to act via a
receptor on cultured muscle cells and coronary
myocytes [103]. This group also identified the important
additional action of adenosine, i.e. the inhibition of the
myocardial effect of catecholamines, what became
known as the indirect anti-β-adrenergic action of
adenosine [104].

The Adenosine Hypothesis was contested by
Burnstock [105], who claimed that ATP, released during
hypoxia from endothelial cells leading to the production
of nitric oxide (NO), was the compound initially re-
sponsible for reactive hyperaemia. This role of ATP is
supported by subsequent studies indicating that extracel-
lular ATP can serve as a substrate for the extracellular
production of adenosine (mainly by cell surface-
localised enzymes CD39 and CD73) in addition to its
role as a primary signalling molecule (see [106]).

Cardiac innervation

There are intrinsic cardiac neurons as well as sympathetic,
parasympathetic, and sensory innervation of the heart.

Sympathetic nerves

Sympathetic nerve stimulation led to release of ATP and
adenosine from the perfused rabbit heart [107]. Adenosine
was shown to modulate sympathetic nerve stimulation-
induced release of noradrenaline (NA) in the isolated rabbit
heart [108]. Rat sympathetic neurons grown singly on small
islands of cardiac myocytes were shown to release NA and
acetylcholine (ACh) as well as an active compound that
hyperpolarised and inhibited contraction of the cells; experi-
mental evidence indicated that this compound was adenosine,
the source of which could have been ATP [109]. ATP and NA
were implicated as cotransmitters in sympathetic nerves sup-
plying the sinus venosus of the toad [110]. Direct contact
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between sympathetic nerves and rat cardiac myocytes in vitro
increased expression of functional calcium channels [111],
although it was not recognised in this paper that ATP was a
cotransmitter. Von Kügelgen et al. [112] presented, for the first
time, evidence that prejunctional inhibition of NA release
from sympathetic nerves involved P2R as well as adenosine
and P1R [112]. ATP was shown to be released by isoprenaline
from sympathetic nerves in the guinea pig atrium [113]. P2XR
on sympathetic nerve terminals in the guinea pig right atrium
regulate release of NA [114]. Depressed cardiac contractility
occurred during postnatal development in rats after clinical
sympathectomy [115], perhaps due to ATP released as a
cotransmitter from sympathetic nerves. Ectonucleoside tri-
phosphate diphosphohydrolase (E-NTPDase) and ecto-5′-nu-
cleotidase were shown to be present on nerve fibres only in the
rat left ventricle, suggesting a different status of sympathetic
nerves in left vs. right ventricles [116].

Parasympathetic non-adrenergic, non-cholinergic
transmission

Non-adrenergic, non-cholinergic (NANC) neurotransmission
has been identified in the mammalian heart. The transmitters
involved were not identified initially, although calcitonin
gene-related peptide appeared to be at least one of them [39,
117].

Sensory nerves

Inhibitory adenosine A1R were identified on cardiac sensory
nerves and it was suggested that they may have a modulatory
action on cardiac NANC neurotransmission [118, 119]. It was
concluded that both A1R and A2Rwere present on ventricular
epicardial sensory nerve endings of dorsal root ganglion
(DRG) neurons [120]. Using in situ hybridisation, it was
shown that P2X3R are localised on sensory nerves in the heart
[121]. Using a canine model in vivo, it was found that
P2X2/3R are localised on vagal sensory nerve terminals in
the infero-posterior wall of the left ventricle [122].

Intracardiac neurons

The presence of quinacrine-positive intramural nerve cell
bodies and nerve fibres in guinea pig atria suggested that a
sub-population of intracardiac nerves could be purinergic (see
Fig. 1) [6, 123]. Allen and Burnstock [124, 125] studied the
actions of ATP on intracardiac neurons of two main types, AH
and M cells in ganglia in the atria and in interatrial septum of
newborn guinea pig heart. Three different responses to ATP
were observed; initially, rapid transient depolarisations of
about 40 % of both AH and M cells with agonist potencies
of ATP>ADP, but with AMP and adenosine ineffective. In a
further 30 % of AH cells, ATP evoked an initial

depolarisation, followed by hyperpolarisation and a slow
prolonged depolarisation. Finally, in about 2 % of AH cells,
ATP evoked a slow depolarisation [124, 125].

In a later study by another group, the actions of ATP on
dissociated neurons from rat cardiac ganglia supported and
extended these findings [126]. Huang et al. studied purinergic
modulation of adult guinea pig cardiomyocytes in long-term
cultures and co-cultures with extracardiac and intrinsic cardiac
neurons [127, 128]. They found that cardiac neurons express-
ing P2R could greatly enhance cardiac myocyte contractile
rate when activated by ATP and also that some intracardiac
neurons expressed adenosine receptors [127, 128]. Thus, in-
tracardiac neurons are not all parasympathetic neurons con-
trolled by nicotinic neurotransmission, but they may also
contain sensory neurons playing a role in local reflex path-
ways [129]. Indeed, Armour and co-workers have shown that
in situ canine nodose ganglion afferent neurons can be acti-
vated by adenosine and ATP [127, 130]. A later study showed
that in rat intracardiac neurons, ATP activated P2Y2R to
transiently raise [Ca2+]i and activate an inward current [131].
The ecto-nucleotidase CD39 localised in intrinsic neurons of

Fig. 1 Quinacrine fluorescent histochemistry showing quinacrine-
positive intramural nerve cell bodies and varicose fibres in the guinea
pig atrium. a A fine plexus of quinacrine-positive nerve fibres. b A
similar preparation to a after treatment with 6-hydroxydopamine (one
intraperitoneal injection, 250 mg/kg, 24 h prior to sacrifice). c A cardiac
ganglion showing 20–30 quinacrine-positive nerve cell bodies; dAnother
ganglion, containing a smaller proportion of quinacrine-positive cell
bodies. All bars represent 100 μm (reproduced from [6], with permission)
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human and porcine heart was shown to modulate ATP-
induced NA exocytosis [132].

Central nervous system control of the heart

The increase in heart rate caused by activation of A1R appears
to be mediated by its action on the central nervous system
(CNS), while the decrease in blood pressure by activation of
A2AR appears to be mediated in the periphery [133].

Vagal cardiovascular reflexes

There was an early hint about possible effects of purines in the
heart mediated by a central vagal reflex [5]. In anaesthetised
dogs, ATP, but not adenosine, was shown to trigger a vagal
reflex, which appeared to mediate, in part, the transient neg-
ative chronotropic and dromotropic effects on the sinoatrial
(SA) and atrioventricular (AV) nodes, respectively [134, 135].
The right vagus was identified to play a dominant role in
carrying cardiopulmonary vagal afferent traffic [136] and
subsequently the dominant role of the right vagus in the
ATP-triggered vagal reflex in dogs was shown [137–139].
This reflex is the result of the activation of P2X2/3R localised
on vagal sensory nerve terminals in the infero-posterior wall
of the left ventricle (see Fig. 2) [122]. Thus, the actions of
extracellular ATP in the heart are mediated by adenosine, the
product of its rapid degradation by ecto-enzymes as well as a
central vagal reflex. This explains the differential potency of

ATP vs. adenosine for the suppression of sinus node automa-
ticity and AV nodal conduction [15].

In view of the vagal component of the bradycardic action of
ATP in the heart, Flammang et al. [140] hypothesised that
patients with neurally mediated syncope might be hyper-
sensitive to an intravenous bolus injection of ATP. They found
that there was a cohort of patients with neurally mediated
syncope or syncope of unknown origin that manifested an
exaggerated response to ATP and that these patients could
benefit from pacemaker therapy [141]. The negative
chronotropic and dromotropic vagal effect of ATP in syncopal
patients is reproducible [142] and thus, ATP is now an accept-
ed diagnostic tool in this setting [143].

Evidence has been presented to suggest that ATP attenuates
reflex increases in renal sympathetic nerve activity by stimu-
lating left ventricular chemoreceptors with cardiac vagal af-
ferents [144]. Adenosine is an endogenous modulator of car-
diac excitatory afferent nerves and this has been suggested to
play a mechanistic role in vasovagal syncope [145]. There is
functional and immunohistochemical evidence that the car-
diopulmonary chemoreflex pathways in the caudal nucleus of
the solitary tract in the brainstem are directly inhibited by A1R
activation and indirectly inhibited by A2AR via γ-
aminobutyric acid release [146].

Actions of adenine nucleosides and nucleotides

Cardiomyocytes 1979–1999

P1 receptors

There is evidence that all four subtypes of P1R are expressed
in cardiomyocytes [34]. A1R mediate the direct negative
chronotropic and dromotropic actions of adenosine as well
as indirect anti-β adrenergic actions [28, 147, 148]. In addi-
tion, there is substantial evidence that the activation of all four
adenosine receptors is cardioprotective [149].

A1R were found in the guinea pig myocardium and
adenylate cyclase was shown to be coupled to these
receptors in the ventricular membranes [150]. A1R are
also found in the guinea pig atrium [151] and rat ventric-
ular myocytes [152]. It was suggested that cardiac A1R
are critically dependent on temperature [153]. Evoniuk
et al. [154] confirmed that A1R mediated the negative
chronotropic effect of adenosine, while A2R mediated its
vasodilatory-hypotensive effect.

A1R mediate the indirect anti-adrenergic action of
adenosine, which is manifested in the attenuation of the
electrophysiologic, metabolic and inotropic effects of cat-
echolamines. For example, adenosine antagonised
catecholamine-elicited glycogenolysis [155]. In addition,
adenosine antagonised the positive inotropic action

Fig. 2 Central vagal cardio-cardiac reflex triggered by ATP (modified
and reproduced from [15])
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mediated by β-, but not α-adrenoceptors in rabbit papil-
lary muscle [156, 157]. Furthermore, adenosine abolished
early after-depolarisations and triggered activity induced
by isoproterenol in isolated guinea pig ventricular
myocytes [158]. Under specific experimental settings,
the actions of adenosine and catecholamines could be
additive; e.g. stimulation of cAMP production produced
by adenosine and isoproterenol combined was essentially
the sum of the two individual responses [159]. Chronic
dietary theophylline was shown to up-regulate cardiac
A1R, without changing the anti-adrenergic or inhibitory
inotropic and chronotropic actions of adenosine receptor
agonists [160]. In addition to A1R-mediated inhibitory
effects, activation of A2AR resulted in stimulation of
contractility of cardiomyocytes [161] and attenuation of
the anti-adrenergic actions of A1R activation [162]. Inter-
estingly, a differential A1R reserve for the direct and
indirect actions of adenosine in the guinea pig atrial
myocytes has been documented [163].

Cardiac sympathetic neurotransmission was shown to be
inhibited by adenosine [164–166]. Sympathetic nerve stimu-
lation led to the formation and release of adenosine from the
rabbit heart [167]. Presynaptic inhibitory action of adenosine
on release of NA from sympathetic nerves supplying the
guinea pig heart was reported [168].

Adenosine is transported into rat cardiac myocytes via a
saturable process [169]. Potentiation of the effects of adeno-
sine by diazepam as well as dipyridamole on cardiac muscle
was suggested to be due to inhibition of adenosine uptake
[170]. Coformycin, an inhibitor of adenosine deaminase
(ADA), potentiated the concentration-dependent decrease in
the action potential duration and contractile force of atrial
preparations caused by adenosine [171].

Certain actions of adenosine manifest an age-dependency;
e.g. young guinea pigs were sensitive to the positive inotropic
effect of the A1R antagonist NPC 205. The sensitivity was
lower in older animals and basal heart rate was also signifi-
cantly lower [172]. A2R activation was shown to inhibit
neutrophil adhesion and injury in isolated cardiac myocytes
[173]. A decrease in A1R-mediated responses was reported in
ageing rat heart [174, 175].

No evidence was found for the presence of A3R in the
atrium [176–178]. However, induction of apoptosis in cardiac
myocytes from newborn rats by an A3R agonist was reported
[179].

A1R stimulation activated δ-protein kinase (PK) C in rat
ventricular myocytes [180]. Adenosine was shown to stimu-
late NO synthesis in rat cardiac myocytes [181]. Adenosine
stimulated atrial natriuretic peptide (ANP) expression in cul-
tured ventricular cardiomyocytes [182]. A1R over-expression
can reverse the inotropic, but not the chronotropic, effects of
adenosine in mouse heart [183]. A2AR activation enhances
cardiomyocyte shortening [184].

P2 receptors

ATP elicited a triple response of the frog ventricle: an initial
increase in contractility, followed by a period when the twitch
amplitude fell, sometimes below the control level and thirdly,
a slowly developing and longer-lasting increase in contractile
force [185]. ATP was shown to facilitate the discharge of
calcium from the sarcoplasmic reticulum in frog heart cells
[186], in retrospect via P2YR. Evidence was presented to
suggest that the inhibitory responses produced by ATP in the
rat ventricle were mediated by P2R [187].

ATP, ADP and β,γ-methylene ATP had negative
chronotropic and inotropic effects on guinea pig atrium, while
α,β-methylene ATP (α,β-meATP) (which acts on P2XR)
induced a stimulatory response [188]. ATP directly affected
junctional conductance between paired ventricular myocytes
from the heart of guinea pigs which could be explained by a
specific ligand-receptor interaction between ATP and gap
junctional channel proteins [189].

ATP is released from rat ventricular myocytes in response
to hypoxia and acidosis [190, 191] or adrenaline in the per-
fused heart [192]. ATP increased [Ca2+]i and contractility of
ventricular myocytes of rat [193–195] and atrial myocytes of
guinea pig and rabbit [196]. Ca2+ mobilisation by ATP was
claimed to be regulated by PKC and PKA [197]. ATP was
shown to increase mechanical activity and inositol trisphos-
phate (InsP3) production in rat heart [198, 199], in retrospect
mediated by P2YR. When inhibitory adenosine receptors
were blocked, ATP produced a positive inotropic effect, prob-
ably mediated by P2YR [200]. Purinergic stimulation of rat
cardiomyocytes induced tyrosine phosphorylation, a major
mechanism for InsP3 generation [201].

P2X1R were identified on cardiac myocytes [202], and
both P2X3 and P2X4R mRNA were detected in the human
heart [121, 203]. In addition, P2X1, P2X3, P2X4 and P2Y2,
P2Y4 and P2Y6R were identified in the human foetal heart
[204]. Furthermore, P2X1R were found in low density on
myocytes of the rat heart, with occasional high density patches
near nerve varicosities, while P2X2 and P2X3R were con-
fined to nerve fibres [205]. Photoaffinity labelling and func-
tional assays of ATP receptors expressed by cardiac myocytes
were first described by Giannattasio et al. [206, 207].

The mechanism underlying the positive inotropy in-
duced by ATP in rat papillary muscle in vitro was deter-
mined to be mediated, in part, by increased Ca2+ inward
current [208]. While in bovine atrial cells, dual control of
inwardly rectifying K+ channels by ATP and ACh was
reported [209]. Activation of chloride currents by
purinergic stimulation of guinea pig atrial myocytes was
described by Matsuura and Ehara [210] and later in rat
and mouse ventricular myocytes [211, 212]. ATP-induced
increase in [Ca2+]i was attenuated in cardiomyocytes from
vitamin B6-deficient rats [213]. The activation of Cl−
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channels in mouse atrial and ventricular myocytes is due
to activation of cystic fibrosis transmembrane conductance
regulator (CFTR) Cl− channels through a novel intracellu-
lar signalling pathway involving purinergic activation of
PKC and PKA [214]. L-type calcium channel activity was
modulated by ATP and adenosine-5′-(γ-thio)-triphosphate
in ferret and rat ventricular cells [215, 216] and sinoatrial
nodal cells [217]. Increase in L-type calcium current am-
plitude induced by ATP was shown to be mediated by
P2YR [218]. A later study confirmed that P2R as well as
P1R contribute to the ATP-induced inhibition of L-type
Ca2+ current in rabbit atrial myocytes [219, 220].

Experiments with electrically driven rat atria suggested that
P2YR, as well as P1R (since 2-methylthio ATP (2-MeSATP)
was effective) mediated rapid decrease in contractility, while
P2XR (sinceα,β-meATPwas effective) mediated the increase
in contractility [221], in retrospect probably by P2X1 and/or
P2X3R.

Molecular cloning and functional expression of a novel rat
heart P2XR was reported [203]. Both P2XR and P2YR were
cloned and characterised from the human foetal heart, but their
role in developmental processes and physiological activation
of the foetal heart remains to be determined [204]. Activation
of P2R in guinea pig atrial cells was shown to increase the
delayed rectifier K+ current through intracellular mechanisms
independent of PKA, PKC or intracellular free Ca2+ [222].
Subsequently, it was claimed that P2YR were involved in this
action [223]. Diadenosine polyphosphates activated guinea
pig left atrium via P1R and P2R [224].

Activation of rat ventricular myocytes by ATP triggered
oscillatory contractions and potentiated the amplitude of
electrically triggered contractions [225]. ATP activated
the muscarinic K+ channel via pertussis toxin-sensitive
G proteins in guinea pig [226, 227] and dog atrial
myocytes [228]. Uridine 5′-triphosphate (UTP) also ac-
tivated muscarinic K+ channels, suggesting mediation by
P2U (P2Y2 and/or P2Y4) receptors [229].

Cardiomyocytes 2000–2014

P1 receptors

A1R stimulation inhibited α1-adrenergic activation of the
cardiac sarcolemmal Na+/H+ exchanger [230]; it was also
associated with increased production of NO and cyclic GMP
[231], which prevents mitochondrial oxidant damage in rat
cardiomyocytes [232]. Chronic caffeine treatment increased
heart rate and resting blood pressure, which was concurrent
with changes in P1R function [233]. A1R over-expression
reverses, at least in part, the interaction of β-adrenergic and
A1R stimulation suggesting that the receptor/effector cou-
pling is dependent on receptor density at least in this

experimental model [234]. Adenosine protects against apo-
ptosis induced by angiotensin II in rat cardiomyocyte cultures
[235].

A2AR activation increased contractility of isolated per-
fused hearts [236]. A2BR-mediated NO release in the mouse
heart was blunted by knockout of the A2AR gene [237].

Diadenosine polyphosphates activated coronary vessels via
P1R and P2R [238]. Diadenosine pentaphosphate (Ap5A) was
shown to produce A1R-mediated pro-arrhythmic effects in
rabbit atrial myocardium [239]. Diadenosine monophosphate
exerts indirect and direct negative inotropic effects in isolated
human cardiac atrial preparations through A1R [240]. Aden-
osine 5′-tetraphosphate (Ap4A) has been identified and
characterised in human myocardial tissue [241] as well as
Ap5A and diadenosine hexaphosphate (Ap6A) [242]. In hu-
man and guinea pig hearts, Ap5A had positive inotropic and
sustained anti-β-adrenergic effects, acting via P1R [243].
Ap5Awas identified as a potent activator of the sheep cardiac
ryanodine receptors [244].

Free radicals potentiated the negative dromotropic effect of
adenosine in guinea pig heart [245]. p38 Mitogen-activated
protein kinase (MAPK) plays a mechanistic role in A1R-
mediated anti-adrenergic action of adenosine in rat ventricular
myocytes [246], while ERK1/2 signalling pathway activation
by adenosine in cardiomyocytes resulted from an additive
stimulation of A1R, A2AR and A3R, which involved Gi/o

proteins, PKC, and tyrosine kinase for A1R and A3R, and Gs

and PKA for A2AR; moreover, the A3R response also in-
volved a cAMP/PKA pathway via PKC activation [247].

A3R stimulation reversed myocardial stunning of isolated
atrial and papillary muscles [248]. An age-related reduction in
expression of both A1R and A2R was found in the rat heart
[249] in agreement with previous studies [174, 175]. The
negative inotropic and chronotropic effects of fluoxetine, a
selective serotonin re-uptake inhibitor antidepressant, on iso-
lated guinea pig atria were suggested to be mediated by
inhibition of re-uptake of adenosine or by the activation of
A1R [250]. While the A1R is involved in the regulation of
heart rate in the mouse, the magnitude of its involvement is
more pronounced in males vs. females [251]. Inhibition of
ADA enhanced the inotropic response mediated by A1R in
hyperthyroid guinea pig atrium [252].

Several studies using genetic models of A1R knockout
confirmed findings of previous studies, that the negative
chronotropic action of adenosine is mediated by A1R. Thus,
using A1R and A2AR knockout male mice, it was found that
heart rate was higher in A1R knockout mice, but lower in
A2AR knockout mice [253]. Also, the negative chronotropic
effect of bolus injections of adenosine in vivo were abolished
in A1R knockout mice [254].

It was reported that multivalent dendrimeric and monomer-
ic adenosine receptor agonists attenuated cell death in HL-1
mouse cardiomyocytes expressing A3R [255]. Also,
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adenosine attenuated cardiomyocyte hypertrophy; adenosine
kinase is an important mediator of this effect [256].

Differential effects of A2AR and A2BR on cardiac con-
tractility were described [257]. A2BR mediated direct con-
tractile effects without alteringβ-adrenergic or A1R-mediated
anti-adrenergic effects, while A2AR mediated increase in
cardiac contractility indirectly by modulating the A1R-
mediated anti-adrenergic effect. Caffeine disrupted embryonic
cardiac function and its response to hypoxia through blockade
of A1R that raises concern regarding caffeine exposure during
embryogenesis, particularly in pregnancies with increased risk
of embryonic hypoxia [258]. NA release and stress-induced
heart rate increase was selectively attenuated by partial A1R
agonists, most likely due to a presynaptic attenuation of NA
release [259].

There is reduced adenosine release from the heart of aged
mammals, probably due to reduced mitochondrial purine syn-
thesis [260]. A2BR mediate the release of interleukin (IL)-6
and IL-8 and vascular endothelial growth factor from cardiac
stromal cells [261]. CD73, nucleoside transporters and inosine
provoke arrhythmia mediated by A1R and A2AR in the
developing heart [262]. The elevated plasma concentration
of adenosine was probably the cause of bradycardia during
experimental breath-hold diving [263]. A1R antagonists
prevented the electrophysiological effects of amitriptyline, a
tricyclic antidepressant, on atrial action potentials; it was
suggested therefore, that A1R activation could mediate the
cardiovascular toxic effects produced by amitriptyline [264].
Caffeine was shown to act via A1R in mouse embryos to alter
adult cardiac function and DNA methylation [265].

P2 receptors

In concert with previous studies in animal models, it was
found that ATP and adenosine also shorten action potential
duration in atrial but not ventricular myocytes [266]. Regula-
tion of muscarinic K+ channels, which mediate action poten-
tial shortening by ATP in guinea pig atrial myocytes was
found to be mediated by the activation of phospholipase C
(PLC) and subsequent cell membrane depletion of phos-
phatidylinositol 4,5-bisphosphate [267]. It was reported that
P2X4R and P2X7R are expressed in the t-tubular network of
rat ventricular cells [268]. Longitudinal stretch of rat atrial
myocytes induced the activation of non-selective cation chan-
nels [269], which, in retrospect, may be due to release of ATP
acting on P2XR. The involvement of death receptor signalling
in mechanical stretch-induced cardiomyocyte apoptosis [270]
might be mediated by P2X7R after release of ATP. P2XR
activation enhanced cardiac contractility in isolated rat and
mouse hearts [271]. Indeed, using transgenic mice with
cardiac-specific over-expression of the human P2X4R [272],
it was found that P2X4R mediate the increase in myocyte
contractility in response to ATP [273]. In another study, an

increase in ATP-induced inward current was observed in
mouse cardiac myocytes over-expressing P2X4R [274]. Acti-
vation of cardiac P2XR was shown to augment the Ca2+

content of sarcoplasmic reticulum independent of cAMP and
therefore likely to contribute to P2XR-mediated myocyte
contractility [275]. In mouse cardiomyocytes, the positive
inotropic effects of ATP were reported to be mediated by
P2Y11R [276]. It was tentatively suggested that the positive
inotropic effects of ATP might be mediated by P2X4-like
receptors [277]. Interactions between purinergic and adrener-
gic receptors in the regulation of rat myocardial contractility in
postnatal development was reported [278]. P2Y2/4R were
involved in the regulation of myocardial contractility in grow-
ing rats [279].

It was suggested that ATP and UTP had opposite effects on
the regulation of ANP secretion; ATP via adenosine and P1R
increased secretion, while UTP via P2YR decreased secretion
[280]. In a later paper, stimulation of ANP secretion was
shown to be mediated by A3R [281].

P2YR were shown to mediate the regulation of CFTR
chloride channels in mouse cardiac myocytes [282]. Regula-
tion of UTP-activated Cl− current involves P2YR, PLC-PKC
signalling and ATP hydrolysis in mouse ventricular myocytes
[283]. Outwardly rectifying chloride channel activity was up-
regulated by intracellular ATP, but inhibited by extracellular
nucleotides [284]. A study using guinea pig ventricular
myocytes has indicated that extracellular ATP modulates the
activity of KATP channels via P2YR coupled to phos-
phatidylinositol 4,5-bisphosphate [285]. P2X1R in human
myocardium were found to be densely localised in gap junc-
tions at intercalated discs between myocytes, closely associ-
ated with connexin 43 in some regions of some gap junctions,
but spatially separate in others regions (Fig. 3) [286].

P2R-mediated signalling appears to be involved in the
intercellular synchronisation of intracellular Ca2+ oscillations
in cultured cardiac myocytes [287]. It was shown that maxi-
anion channels expressed by neonatal cardiomyocytes were
involved in ATP release [288].

Valvular myofibroblasts, together with endothelial cells,
cardiac myocytes and smooth muscle from the cardiac valves
were shown to be activated by P2Y2R-mediated Ca2+ release
[289]. ATP and UTP activation of P2Y2R via a G protein and
stimulation of PLCβ induces the opening of heteromeric
TRPC3/7 channels, leading to a sustained, non-specific cat-
ionic current [290]. P2Y1R, P2Y2R, P2Y4R and P2Y6R as
well as P2Y11-like receptors were co-expressed and induced
function through Gq/11 protein coupling in neonatal rat cardiac
myofibroblasts (see Fig. 4) [291].

Increased P2X7R expression was shown in atrial
cardiomyocytes of caveolin-1-deficient mice [292].
Stretch of atrial myocytes stimulates recruitment of
macrophages via ATP released through gap-junction
channels [293].
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Atrioventricular and sinoatrial nodes

AV node

Both adenosine and ATP suppress atrioventricular (AV) nodal
conduction. In 1949, Wayne et al. [294] showed that the
depressant effects of ATP and adenosine were dominant on
the AV node. AV nodal conduction block associated with
myocardial ischaemia is mediated by adenosine [295, 296].
A subsequent study showed that endogenous adenosine, via
A1R and a pertussis toxin-sensitive G protein, mediates
hypoxia-induced AV nodal conduction block in guinea pig
heart in vivo [297]. In the isolated guinea pig heart, the action

of ATP was shown to be mediated by adenosine [295]. The
suppression of AV nodal conduction by adenosine, manifested
in the prolongation of the AH interval, is mediated by A1R
[298]. The potency of the bradycardic effects of adenosine
manifests species variability among guinea pig, rat and rabbit
[299]. Chronic administration of R-phenyl isopropyl adeno-
sine to guinea pigs desensitised the AV node to the negative
dromotropic effect of adenosine in a homologous but not a
heterologous manner and desensitisation of the AV node
response to adenosine was associated with down-regulation
of A1R, a decrease in the fraction of A1R in the high-affinity
state and a decrease in the contents of Gi and Go proteins
[300].

Fig. 3 Immunohistochemical staining of P2X1 receptors in human left
ventricle and co-localisation with connexin43. a P2X1 staining is shown
(green, FITC) with arrows indicating the intercalated discs. Scale bar=
30 μm. b After pre-incubation of the antibody with epitope peptide,
positive P2X1 staining at intercalated discs preferentially disappears,
although some green and yellow auto-fluorescence remains (probably
due to the highly fluorescent protein lipofuscin). Scale bar as in a. c
Double labelling of P2X1 receptor and connexin43 in human left
ventricle. Sections were double-labelled with anti-P2X1 (green, FITC)

and anti-connexin43 (red, Cy3). The images were obtained by confocal
microscopy. Both P2X1 and the gap junction protein connexin43 are
localised in the intercalated discs. Note the variable degree of double
labelling (yellow) in different discs. Scale bar 25 μm. d and e are higher
magnification micrographs showing the variable amount of double
labelling of P2X1 receptors and connexin43 in two different gap
junctions. Scale bar in d and e 2 μm (reproduced from [286], with
permission)
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At all concentrations tested, the negative chronotropic and
dromotropic effects of ATP on canine AV and sinoatrial (SA)
nodes in vivo were more pronounced than those of adenosine
[301]. This differential potency was due to a vagal component
in the chronotropic and dromotropic actions of ATP but not
adenosine [301]. In human patients, intravenously adminis-
tered adenosine and ATP were equally effective in producing
AV block that was antagonised by aminophylline but not by
atropine [302]. However, other studies in human subjects have
shown a vagal component in the suppression of AV nodal
conduction by ATP (see [303]).

In the isolated perfused rat heart, ATP induced arrhythmias,
prolonged the PR interval and suppressed SA nodal activity
and induced partial block of AV conduction [8]. AV node (and
SA node) electrophysiological responses to ATP appeared to
be different [304]. Freely moving mice with over-expression
of A1R exhibited AV (and SA) nodal dysfunction and supra-
ventricular arrhythmias [305].

SA node

Both adenosine and ATP suppress pacemaker activity of the
sinus node, as well as junctional, His and Purkinje fibres
automaticity [166, 306]. ATP (probably via adenosine) pro-
duced hyperpolarisation of cells in frog sinus venosus [307]

and adenosine suppressed rabbit SA node automaticity [308].
The action of adenosine on the SA node was found to be
mediated by the activation of a K+ outward current [309]. In
the isolated perfused guinea pig heart, adenosine potentiated
ventricular overdrive suppression probably by direct activa-
tion of K+ outward currents [310]. ATP increased sinus cycle
length and SA conduction time in isolated blood-perfused dog
atrium [311], and prolonged sinus cycle length in the canine
heart in vivo [301].

mRNAs for P2X1R, P2X4R and P2Y1,2,4,6,12 and 14
receptors were expressed in human SA node, with P2Y14R
manifesting the highest level (see Fig. 5) [312]. However, one
study concluded that the electrophysiological effects of ATP
on rabbit SA node pacemaker cells were via P1R, since no
functional P2X1R or P2Y2R were found [313]. ATP is re-
quired to support the basal SA cell firing rate via the Ca2+,
adenylate cyclise, and protein kinase pathways [314].

Atria

Adenosine is also a modulator of L-type calcium channels in
the atrial myocardium of guinea pigs [315]. In anaesthetised,
open-chest cats, adenosine infusion significantly decreased
atrial fibrillation (AF) threshold; this effect was associated
with reduced contractility [316]. A similar action of adenosine
in the canine atria was shown to be mediated by pertussis
toxin-sensitive guanine nucleotide binding proteins (G pro-
teins) coupled to adenosine receptors [228].

His-Purkinje fibres

Purkinje fibres are modified heart muscle fibres travelling
from the AV node forward into the septum between the
ventricles where they divide into right and left bundles. The
initial portion of the bundle below the AV node is called the
His bundle. The Purkinje fibres transmit the wave of
depolarisation originating under physiological conditions in
the sinus node and travelling from the atria, via the AV node to
the ventricles. Under pathophysiological conditions,
characterised by lack of depolarisation propagating from the
AV junction, the His and Purkinje fibres can act as pace-
makers. Both adenosine and ATP suppress the pacemaker
activity of His and Purkinje fibres [166, 317, 318]. In guinea
pig and dog, ventricular pacemakers were shown to be more
sensitive to adenosine than the sinus node [166, 306]. Aden-
osine and ATP modulate the electrophysiological effects of
catecholamines in Purkinje and ventricular tissue [319, 320].
The effects of ATP and adenosine on action potentials evoked
in sheep Purkinje fibres under normal and simulated ischae-
mic conditions have been described [321]. Rosen et al. [318]
have shown that attenuation by adenosine of the effects of
epinephrine on canine Purkinje fibre automaticity was mem-
brane potential-dependent. However, a later study has found

Fig. 4 Expression of P2Y receptor mRNA obtained from neonatal rat
cardiac myofibroblasts. Total RNA was prepared and reverse
transcription-polymerase chain reaction was carried out; 1.5 % agarose
gel electrophoresis represent mRNA coding forβ-actin (lanes 1–2), P2Y1

(lanes 3–4), P2Y2 (lanes 5–6), P2Y4 (lanes 7–8), P2Y6 (lanes 9–10),
P2Y12 (lanes 11–12), P2Y13 (lanes 13–14) and P2Y14 (lanes 15–16).
Lanes 2, 4, 6, 8, 10, 12, 14, 16 correspond to the primer control without
cDNA and lane L to the ladder. Gel images presented are from one
experiment and representative of seven independent experiments
(reproduced from [291], with permission from The British
Pharmacological Society)
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that adenosine did not alter the NA-induced effects on auto-
maticity of sheep Purkinje fibres under physiological or
ischaemic-acidotic conditions in vitro (i.e. modified medium)
[321]. But, both adenosine and ATP attenuated the reduction
in the rate of rise of the upstroke and the amplitude of the
action potential caused by ischaemic-acidotic conditions
[321].

Papillary muscle

Papillary muscles are located in the lumen of the ventricles;
they are attached to the cusps of the AV valves (i.e. the mitral
and tricuspid valves). UTP prolonged the action potential
duration in guinea pig papillary muscles via P2Y2R [322].

Endocardium

ATP, ADP, AMP and adenosine hyperpolarised in guinea pig
endocardial endothelium-like cells studied either as small
tissue preparation or freshly isolated cells [323].

In summary, adenosine and ATP exert negative
chronotropic and dromotropic effects on cardiac pace-
makers and AV nodal conduction, respectively. In addition,
adenosine exerts a negative inotropic effect, while ATP
may exert a positive inotropic effect on cardiac myocyte
contractility. Both adenosine and ATP interact with the
autonomic neural control of the heart via localised actions
as well as central reflexes.

Both P1R and P2R are localised in the heart. mRNA and
protein for all P2XR subtypes have been identified on cardiac
myocytes [14, 205, 324]. mRNA for P2Y1, P2Y2, P2Y4,

P2Y6 and P2Y11 receptors is also expressed in cardiacmuscle
[14, 324–326].

Release and degradation of ATP

Release of ATP

Adenine nucleotides are present in variable amounts in the
extracellular space of the heart; ATP is released from endo-
thelial cells [327–329], from red blood cells (RBC) and acti-
vated platelets [14, 330]. The level of ATP in the coronary
effluent of saline perfused hearts was in the range of 1 nM
[331]. However, this low value reflects the rapid degradation
of ATP by ecto-enzymes and indeed high quantities of aden-
osine have been detected in the perfusates. With the use of
microdialysis, interstitial levels of ATP were established to be
in the range of 40 nM [332]. The levels increased markedly
during hypoxia and ischaemia [92, 101, 190, 192, 333]. ATP
is released into the extracellular space during increased blood
flow [334, 335], probably due to release of ATP from endo-
thelial cells in response to shear stress (see [78]). ATP is also
released as a cotransmitter from perivascular sympathetic
nerves [336, 337]. ATP was also shown to be released from
rat and mouse cardiac fibroblasts by hypotonic (mechanical)
stimulation via connexin hemichannels [338]. A major source
of extracellular ATP are RBC, which release ATP when tissue
oxygen demand exceeds supply and/or under deformation and
thereby, participate in vascular signalling and control the
systemic circulation [339]. Other sources of ATP in the heart
appear to be ischaemic myocytes, activated platelets, inflam-
matory cells and smooth muscle cells (see [14]). The

Fig. 5 Relative abundance, as
measured by quantitative PCR, of
P2X and P2Y transcripts in the
human right atrium and sinoatrial
node. Means±SEM (n=4) shown
(reproduced from [312], with
permission from Springer)
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mechanisms of ATP release involve vesicular exocytosis from
both nerve terminals and vascular endothelial cells (see [328])
and there is more recent evidence for mediation of ATP release
via connexin and pannexin hemichannels (see [340]). RBC
are a major source of ATP, which participates in vascular
signalling and control of the systemic circulation [330].

Degradation of ATP

The breakdown of ATP and ADP to adenosine and hypoxan-
thine was first reported by Jorgensen in 1956 [341]. Most of
the ATP perfused into the heart is dephosphorylated during a
single passage through the coronary vasculature [295, 333,
342]. The catabolism is likely to be due mostly to endothelial
ecto-nucleotidase. 5′-Nucleotidase activity was also described
in isolated mature rat cardiac myocytes [343]. The relative
activities of 5′-nucleotidase and ADA in atrial and ventricular
myocardium were determined by Choong and Armiger [344].
ADA degrades adenosine to inosine [345, 346]. ADA was
localised by immunocytochemistry to the extracellular surface
of endothelial cells of small coronary arteries [347]. ADAwas
also localised in mid-myocardium of all chambers of the
rabbit heart [348].

Characterisation of a Ca2+/Mg2+ ecto-ATPase from rat heart
sarcolemma was reported by Tuana and Dhalla [349]. Using
immunogold methodology, 5′-nucleotidase was found in the
cytoplasm of cardiac myocytes and coronary endothelium
[350]. Heavy exercise training was shown to increase the activity
of 5′-nucleotidase and ADA in the left ventricle of the rat heart
[351]. In addition, 5′-nucleotidase of neonatal rat ventricular
myocytes was shown to be stimulated by thyroid hormone [352].

Regulation of adenosine production by ecto-nucleotidases
on adult rat ventricular myocytes was such that at the cell
surface the level of nucleotides (especially ATP and ADP)
was low, and the level of adenosine was high during periods
of extracellular nucleotides supply [353]. Ectonucleoside tri-
phosphate diphosphohydrolases (E-NTPDase or apyrase),
ecto-nucleotidase pyrophosphatase (E-NPPs), ecto-5′-nucleo-
tidase (CD73) and alkaline phosphatases are likely to be in-
volved in the degradation of ecto-nucleotides (see [354]). ATP-
diphosphohydrolase (apyrase) activity was reported in rat heart
tissue [355–357]. Ecto-ATPases were localised histochemical-
ly on the plasma membranes of cardiac myocytes, capillary
endothelial cells and nerve fibres in rat heart [358]. E-
NTPDase1 was identified on cardiac sympathetic nerve end-
ings modulating ATP-mediated feedback of NA release [359].

Cardiac fibroblasts

Adenosine, acting through A2BR, inhibits collagen and pro-
tein synthesis in cardiac fibroblasts; accordingly, it was

suggested that A2BR agonists may protect against cardiac
fibrosis [360]. In a later paper from this group, it was sug-
gested that A2BR on proliferating cardiac fibroblasts play a
role in regulating cardiac remodelling associated with myo-
cardial infarction (MI) and ischaemic injury [361]. Over-
expression of A2BR led to a decrease in basal levels of
collagen and protein synthesis, while under-expression of
A2BR yielded an increase in protein and collagen synthesis
[362]. Elevated glucose increased the expression of A1R and
A2AR, decreased expression of A3R and had no effect on
A2BR, while insulin suppressed the expression of A1R and
A2BR, but had no effect on A2AR and A3R expression [363].
Studies using RT-PCR revealed that mRNA for all four P1R
subtypes, A1, A2A, A2B and A3, were expressed in rat
cardiac fibroblasts, with A2R dominant, acting via cAMP
second messenger [364]. In primary cultures of adult rat
cardiac fibroblasts, adenosine activated the A2R-Gs-adenylyl
cyclase pathway; the resultant cAMP reduced collagen syn-
thesis via a PKA-independent, Epac-dependent pathway that
feeds through PI3K [365]. In a recent abstract, it was shown
that A2AR and A2BR mediate differential modulation of
signal transduction and collagen production in murine cardiac
fibroblasts; both A2AR and A2BR stimulation increased ERK
phosphorylation, but only A2BR modulated collagen produc-
tion [366].

P2YR mediate activation of c-fos gene expression and
inhibition of DNA synthesis in cultured rat cardiac fibroblasts
[367]. UTP, acting via P2Y2R, induced pro-fibrotic responses
in rat and mouse cardiac fibroblasts and it was suggested that
P2Y2R antagonists may provide a means to reduce cardiac
fibrosis [368]. Thickening and scaring of connective tissue
occurs, most often as a consequence of inflammation or injury.
Purinergic signalling via P2Y6R in cardiomyocytes triggers
pressure overload-induced cardiac fibrosis [369]. ATP was
shown to up-regulate proliferation and migration of human
cardiac fibroblasts, probably via P2Y2R, but also via P2X4R
and/or P2X7R [370]. Recently, Lu and Insel [371] suggested
that the fibrotic response in rat cardiac fibroblasts involves the
integration of purinergic signalling that is pro-fibrotic by ATP,
and anti-fibrotic by adenosine, the product of ATP degradation
by ENTPDs.

Coronary blood vessels

AMP has been known to be a potent dilator of coronary
vessels since 1929 [5] and later, adenosine, ATP and ADP
were also shown to dilate coronary vessels [85, 92, 372].

The hypothesis by Berne [92] and independently by
Gerlach [93] that adenosine was the physiological regulator
of blood flow during reactive hyperaemia (what became
known as the Adenosine Hypothesis) dominated the field for
the next decade, even though conclusive supporting evidence
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was lacking (see [373, 374]; and see later section on
“Ischaemia”).

ATP is released from coronary endothelial and RBC in
response to shear stress, resulting from changes in blood
flow and hypoxia (see [78, 330]). Release of ATP from
cardiac endothelial cells has also been shown in response
to ACh, bradykinin, 5-hydroxytryptamine and ADP [375].
ATP released from aggregating platelets and RBC also
caused endothelium-dependent relaxation of canine coro-
nary arteries [376, 377]. Intracoronary ATP [378], and also
adenosine [379], produced maximal coronary vasodilata-
tion in humans.

Large increases in myocardial blood flow were associated
with ATP infusion in rat heart [380]. Intracoronary adenosine,
ATP and ADP dilate these vessels largely via the endothelium
[345], implying that P2R are expressed by coronary endothe-
lial cells. ATP and adenosine hyperpolarised guinea pig cul-
tured coronary endothelial cells; the adenosine-induced
hyperpolarisation, but not that by ATP, was antagonised by
theophylline [381], indicating that both P1R and P2R are
present on these cells. A later study presented evidence for
the presence of P2YR on endothelial cells mediating
hyperpolarisation, and vascular relaxation via both P1R and
P2R localised on smooth muscle cells, in guinea pig and rabbit
coronary arteries [382]. It was suggested that ATP may be a
more significant relaxant of canine large coronary arteries than
adenosine, but that adenosine may be a more significant
relaxant than ATP in small coronary arteries [383]. ATP also
evoked endothelium-dependent vasodilation in human isolat-
ed coronary arteries [378, 384]. Direct smooth muscle
(endothelium-independent) relaxation by ATP and UTP of
human epicardial coronary arteries has also been reported
[385], as well as hyperpolarisation of smooth muscle cells of
the guinea pig coronary artery by ATP [386].

Vasodilatation by ATP in perfused guinea pig heart in-
volves NO [387, 388], although in another study it was
concluded that ATP-induced vasodilation of guinea pig heart
did not depend on NO production, but may have been partly
dependent on the production of prostaglandins [389]. Adeno-
sine contributed little to the coronary vasodilation in guinea
pig hearts resulting from bolus injection of ATP and ADP
[389, 390]. The receptors involved in purinergic endothelium-
dependent vasodilation were identified as P2Y1R and P1R
subtypes in the rat [391, 392] and dog [393] heart
microvessels. P2Y1R and P2Y2R were described in cultures
of rat cardiac microvascular endothelial cells [394]. UTP-
sensitive P2UR (P2Y2 and/or P2Y4), as well as P2Y1R, on
human, canine and guinea pig cardiac endothelial cells have
also been reported [388, 395, 396]. ATP and adenosine
exerted opposing effects (stabilising and disrupting, respec-
tively) on the barrier function (i.e. macromolecule permeabil-
ity of microvascular endothelial cells and microvessels) of the
rat coronary microvasculature [397].

In addition to vasorelaxation, predominantly via endothe-
lial P2YR and P1R, P2XR and P2YR that mediate vasocon-
striction are expressed on the coronary artery smooth muscle
cells of human, porcine, rabbit and rat hearts [398–402].
Human coronary artery smooth muscle cells express P2YR
and P2UR (P2Y2R and/or P2Y4R) leading to increases in
[Ca2+]i by 2-MeSATP and UTP, respectively [403]. RT-PCR
studies of P2R in human coronary arteries showed pro-
nounced expression of P2X1R and P2Y2R mRNA, while
weaker expression of P2Y1, P2Y4 and P2Y6R mRNA
[401]. This study also showed that contractile responses of
human coronary arteries to α,β-meATP and the stable pyrim-
idine analogue, uridine 5′-O-3-thiotriphosphate, were consis-
tent with activation of P2X1R and P2Y2R, respectively. UTP-
evoked contractions of porcine coronary artery smoothmuscle
cells also appear to be mediated predominantly by P2Y2R
[402]. Coexpression of mRNA for P2X1, P2X2 and P2X4R
was found in smooth muscle cells of rat coronary arteries
[404]. UTP elicited depolarisation of rat coronary artery
smooth muscle [405]. Ap5A and Ap6A dinucleoside
polyphosphates dilate or constrict rat coronary vessels via
P2Y1R and P2XR on endothelial cells and smooth muscle,
respectively [406]; adenosine 5′-tetraphosphate also dilated rat
coronary vessels [241]. ATP can constrict human epicardial
coronary veins [385]. Uridine adenosine-tetraphosphate is a
novel vasodilator of the coronary microcirculation of swine
hearts, acting via P1R [407]. ATP acting via P2YR seems to
mediate NANC inhibitory transmission in lamb coronary
small arteries [408]. One of the factors controlling coronary
blood flow during exercise appears to be ATP [409–411].

Proliferation of porcine cultured coronary artery smooth
muscle cells was promoted by ATP, via P2YR, and insulin
acting synergistically [412]. A recent study indicates that
P2X1R-mediated inhibition of the proliferation of human
coronary smoothmuscle cells involved the transcription factor
NR4A1 [413].

Nicotinamide adenine dinucleotide was reported to be a
coronary vasodilator in 1971 [414] and adenosine is a potent
coronary dilator in all mammalian species studied, including
humans [415–417]. The vasodilator actions of adenosine are
mediated by A2R [36, 418–420] since A2R-mediated coro-
nary vasodilation was antagonised by methylxanthines [421],
located on endothelial cells [422–426]. The adenosine may be
released directly from cardiomyocytes and endothelial cells
after intra- and extracellular breakdown of ATP, respectively
[427].

Adenosine receptor-mediated hyperpolarisation of bovine
and porcine coronary artery smooth muscle was reported
[428, 429]. Adenosine was found also to hyperpolarise cul-
tured guinea pig coronary endothelial cells; this finding sup-
ports the hypothesis that the hyperpolarisation of the endothe-
lium induced by adenosine released into the perivascular
space of the capillaries may be conducted electrotonically to
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the terminal arterioles and may cause vasodilation via current
flow through myoendothelial gap junctions [430].

It was proposed that there was another P1R subtype, in
addition to A2R, located on smooth muscle [431] since N6-
cyclopentyladenosine, an A1R-selective agonist, had
vasorelaxant activity in porcine and canine coronary arteries
[432, 433] and A1R are expressed by smooth muscle cells
isolated from the porcine coronary artery [434], which also
express A2R [435]. Adenosine-mediated relaxation in human
small coronary arteries via A2BR, which was independent of
the endothelium and NO [436]. However, in a later paper, it
was claimed that in human coronary arteriolar smooth muscle,
the A2AR mediated vasodilation [437]. A2AR and A2BR
mediate production of NO in cultured porcine coronary artery
endothelial cells [438] and it was suggested that while A2AR
are predominant, A2BR may also play a role in adenosine-
induced vasodilation, possibly through the p38 MAPK path-
way [439]. A later study showed that the A2AR mediated
relaxation via the smooth muscle [440]. Endothelium-
dependent coronary vasodilation in the guinea pig heart was
shown to be due to multiple P1R subtypes; A1R mediated the
release of both NO and prostaglandin I2, and A2AR and A3R
acted mainly via NO [441]. The presence of A3R in the rat
coronary circulation has also been claimed [442]. A2AR and
A2BR also mediate coronary vasodilation in mice [443, 444]
and up-regulation of A2BR in A2AR knockout mouse coro-
nary artery has been reported [237, 445]; an involvement of
KATP channels in this action was also demonstrated [445].

Inosine transiently decreased coronary flow in the rat, but
potentiated vasodilation by adenosine [446]. Porcine coronary
vasodilation was produced by Ap4A, probably via P1R [447].
Diadenosine polyphosphates are potent vasoconstrictors of
human coronary artery, radial artery and saphenous vein by-
pass grafts and it was suggested that they may play a role in
post-operative contraction of these grafts [448]. The role of
adenosine in the dilation of human coronary vessels was
reviewed by Heusch [449]. The P2Y12R antagonist,
ticagrelor, enhanced adenosine-induced coronary vasodilatory
responses in humans [450].

A period of maturation of the rabbit heart after birth was
required before an adult level of coronary responsiveness to
exogenous adenosine was demonstrated [451]. It was pro-
posed that different adenosine receptor subtypes mediate cor-
onary vasodilation in mature rats, but that there is a reduction
in the response to adenosine with age that may be due to
changes in the high-affinity receptor site [452], by a reduction
in adenosine receptor transduction [453] and/or by a reduction
of A3R-mediated activity [442, 454]. In vasculogenesis, long-
term signalling by adenosine in cardiac microvascular cells
has been described [455].

In male endurance athletes, myocardial blood flow during
adenosine-mediated hyperaemia was reduced compared to
untrained men and the fitter the athlete, the lower was the

adenosine-induced myocardial blood flow, although A2AR
density was unchanged [456]. Sexual dimorphism in the per-
meability response of coronary microvessels to adenosine was
described [457].

More recently, a selective A2AR agonist has been intro-
duced into the clinical setting to induce coronary vasodilation
as a pharmacological stress agent in conjunction with radio-
nuclide myocardial perfusion imaging in patients unable to
undergo adequate exercise stress test, commonly used to
diagnose coronary artery stenosis [458].

Pathophysiology and therapeutic potential

Acute and chronic heart failure

About one half of patients with chronic heart failure (CHF)
and about two thirds of patients with acute heart failure have
concomitant renal dysfunction, termed the cardiorenal
syndrome.

There is endogenous adenosine accumulation in patients
with CHF [459]. It was suggested that selective A1R blockade
may be a useful adjunctive diuretic in heart failure. Long-term
oral administration of dipyridamole, leading to high extracel-
lular levels of adenosine, improved cardiac status of patients
with mild to moderate heart failure [460]. A1R up-regulation
accompanied decreasing myocardial adenosine levels in mice
with left ventricular dysfunction [461]. Adenosine therapy
was considered for its cardioprotective effect for CHF [462]
mediated by A1R and A3R [463]. In contrast, impairment of
adenosine action contributed to the pathophysiology of CHF
[464] (see also the contradictory findings by [465]). A1R
antagonists improved glomerular filtration, but simultaneous-
ly promoted natriuresis and diuresis in patients with heart
failure [466–468]. A1R antagonists have been recommended
for the treatment of cardiorenal syndrome [469]. Therefore,
A1R antagonists are not recommended as a treatment for acute
heart failure with renal dysfunction [470, 471], although
rolofylline, a selective A1R antagonist, had some beneficial
effects for high risk acute decompensated heart failure [472].

A2AR expression was decreased by chronic renal failure
with or without left ventricular failure; this decrease was
reduced in haemodialysed patients [473]. Intravenous infusion
of adenosine improved left ventricular function in dogs with
advanced heart failure [474]. A2BR mRNA was over-
expressed in the left ventricle of minipigs with heart failure
[475]. Adenosine release in CHF was found in the periphery
and not in the myocardium [476]. In patients with CHF,
following exercise the plasma levels of adenosine increased,
while those of ammonia decreased and it was suggested that
the enhanced cardioprotective actions of adenosine after ex-
ercise may be an adaptive response in patients with CHF
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[477]. The accumulation of adenosine in CHF was suggested
to be due to the reduction of ADA gene expression [478].

Alterations in the expression of P2X1R in failing human
atria were found [479]. P2X6R mRNAwas reported to be up-
regulated in left myocardium of patients with CHF [480].
P2XR activation protected the heart in heart failure models
[481, 482]. A beneficial effect of MRS2339, a P2XR agonist
in heart failure was demonstrated; it was identical to that
produced by cardiac myocyte-specific over-expression of the
P2X4R [483]. The improvement was associated with the
preservation of left ventricular wall thickness in both systole
and diastole in post-infarct mice and calsequestrin (CSQ)
over-expression mice with cardiac-specific P2X4R over-
expression and decreased left ventricular chamber size in
CSQ mice with heart failure and dogs with pacing-induced
heart failure [483]. Increases in ecto-5′-nucleotidase in the
plasma and myocardium in patients with CHF were thought
likely to contribute to the increased levels of adenosine [484].
In the rat coronary artery ligation-induced heart failure model,
P2X4R mRNAwas up-regulated by 93 % in cells of the SA
node and in right atrial and left ventricular myocytes [312].
P2X7R are pro-thrombotic and knockout of the P2X7R gene
was protective in a mouse model of coronary artery
thrombosis [485].

Accumulation of blood within the heart, which is the result
of back pressure in the veins, leads to congestive heart failure.
There is congestion in the lungs and/or liver in heart failure,
which may be associated with accumulation of fluid in tissues
(oedema). Volume-overload congestive heart failure in dogs is
associated with reduced myocardial inotropic responsiveness
to the administration of β-adrenoceptor agonists. It was sug-
gested that the elevated adenosine release in the failing myo-
cardium contributed to these effects [486]. An A1R antagonist
appeared to be beneficial for patients with congestive heart
failure, but some side effects were noted [487].

An increase in cardiac P2X1R and P2Y2R mRNA was
noted in congestive heart failure (Fig. 6) [488]. Enhanced
P2YR-mediated dilatation by endothelium-derived
hyperpolarising factor was also described in congestive heart
failure [489]. However, in congestive heart failure, down-
regulation of P2X1R was induced in peripheral resistance
arteries [490]. In a rat model of ischaemic congestive heart
failure, there was a selective down-regulation of P2XR-
mediated pressor effects, while the hypotensive effects medi-
ated by endothelial P2YR were unaffected and the
adenosine-mediated inhibitory effects on heart rate were
attenuated [491].

Ischaemia

Ischaemia leads to injury of the heart. Purine and pyrimidine
nucleotides, released at the site of cell damage, generally

contribute to injury, but adenosine is generally protective
(see [492]).

As mentioned above, Berne [92] and Gerlach [93] put
forward the adenosine hypothesis, according to which adeno-
sine was the physiological regulator of blood flow during
reactive hyperaemia following hypoxia. Although this hy-
pothesis was supported by early papers [493, 494], data ob-
tained in subsequent studies challenged this hypothesis. For
example, theophylline, a non-selective adenosine receptor
antagonist, blocked coronary vasodilation by perfused aden-
osine, but it did not block reactive hyperaemia [495–499].
Similarly, adenosine and ATP increased coronary blood flow,
but after occlusion, reactive hyperaemia in the dog heart was
not blocked by aminophylline, a non-selective adenosine re-
ceptor antagonist [500–503]. It was also shown that while
reactive hyperaemia occurred about 10 s after resumption of
blood flow, adenosine did not appear in the perfusate until
about 90 s later. ATP, however, appeared early on in the
coronary sinus effluent of the isolated working rat hearts in
response to hypoxia [504]. Thus, Burnstock hypothesised
[105] that the initial phase of vasodilation following hypoxia
was due to ATP, released from endothelial cells [505] to cause
vasodilation via NO [506], while adenosine, a breakdown
product of ATP by ecto-enzymes, contributed only to the later
stages of reactive hyperaemia by acting on P1R on the smooth
muscle cells. The delay in appearance of adenosine in the
perfusate was explained by the fact that ADP (derived from
the rapid breakdown of ATP) inhibits 5′-nucleotidase, the
enzyme that metabolises AMP to adenosine [507]. Ecto-
enzymes involved in the breakdown of ATP by coronary
microvascular endothelial cells from rat heart have been
described [508].

An early study has found that a combination of suppression
of contractility of right ventricular trabeculae and preservation
of electrical stability could serve as a cardioprotective action
by adenosine in ischaemia [509]. Adenosine decreased isch-
aemic damage and enhanced cardiac function during severe
hypothermia [510]. Activation of adenosine receptors mimics
the cardioprotective effect of pre-conditioning; intracoronary
adenosine protects against reperfusion injury after coronary
occlusion [511–514], an action mediated by A1R [515]. A
reduced sensitivity to adenosine has been found in the ischae-
mic or hypoxic heart [374, 516]. A2R binding in the heart was
shown to be modified by ischaemia [517] and ischaemia-
reperfusion selectively attenuated coronary vasodilatation me-
diated by A2R, but not A1R agonists [432]. Attenuation of
responsiveness would tend to counteract the cardioprotective
effects of adenosine, but the importance of this is not yet clear.

Glycolysis inhibition and enhanced mechanical function of
working rat hearts resulted from A1R stimulation during
reperfusion following ischaemia [518]. Activation of adeno-
sine receptors has been shown to reduce ischaemia-
reperfusion injury in the heart [519, 520]. Transgenic A1R
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over-expression increased myocardial resistance to ischaemia
[521]. A later study showed that the cardioprotective mecha-
nism of A1R over-expression involved altered gene expres-
sion [522]. It was suggested that ischaemic stress-induced pre-
conditioning is dependent on the concomitant stimulation of
both adenosine and NA receptors and that P1R-mediated
cardioprotection occured only if α1-adrenoceptor activation
was intact [523]. Evidence that activation of both A1R and
A2R during hypoxia can attenuate myocardial injury was
presented [524–526]. There is an age-dependent decrease in
the cardioprotection provided by adenosine in reperfusion
injury in rats [527]. However, a stronger anti-adrenergic effect
of adenosine was reported in the ageing ischaemic rat myo-
cardium, possibly due to cross-talk between A1R and A2AR
[528]. Selective A3R activation is cardioprotective in wild-
type hearts and hearts over-expressing A1R, although A3R
gene deletion generates an ischaemia-tolerant phenotype
[529]. In a later study, it was shown that improved resistance
of the heart to ischaemic damage can be achieved by increas-
ing the expression of A3R, without detrimental side effects on
heart rate or systolic function [530]. Reduced A3R transcrip-
tion may contribute to improved ischaemia tolerance in aged
hearts [531]. Reduction in post-ischaemic inflammation and
infarct size was achieved by perfusion of the canine myocar-
dium with a selective A2AR agonist [532]. One study con-
cluded that cardioprotection by adenosine was dependent on
NO and was blunted by the ganglion blocker hexamethonium
indicating that it was mediated mainly by the activation of a
neurogenic pathway [533]. Apyrase (CD39), which catalyses

the hydrolysis of ATP to AMP, provided myocardial protec-
tion against cardiac ischaemia-reperfusion injury [534]. UTP
was claimed to reduce infarct size and improve mouse heart
function after myocardial infarct via P2Y2R [535].

The mechanism underlying cardioprotection by adenosine
is not fully understood. Activation by adenosine of the reper-
fusion injury salvage kinase pathway, involving phosphoryla-
tion of Akt and/or ERK1/2, which leads to inhibition of
mitochondrial permeability transition pore formation
[536–538], may be involved. Genetic deletion of A1R limits
myocardial ischaemic tolerance [539]. The cardioprotective
effect of ischaemic pre-conditioning was shown to be depen-
dent on activation of adenosine A1R in the first fewminutes of
reperfusion [540]. In contrast, the infarct size-limiting effect of
myocardial ischaemic post-conditioning was shown to be
mediated by the activation of adenosine A2AR at the time of
reperfusion [541]. Indeed, targeted deletion of A2AR attenu-
ated the protective effects of myocardial post-conditioning
[541]. Low dose adenosine infusion reduced the ischaemic
burden and improved left ventricular regional systolic func-
tion in the ischaemic walls of patients with exercise-induced
myocardial ischaemia [542]. The infarct-sparing effect of
A2AR activation has been suggested to be primarily due to
inhibition of CD4+ T cell accumulation and activation in the
reperfused heart [543]. Another study using H9c2
cardiomyoblasts showed that the cardioprotection afforded
by adenosine was microtubules-dependent and involved the
stimulation by adenosine of cytosolic PKCε translocation to
the nucleus and dephosphorylation at Ser729 [544].

Fig. 6 Up-regulation of P2X1 and P2Y2 receptor mRNA levels in hearts
from congestive heart failure (CHF) rats. P2X1 and P2Y2 receptor
mRNA molecule numbers/μg total RNA in the myocardium from sham
operated and CHF rats. Values are means+s.e.m., n=7–8. For each,
receptor measurements were performed with the same concentration
total RNA together with five increasing concentrations of competitor

standard. The upper band represents the wild-type product and the
lower band represents the competitor product. The left set represents a
sham operated rat and the right the CHF rat. There is a clear shift in the
equivalence point (arrow) in the CHF rat towards the right (higher
concentration) for both the P2X1 and P2Y2 receptor (reproduced from
[488], with permission from Elsevier)
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It was first suggested that reflex responses mediated by
cardiac sympathetic afferent nerves during myocardial ischae-
mia were caused by adenosine, released from the ischaemic
myocardium, mediated by A1R [545], but later it was sug-
gested that it was ATP that activated sympathetic afferents
[546]. A brief intravenous infusion of ATL-146e, a selective
adenosine A2AR agonist (added 30 min before reperfusion),
reduced myocardial infarct size at 48 h after ischaemia-
reperfusion perturbation [547]. Endogenous adenosine is an
important mediator of ischaemic preconditioning and post-
conditioning (see [548]). It has been claimed that A2AR and
A2BR act in concert to induce strong protection against re-
perfusion injury in rat hearts [549] and co-operative activation
of A1R and A2AR to produce cardioprotection in ischaemia-
reperfused mouse heart has also been reported [550]. Indeed,
endogenous adenosine makes a significant contribution to
A1R agonist-mediated prevention of necrosis in a cardiac cell
model of ischaemia by co-operative interactions with both
A2AR and A2BR, but does not play a role in A3R agonist-
mediated protection [551, 552]. Figure 7 shows a simplified
depiction of the impact of adenosine receptors in protecting
against myocardial injury following ischaemia or hypoxia.

It has been reported that A1R and A3R agonists reduce
hypoxic injury through the involvement of p38 MAPK [553].
In situ ischaemic pre-conditioning conferred cardioprotection
in A1R, A2AR and A3R, but not A2BR knockout mice, or in
wild-type mice after inhibition of A2BR, and thus, it was
suggested that 5′-nucleotidase and A2BR agonists might be
considered as therapeutic agents for myocardial ischaemia
[554, 555]. Activation of A3R protected against myocardial
ischaemia-reperfusion injury in mice, an effect which disap-
peared in A3R knockout mice [529, 556, 557]. In male pa-
tients with stable angina, capadenoson, an oral A1R agonist,

lowers heart rate during exercise, which was associated with
prolongation of time to ischaemia [558]. CD73-derived aden-
osine promoted cardiac remodelling and recovery of ventric-
ular performance after ischaemia-reperfusion, most likely by
acting on T cells [559]. Adenosine was shown to stimulate the
recruitment of endothelial progenitor cells to the ischae-
mic heart resulting in enhanced revascularisation [560].
Studies focusing on the attenuation of myocardial is-
chaemia by targeting A2BR have been reviewed recent-
ly [561]. Previous reviews discussed the role of adeno-
sine in pre-conditioning and ischaemia-reperfusion inju-
ry [65, 562–570].

Although early on the focus was on the role of adenosine in
ischaemic and reperfusion injuries, there is now increasing
interest in the role of ATP in these settings. A possible role for
nucleotides in cardiac ischaemia was first raised in 1948, with
the emphasis on degradation of nucleotides which appears to
take place within muscle cells during ischaemia [571]. Ac-
cordingly, local infusion of ATP was used to successfully
delay the onset of irreversible ischaemic injury and the role
of high energy phosphates in preservation of ischaemic myo-
cardium was highlighted [572]. Delayed resynthesis of ATP
following its depletion during myocardial ischaemia was pro-
posed [573] and thus, ATP-MgCl2 was used for the treatment
of ischaemia (see [574–576]). Extracellular ATP and adeno-
sine appear to play complementary, protective roles in ischae-
mic pre-conditioning through P2YR and P1R, respectively
[577]. Pre-administration of UTP, by as much as 48 h before
an ischaemic episode, had a cardioprotective effect [326, 578].

Ischaemia is accompanied by increased release of ATP
from cardiac myocytes and sympathetic nerves [579–581].
Before its degradation to adenosine, ATPwas shown to induce
positive inotropy, but it may also depolarise cells and trigger

Fig. 7 Simplified depiction of
the impact of adenosine receptors
(AR) in ameliorating injury and
promoting adaptation during and
following myocardial insult.
Responses may be modified in
disease states. Receptor
involvement (identified in either
animal or human studies) is
shown. *Support from human
tissue studies; †supported from
animal models; ‡speculative/
debated (reproduced from [33],
with permission)
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arrhythmias [582]. Release of ATP from cardiac myocytes in
response to ischaemia was suggested to be via connexin
hemichannels [581]. In a later study, it was proposed that
ATP released in this way acts as a paracrine agent to cause
fibroblast activation leading to the development of fibrosis in
the heart following MI [583]. Blocking P2X7R or pannexin-1
channels prevented the protective effect of both ischaemic pre-
and post-conditioning [584, 585].

It has been suggested that release of ATP from
cardiomyocytes is strictly regulated during ischaemia by a
negative feedback mechanism consisting of maxi-anion chan-
nel-derived ATP-induced suppression of ATP release via he-
michannels in cardiomyocytes [586]. In a more recent study, it
was shown that ischaemic/hypoxic stress induced rapid ATP
release from cultured cardiomyocytes and that distinct P2R,
perhaps P2X7R and P2Y2R, regulated cardiomyocyte death
[587]. Ischaemia-induced accumulation of ATP in the extra-
cellular space was suggested to trigger enhancement of [Cl−]i
in ventricular muscle during ischaemic conditions [579].

Tissue transglutaminase 2 protects cardiomyocytes against
ischaemia-reperfusion injury by regulating ATP synthesis
[588]. There is up-regulation of P2X7R in rat superior cervical
ganglia (SCG) after myocardial ischaemic injury [589].
Sensory-sympathetic coupling in SCG after myocardial isch-
aemic injury facilitates sympathoexcitatory action via up-
regulated P2X7R [590]. The P2X7R antagonist brilliant blue
G acting on stellate ganglia prevented the increased
sympathoexcitatory reflex via sensory-sympathetic coupling
induced by myocardial ischaemic injury [591]. It has been
claimed that ATP post-conditioning provides a powerful pro-
tective effect in a rat model of ischaemia-reperfusion due
partly to antioxidation and partly to inhibition of inflammation
[592]. It has been claimed that puerarin, an active ingredient in
the traditional Chinese medicine Ge-gen, blocked signalling
transmission mediated by P2X3R in stellate ganglia and DRG
and reduced myocardial ischaemic damage [593].

Extracellular purine nucleotides have been shown to be
cardioprotective in various experimental models. Extracellular
ATP protects against reperfusion-induced failure of the endo-
thelial barrier in rat hearts [594]. Extracellular ATP also pro-
tects human cultured myocardial endothelial cells from apo-
ptotic cell death during hypoxia, by activating P2Y2R-
mediated MEK/ERK- and P13K/Akt-signalling pathways
[595]. ATP administration, before or just after cardiac ischae-
mia, inhibited the development of ventricular muscle damage
[584].

UTP, released during cardiac ischaemia, was claimed to act
via P2Y2R and/or P2Y4R to play a substantial role in medi-
ating cardioprotection from hypoxic damage [325, 326, 596,
597]. In isolated ischaemic rat hearts, ATP-loaded liposomes
and ATP-loaded immunoliposomes effectively protected the
myocardium from ischaemia-reperfusion damage as deter-
mined by systolic and diastolic function [598]. Moreover, in

the rabbit heart in vivo with induced localised myocardial
ischaemia, liposomal encapsulation of ATP significantly di-
minished the proportion of ventricular muscle at risk that was
irreversibly damaged during reperfusion [598]. Thus, it was
proposed that ATP-loaded liposomes could be developed as a
treatment for myocardial ischaemia [598]. It has been sug-
gested that P2Y6R and P2Y11R are involved in pyridoxal-5′-
phosphate-induced cardiac pre-conditioning in rat hearts
[599]. ADP acting on endothelial P2Y1R plays a major role
in coronary flow during post-ischaemic hyperaemia [600].
ADP, acting via P2Y1R, mediates the release of tissue plas-
minogen activator during ischaemia and post-ischaemic
hyperaemia. Tissue plasminogen activator is involved in
maintaining the endothelial wall of blood vessels free of
thrombi formation and it was suggested that this action of
ADP may counteract some of the platelet activating effects of
ADP [601]. It has been suggested that the P2Y4R could be a
therapeutic target to regulate cardiac remodelling and post-
ischaemic revascularisation [602]. P2Y2R activation protects
cardiomyocytes from hypoxia in vitro and reduces post-
ischaemic myocardial damage in vivo [603].

Extracellular ATP augments cardiac contractility by elevat-
ing intracellular calcium in cardiac myocytes. Impairment of
extracellular ATP-induced Ca2+ mobilisation in rat hearts after
ischaemia-reperfusion has been described [604]. Cardiac-
specific over-expression of human P2X4R confers a benefi-
cial effect in the left anterior descending artery ligation model
of ischaemic cardiomyopathy [605]. Transgenic over-
expression of P2X4R in mouse heart led to enhanced cardiac
contractile performance after ischaemic infarction and in-
creased survival at 1 and 2 months after infarction; this sug-
gested that enhanced contractile function via P2X4R of the
non-infarcted areas was likely to be a rescuing mechanism
[606]. A recent review discusses P2X4R as targets for cardiac
ischaemia [607].

Myocardial ischaemic nociceptive signalling was shown to
be mediated by P2X3R in rat stellate ganglion neurons [608].
P2X3R were up-regulated in rat stellate and nodose ganglia
after myocardial ischaemic injury and may underlie ischaemic
pain [609–611]. Myocardial ischaemic injury induced an in-
crease in expression of P2X3R in SCG and DRG neurons,
which led to aggravated sympathoexcitatory reflexes [612].
The authors also claimed that oxymatrine, a Chinese herbal
remedy for ulcers and tumours, may decrease the expression
of P2X3R and depress the aggravated sympathoexcitatory
reflex induced by ischaemic injury.

AZD6140, a reversible oral P2Y12R antagonist, inhibits
adenosine uptake into erythrocytes and enhances coronary
blood flow after local ischaemia or intracoronary adeno-
sine infusion [613]. After ischaemia-reperfusion injury, the
coronary vasodilator effect of Ap4A was shown to be
impaired, probably due to reduced responsiveness of
P2YR to Ap4A [614]. Extracellular tri- and di-phosphates
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were claimed to be responsible for cardioprotection against
hypoxic damage, probably by preventing free radical for-
mation [615]. Diadenosine triphosphate, a vasoactive me-
diator stored in platelet granules, induces coronary vasodi-
lation, which is attenuated by ischaemia-reperfusion due to
the functional impairment of P2YR [616]

A protective role of E-NTPDase 1/CD39 in ischaemia-
reperfusion injury has also been shown. Specifically, targeted
deletion of E-NTPDase 1/CD39 led to enhanced myocardial
ischaemia-reperfusion injury, which was corrected by infusion
of AMP or apyrase (which degrades nucleotides) [534]. More
recently, transgenic expression of human E-NTPDase 1/CD39
in pigs protected against myocardial ischaemia-reperfusion
injury [617]. Interestingly, robust and selective induction of
E-NTPDase 1/CD39 was shown after pre-conditioning in the
mouse heart [534]. Ecto-nucleotidase on sympathetic nerve
endings attenuates ATP and NA exocytosis in myocardial
ischaemia by reducing ATP levels and consequently
the prejunctional facilitatory effects of ATP [580]. Con-
versely, over-expression of E-NTPDase 1/CD39 resulted
in enhanced removal of exogenous ATP [618] and pro-
tection against murine myocardial ischaemic injury
[619]. Since ATP availability greatly increases in myo-
cardial ischaemia, it has been suggested that recombi-
nant E-NTPDase 1/CD39 may offer a novel therapeutic
approach to the damage caused by ischaemia by reduc-
ing sympathetic activity [618]. E-NTPDase 1/CD39 de-
letion led to an attenuation of the activity of sympathet-
ic pre- and post-synaptic P2XR (attributed to P2XR
desensitisation) perhaps due to prolonged exposure to
ATP that accompanies E-NTPDase 1/CD39 deletion, and
it was suggested that E-NTPDase 1/CD39 can potential-
ly prevent the transition from myocardial ischaemia to
infarction [620]. A recent study showed that decreased
ecto-nucleotidase activity produced by ischaemia in rat
heart may exacerbate subsequent reperfusion injury
[621]. These observations are in congruence with an
earlier finding that ischaemic pre-conditioning increased
5′-nucleotidase activity and adenosine release during
myocardial ischaemia and reperfusion in dogs [622].

In summary, ATP is released from ischaemic cells and
adenosine, the product of its degradation by ecto-enzymes,
plays a major role in cardioprotection in the setting of myo-
cardial ischaemia-reperfusion.

Myocardial infarction

Myocardial infarction (MI) is localised death of heart muscle
in the setting of myocardial ischaemia (imbalance between
oxygen supply and demand) caused by impaired coronary
blood flow.

Protection against MI was mediated by A1R and also
probably A3R in the rabbit heart [515, 623]. Activation of

A2AR at reperfusion was shown to reduce infarct size in dog
heart [519]. Inhibition of NO synthesis reduced infarct size via
release of adenosine [624]. Magnesium reduced infarct size
also via enhancement of the action of adenosine in rabbits
[625]. Over-expression of A1R protected mice against MI
[626]. The use of intravenous adenosine after primary coro-
nary stenting reduced the infarct size [627]. Clinical outcomes
in patients with acute MI undergoing reperfusion therapy
(thrombolysis) were not significantly improved with adeno-
sine infusion (3-h infusion of 50 or 70 μg/kg/min) [628].
However, it was reported later that continuous infusion of
adenosine for 3 h improved left ventricular function and
reduced infarct size in patients with ST-segment elevation
MI [629]. The role of adenosine as an adjunct therapy in the
prevention and treatment of no-reflow phenomenon in MI
with ST-segment elevation was recently reviewed [630].

Acute Myocardial Infarction Study of Adenosine
(AMISTAD) clinical trials showed that infusion of adenosine
for 3 h resulted in a striking reduction in infarct size [631].
However, long-term stimulation of A2BR commenced after
MI prevented cardiac remodelling in rats [632] and contribut-
ed to post-infarction heart failure [633]. In a more recent study,
it was found that the selective blockade of A2BR reduced
cardiac remodelling following acute MI in mice [634]. It was
suggested that stimulation of A2BR blocks apoptosis of car-
diac myocytes and that this may explain the anti-remodelling
effect of A2BR stimulation after MI [635]. It was shown that
A2BR signalling is linked to up-regulation of pro-angiogenic
factors in cardiac Sca-1+CD31− stromal cells, which is essen-
tial for overall improvement of cardiac recovery seen after
their transplantation to the injured heart (post MI) [636].
Intracoronary adenosine improved myocardial microvascular
perfusion in late reperfused MI [637].

Infarct size was reduced after a brief intravenous infusion
of a selective A2AR agonist, ATL-146e [547]. In a clinical
trial, a high dose of intracoronary adenosine given during
percutaneous coronary intervention (PCI) did not reduce in-
farct size [638]. However, a later study provided evidence for
contrasting beneficial effects of adenosine under similar con-
ditions [639]. Intracoronary administration of adenosine, but
not of nitroprusside, resulted in a significant improvement
following acute MI [640].

Imidapril, an angiotensin-converting enzyme inhibitor, im-
proved the attenuated inotropic responses to ATP in heart
failure due toMI [641]. UTP reduced infarct size and improve
heart function in rats after MI [578] and also in mice [535].
Positive inotropic effects in humans were elicited by UTP and
uridine diphosphate via P2Y2R and P2Y6R, respectively
[642]. Release of UTP from cardiomyocytes during MI was
also claimed in this study. P2XR-mediated pressor reflex
responses were augmented in animals with MI compared with
healthy control animals, and congestive heart failure induced
by MI was shown to up-regulate P2XR in the DRG [643].
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There is increased risk of acute MI in carriers of the Thr-87
polymorphic variant of the P2Y11R; since extracellular ATP
acting on the P2Y11R regulates inflammatory cells, the in-
creased risk was hypothesised to involve an inflammatory
mechanism [644]. Intravenous administration of high doses
of ATP during primary PCI reduced left ventricular improved
wall motion within an area at risk for MI suggesting that ATP
can prevent reperfusion injury [645]. In addition, intravenous
ATP administration significantly extended ST-segment reso-
lution, reduced the no-reflow ratio, preserved left ventricular
systolic function and prevented left ventricular remodelling
[646]. An association of the P2Y2R gene with MI in Japanese
men has been reported [647]. Clopidogrel and ticlopidine,
P2Y12R antagonists used for thrombosis, are also used for
prevention and treatment of MI, acting via L-type calcium
currents on cardiomyocytes [648].

ATP, released from astrocytes within the rostral ventro-
lateral medulla presympathetic circuits, induced increased
sympathetic outflow contributing to the progression of heart
failure following MI in rats [649]. These findings support the
view that sympathetic overactivity in heart failure is detrimen-
tal, contributing to the progression of the disease. It was
suggested that ATP metabolism is a target for protection
against MI [650].

In summary, although there are conflicting reports regard-
ing the actions of purine nucleosides and nucleotides during
MI, it is clear that adenosine is effective in reducing MI size
and is probably involved in post-infarct remodelling. Adeno-
sine inhibits proliferation of cardiac fibroblasts and hypertro-
phy of cardiomyocytes, both of which play a role in cardiac
remodelling after MI.

Arrhythmias

Paroxysmal supraventricular tachycardia

ATP was first used for the acute therapy of paroxysmal sup-
raventricular tachycardia (PSVT) in the late 1940s [651] (and
see reference to earlier studies therein) and later by others
[652–658]. ATP was shown to evoke transient tachycardia at
low doses and to induce AV block at high doses [659, 660].
Later, adenosine was also found to be effective in the acute
termination of PSVT [661, 662] and was used effectively in
children [663–666]. The mechanism of terminating the ar-
rhythmias by either adenosine or ATP is the induction of
transient complete AV nodal conduction block. Dipyridamole,
which inhibits the uptake of adenosine and thereby increasing
its extracellular levels, was found to reduce the amount of
adenosine required for the termination of PSVT involving the
AV node [667]. In contrast, it has been suggested that caffeine
(a non-selective adenosine receptor antagonist) ingestion re-
duces adenosine efficacy in the treatment of PSVT [668],

although, the methodology of the latter study was subsequent-
ly criticised [669].

Tachycardia can be induced by A2AR agonists and is
mediated by direct stimulation of the sympathoexcitation sys-
tem in awake rats [670]. Caffeine can also induce PSVT [669].
Slow infusion of calcium channel blockers are claimed to be a
safe alternative to adenosine for the emergency treatment of
PSVT [671]. The relative efficacy of adenosine and verapamil
for the treatment of PSVTwere found to be similar; adenosine
had a higher rate of minor adverse effects, while verapamil
had a higher rate of causing hypotension [672].

A comprehensive study of the clinical and electrophysio-
logic effects of ATP and verapamil on paroxysmal reciprocat-
ing junctional tachycardia was undertaken [673]. It was con-
cluded that ATP was more effective and more rapid than
verapamil, but with a higher incidence of cardiac and non-
cardiac side effects. ATP was shown to be a safe and effective
drug at low dose for re-entrant tachycardias, involving the AV
node [674]. ATP and adenosine were found to be equally
effective for the diagnosis and treatment of PSVT and the
incidence and severity of side effects were similar [675].
However, other studies have shown that ATP is more potent
than adenosine, probably due to the central cardio-cardiac
vagal reflex triggered by the nucleotide (see [15]).

ATP was effective against wide QRS tachycardia [676],
and it can be used as a diagnostic tool in the non-invasive
diagnosis of dual AV nodal pathway as the substrate for PSVT
[677–679]. The effect of ATP on PSVTseems likely to be due
to its degradation by ecto-nucleotidases to adenosine to act via
P1R [680]. However, continuous perfusion of ATP in animal
models where adenosine receptors were blocked showed both
negative and positive chronotropic and inotropic effects of
ATP, which were dose dependent [122, 681].

Several reviews discuss the treatment of PSVT by ATP and
adenosine [15, 61, 682–687]. Adenosine was recommended
for the diagnosis of wide complex tachycardia [688].

Ventricular arrhythmias

Evidence was presented to suggest that adenosine in low
concentrations contributed to ventricular dysrhythmia, while
ATP and ADP and high concentrations of adenosine have
anti-arrhythmic effects [689]. Adenosine was recommended
as a safe and effective agent in the evaluation and treatment of
infants and children with arrhythmias [46, 690–692]. Howev-
er, several rare cases of life-threatening ventricular arrhyth-
mias induced by adenosine have been reported [693, 694].
When the activity of intrinsic cardiac neurons was modified
by locally applied adenosine, ventricular arrhythmias were
induced [695]. An A2BR antagonist, GS-6201, reduced left
ventricular dysfunction and ventricular arrhythmias 1 week
after MI in a rat model [696].
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It has been shown that acute adenosine administration in
the rat activates cardiac vagal nerve terminals and it was
suggested that this could make an important contribution to
the anti-arrhythmic action of adenosine [697]. However, in
cat, dog and man, the actions of adenosine (given as a rapid
intravenous bolus injection) on SA and AV nodes do not
involve the vagus (for adenosine-vagus interaction, see [303,
698]). Valuable articles discussing the role of adenosine in
atrial arrhythmias and fibrillation have been published [699,
700].

It was proposed that the release of ATP in pathological
conditions could induce a depolarisation, which would gener-
ate ventricular arrhythmias [701]. In isolated guinea pig ven-
tricular myocytes, ATP alone did not induce after-
depolarisations nor did it significantly alter the resting mem-
brane potentials and action potentials. However, when it was
applied with drugs known to increase intracellular Ca2+, ATP
facilitated the induction of after-depolarisations and triggered
activity in approximately 60% of the cells [702]. ATP triggers
arrhythmias in electrically stimulated rat cardiac myocytes
[703]. ATP prevents the run-down of gap junctional commu-
nication between ventricular myocytes in newborn rats by
promoting protein phosphorylation [704]. In a later paper,
P2X1R were shown to be closely associated with connexin
43 in gap junctions in the human ventricular myocardium
[286] and the possibility that decreased expression of
P2X1R is related to arrhythmias in the heart in Chagas disease
and diabetes was considered [705]. In the perfused mouse
heart, the addition of ATP to the perfusate induced ventricular
tachycardia; this effect was mediated by P2R and increased
diastolic level of [Ca2+]i [706].

Atrial fibrillation

Fibrillation is characterised by rapid unsynchronised beating
of cardiac myocytes resulting in non-effective contractions of
the atria or the ventricles. Transient episodes of atrial fibrilla-
tion (AF) occur in some patients after the administration of
adenosine or ATP for the termination of PSVT; this is proba-
bly due to the shortening of action potential duration of atrial
myocytes [228, 707, 708].

Abnormal calcium handling in AF was linked to up-
regulation of A2AR [709]. High endogenous adenosine plas-
ma concentrations were associated with AF during cardiac
surgery with cardiopulmonary bypass [710]. However, the use
of adenosine, instead of hyperkalemia, in cold crystalloid
cardioplegia for the induction of cardiac arrest during coro-
nary artery bypass grafting surgery, was found to reduce the
incidence of post-operative AF [711].

Adenosine and ATP have been used in conjunction with
various AF ablation procedures to expose dormant conduc-
tions between an arrhythmogenic superior vena cava (SVC)
and pulmonary vein (PV) and the right atrium (i.e. acute

adenosine/ATP-induced pulmonary vein reconnection may
lead to a greater likelihood of recurrence of AF) [712–718].

Cardiomyopathy

Cardiomyopathy, or heart muscle disease, is a type of progres-
sive chronic heart disease characterised by abnormally en-
larged, thickened and/or stiffened myocardium. These patho-
logical changes result in inadequate blood pumping and flow,
causing heart failure and the backup of blood in the lungs or
the rest of the body. Cardiomyopathy can also be associated
with cardiac arrhythmias. It may be inherited, but can also be
caused by other factors, including viral infections, alcoholism,
vitamin B deficiency or amyloidosis.

In hereditary dystrophic cardiomyopathy in hamsters,
adenosine reduced the force of contraction during β-
adrenergic stimulation, but impaired adenosine feedback con-
trol of the heart did not play a role in the pathogenesis of this
hereditary cardiomyopathy [719]. Pacing-induced regional
differences in P1R mRNA expression were described in a
swine model of dilated cardiomyopathy [720].

An increase in P2X1R expression in the atria of patients
with dilated cardiomyopathy was reported [721]. A beneficial
role for activation of cardiac P2X4R was described in a CSQ
over-expression model of cardiomyopathy [722]. P2XR-
mediated action on cardiac myocytes was beneficial in the
CSQ model of cardiomyopathy, reducing hypertrophy and
increasing life span [723].

Syncope

Syncope or transient loss of consciousness can be due tomany
factors involving the cardiovascular system and its neural
control. Syncope of cardiac origin can be due to sinus node
malfunctioning, paroxysmal AV nodal conduction block,
PSVT or self terminating ventricular tachycardia. Patients
with syncope of unknown origin or suspected neurally medi-
ated syncope, were more susceptible to intravenous injection
of ATP than those without syncope [140, 724]; patients with
hyper-sensitivity to ATP can benefit from pacemaker therapy
[140, 141, 725].

Adenosine and ATP have been used in conjunction with the
head-up tilt table test (HUT) to provoke vasovagal reaction
in susceptible patients during the test [726, 727]. Higher
plasma levels of adenosine and increased expression of
A2AR was found in syncopal patients with a positive HUT
[728]. Since syncopes occur suddenly and unexpectedly, it is
difficult to see a mechanistic role for chronic changes of
A2AR expression and adenosine level in the acute syncopal
events. A study of highly symptomatic vasovagal patients
using an implantable loop recorder found that the heart rhythm
during a spontaneous syncope was identical to the recurrent
syncope but not that during HUTor ATP-test [729]. However,
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the method used by this group to quantify the effects of ATP
during the test and the interchangeable use of adenosine and
ATP as the provocateur agent has been criticised [141].

Cardiac hypertrophy

Activation of A1R attenuates cardiac hypertrophy and pre-
vents heart failure in a mouse left ventricular pressure-
overload model [730]. Phenylephrine-induced cardiomyocyte
hypertrophy in rats was inhibited by activation of multiple
adenosine receptor subtypes [731]. In addition, hypertrophy
induced by phenylephrine in cultured rat ventricular myocytes
was associated with compensatory up-regulation of the aden-
osine systemmanifested in the significant increase in gene and
protein expression of adenosine A1R, A2AR and A3R [732],
furthermore, phenylephrine-induced cardiomyocyte hypertro-
phy and calcification were shown to be regulated by the
interaction of CD73 and alkaline phosphatase and inhibited
by adenosine receptor activation [733].

Extracellular ATP induces immediate-early gene expres-
sion but not cellular hypertrophy [734], and inhibited adren-
ergic agonist-induced cardiac hypertrophy in cultured neona-
tal cardiac myocytes [735]. UTP, but not ATP, caused hyper-
trophic growth in neonatal cardiomyocytes [736]. Over-
expression of human P2X4R in ventricular myocytes of a
transgenic mouse increased basal cardiac contractility without
cardiac hypertrophy or failure [274] and activation with a
P2X4R agonist had beneficial effects [483]. Deletion of the
P2Y4R gene in mice lowered exercise capacity and reduced
myocardial hypertrophy [737].

Sick sinus syndrome

Sick sinus syndrome (SSS) is defined as malfunction of the
sinus node. Intravenous injection of adenosine or ATP can be
used to assess sinus node dysfunction and thereby diagnose
SSS [738–745].

Coronary artery disease

Atherosclerosis of coronary vessels is known as coronary
artery disease (CAD). The pharmacologic stress test is a
common diagnostic procedure aimed at determining the extent
of CAD and the affected coronaries in patients unable to
perform conventional exercise stress. In this test, a
vasodilating agent is administered followed by a radio-
isotope (what is known as cardiac nuclear perfusion imaging).
Affected coronaries fail to dilate properly resulting in a coro-
nary steal phenomenon, manifested as a non-homogenous
increase in coronary blood flow, which is reflected in the
non-homogeneous distribution of the radio-isotope that can
be mapped using a gamma-camera. Adenosine and ATP, and
more recently a selective A2AR agonist (Lexiscan [458]),

have been used as pharmacologic stressors in this setting
[746–754]. The use of adenosine-cardiac magnetic resonance
imaging for the detection of CAD has been recommended
recently [755–757].

Administration of ATP into the left coronary artery has
been used to treat patients with CAD in preference to papav-
erine [758]. ATP acts on endothelial P2YR to cause release of
NO and subsequent vasodilation. Patients with CAD and
patients with risk factors for the disease were shown to have
reduced lymphocyte CD39 (NTPDase 1) ecto-nucleotidase
activity compared to healthy controls [759].

Platelet adhesion and aggregation is a key step in the
development of inflammation, thrombosis and atherosclero-
sis. Thus, platelet aggregation inhibitors, such as clopidogrel,
prasugrel or cangrelor, antagonists of ADP-sensitive P2Y12R,
have been used to prevent and treat CAD [760–763]. Several
reviews discuss the use of anti-platelet drugs for the
treatment and prevention of CAD [762, 764, 765]. It has
been suggested that ADP-mediated migration of host
smooth muscle-like cells and CD45+ leukocytes, via
P2Y12R, may play a role in the development of transplant
arteriosclerosis, partly by monocyte chemoattractant
protein-1 [766]. Clinical trials with clopidogrel and
ticlopidine in patients with CAD have shown significant
benefit compared with aspirin. An association between the
T744C polymorphism of the P2Y12R gene and the anti-
platelet effect of clopidogrel was found in patients with
CAD after coronary stenting [767]. ADP receptor antago-
nist discontinuation prior to coronary artery bypass surgery
has been recommended [768, 769].

Continuous infusion and low-dose bolus injection of aden-
osine were early approaches to determine coronary vasodila-
tor reserve in patients with CAD [770]. The safety of adeno-
sine infusion during cardiac MRI was confirmed [771]. Cor-
onary sinus adenosine was proposed to provide an index of
myocardial ischaemia in patients with CAD [772]. Intrave-
nous adenosine resulted in variable changes in systemic blood
pressure, which can lead to alterations in fractional flow
reserve lesion classification [773].

It was claimed that ADA played a key role in CAD [774].
Ischaemic pre-conditioning effects of adenosine were identi-
fied in patients with severe CAD that preserved coronary flow
reserve [775]. It was reported that a high intracoronary bolus
dose of adenosine was equal to or more effective than an
intravenous infusion in assessing fractional flow reserve in
patients with coronary heart disease [776].

Heart transplants and coronary bypass grafts

Heart transplantation

The responses to adenosine of the denervated donor sinus and
AV nodes were of greater magnitude and duration than those

22 Purinergic Signalling (2015) 11:1–46



of the innervated recipient and normal control hearts, suggest-
ing supersensitivity to adenosine in the denervated human
heart [777]. Cardioplegia is the technique used to stop the
heart, either by injecting it with a salt solution, by hypothermia
or by an electrical stimulus. This is used to enable complex
cardiac surgery and transplantation to be performed safely.
Adenosine injection prior to cardioplegia is used to protect
against ischaemia-reperfusion injury during hypothermia
[778–780]. ATP administered to pig hearts in cardioplegia
and reperfusion had beneficial effects both on the myocardium
and on peripheral vessels [781]. The introduction of ATP
synthesis promoters did not improve the beneficial effects of
adenosine in cardioplegia [782].

Selective up-regulation of P2X6R was observed in the
myocardium of patients undergoing heart transplantation be-
cause of CHF [480]. The potential significance of this was
studied in primary cardiac fibroblasts freshly isolated from
young pigs. Tumour necrosis factor-α (TNFα), a proinflam-
matory cytokine implicated in CHF progression, increased
cell death and similar effects were produced by ATP in a
murine cardiomyocytic cell line. In cardiac fibroblasts, TNFα
inhibited the down-regulation of P2X6R mRNA and may
provide a basis for P2X6R up-regulation in CHF, which may
contribute to CHF pathogenesis. There was significant reduc-
tion of ATP levels in 1-day-old blood compared to fresh
blood, suggesting that fresh blood should be used for
assessing T cell immune function in transplant patients
[783]. A recent study found that P2X7R are specifically up-
regulated in graft-infiltrating lymphocytes in cardiac-
transplanted humans and mice [784]. Furthermore, a short-
term treatment with a P2XR antagonist prolonged cardiac
transplant survival [784].

Coronary bypass grafts

The purinoceptor distribution on endothelial cells of blood
vessels used for coronary artery bypass grafts was examined
[785]. The level of P2Y2R was much the same in human
internal mammary arteries (IMA) and radial arteries (RA) and
on saphenous veins (SV), whereas levels of P2X4R were low
in IMA and RA, but high in SV. The authors suggested that the
high levels of P2X4R in SV may be the principal reason why
these vessels are found to be more susceptible to atheroscle-
rosis and exhibit a reduction in graft patency longevity. Since
P2X4R appears to play a role in arteriosclerosis and resteno-
sis, it is suggested that IMA and RA are preferable for coro-
nary bypass grafts. In another study, it was shown that P2X1R
and P2Y6R mediate more prominent contractions in the SV
than in the IMA and they suggested that P2X1R and P2Y6R
antagonists could be used to prevent vasospasm and restenosis
in the SV during and after revascularisation surgery [786]. The
robust vasoconstriction produced by diadenosine
polyphosphates observed in human RAwas compared to the

low incidence of vasoconstriction in the IMA [448]. It was
concluded that the selective activity of diadenosine
polyphosphates in RA would implicate them as potential
mediators of post-operative contraction of the graft,
confirming again the preference for the use of IMA for coro-
nary bypass grafts.

Diabetic cardiomyopathy

The coronary dilator action of adenosine was shown to be
reduced in diabetes [787, 788]. Activation of P1R was re-
quired for myocardial insulin responsiveness in vivo [789].
Atria from middle-aged diabetic rat models exhibited super-
sensitivity to the inotropic effect of adenosine [790]. Atria
from 6-week streptozotocin (STZ)-induced diabetes in rats
exhibited supersensitivity to the negative inotropic and
chronotropic effects of adenosine [791]. A3R mRNA and
protein levels were increased in whole heart from rats with
STZ-induced diabetes [792]. The development of diabetes
resulted in an increased uptake of adenosine by rat cardiac
fibroblasts and reduction of their ability to release adenosine
due to altered expression of nucleoside transporters [793]. The
heart rate response to adenosine infusion was diminished in
patients with diabetes mellitus, probably due to cardiovascular
autonomic neuropathy [794]. Protective effects of adenosine
on the diabetic myocardium against ischaemic-reperfusion
injury were reported [795]. A predictor of adverse cardiac
outcome in asymptomatic patients with type 2 diabetes is the
heart rate response to adenosine [796].

Insulin improved theATP decrease in the subendocardium of
the left ventricle of STZ-induced diabetic, but not non-diabetic
hearts [797]. The maximum response of [Ca2+]i to exogenous
ATP was increased in diabetic cardiomyocytes [798]. Modula-
tion of purinergic neurotransmission via P2YR in isolated atria
of STZ-induced diabetic rats has been reported [799].

Angina

Angina pectoris, pain in the centre of the chest, occurs when
the demand for blood by the heart exceeds the supply by the
coronary arteries that usually results from coronary artery
atheroma. It can be treated with NO donors and β-blockers,
but may need coronary angioplasty or coronary bypass grafts.

Adenosine was claimed to be a messenger between myo-
cardial ischaemia and angina pectoris in a patient with a
transplanted heart [800]. Intracoronary adenosine administra-
tion provoked anginal pain and aminophylline, a P1R antag-
onist, reduced both adenosine and exercise-induced chest pain
[801]. Further, the severity of anginal pain produced by intra-
venous adenosine was milder in patients with silent ischaemia
than in those with painful ischaemia. Adenosine infusion into
both left and right coronary arteries also produced anginal
pain [802]. It was shown later that adenosine, released during
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ischaemia, provoked anginal pain that was controlled by
previous administration of theophylline, a non-selective P1R
antagonist [803]. Another study found that intracoronary ad-
ministration of adenosine produced anginal pain by a mecha-
nism other than myocardial ischaemia [804]. Dipyridamole
infusion, which inhibits adenosine uptake, increased anginal
pain [805]. β-Endorphin counteracted adenosine-provoked
anginal pain [806]. However, it was shown later that adeno-
sine infusion provoked oscillation of chest pain without in-
volvement of opioids [807]. Yet, A1R agonists were recom-
mended for the treatment of neuropathic pain as well as
cardioprotective agents [808].

Myocardial release of the breakdown products of ATP,
inosine, hypoxanthine and lactate, during pacing-induced an-
gina in humans with CAD was reported [809]. ATP was
recommended as a sensitive and reliable method of detecting
coronary lesions in patients with unstable angina pectoris
[810].

Pulmonary hypertension

Several studies in animal models of pulmonary hypertension
demonstrated the beneficial effects of ATP infusion in this
setting [811–815]. Pulmonary hypertension is a serious prob-
lem in children with congenital heart defects. ATP-MgCl2
(0.05, 0.1, and 0.2 mg of ATP/kg/min) was a safe and effective
pulmonary vasodilator in children with pulmonary hyperten-
sion, secondary to congenital heart defects [816].

Concluding comments

What is clear from the voluminous literature about purinergic
signalling in the heart is that:

(1) Nucleoside and nucleotide receptors, i.e. P1R and P2R,
respectively, play multiple roles in cardiac physiology
and pathophysiology.

(2) There are still important gaps in our knowledge and
many questions still remain unanswered regarding
purinergic signalling in the heart.

(3) Many of the therapeutic strategies for a number of heart
disorders based on the manipulation of purinergic sig-
nalling are not well defined. The side effects of some of
the treatments need to be considered and strategies to
overcome them defined.

The newly developed stable, small molecules that act as
selective agonists and antagonists at purinergic receptors,
which can be taken orally, as well as novel nucleotidase
inhibitors and ATP transport blockers could be a major step
forward towards resolving these problems. Studies with

inhibitors of ATP release may also enhance our understanding
of the relevant mechanisms including the genetic variations in
response to purinergic compounds. In this context, immuno-
logical factors should also be taken into account.
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