Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Jul;70(7):1947–1949. doi: 10.1073/pnas.70.7.1947

Stereospecific Binding of the Potent Narcotic Analgesic [3H]Etorphine to Rat-Brain Homogenate

Eric J Simon 1, Jacob M Hiller 1, Irit Edelman 1
PMCID: PMC433639  PMID: 4516196

Abstract

Etorphine, the most potent narcotic analgesic known, was labeled with tritium by catalytic exchange. This drug exhibits stereospecific, saturable binding to rat-brain homogenate. At saturation, the stereospecific binding is 0.1-0.15 pmol/mg of protein. Specific binding is inhibited high salt concentrations, sulfhydryl reagents, and proteolytic enzymes, but is unaffected by phospholipases A and C, sodium azide, sodium fluoride, and prostaglandins E1 and E2. Competition for binding of [3H]etorphine correlates with agonist and antagonist potencies. The stable, stereospecific binding of an active narcotic analgesic supports the existence of opiate receptors.

Keywords: opiate receptor, morphine, antagonist

Full text

PDF
1949

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blane G. F., Boura A. L., Fitzgerald A. E., Lister R. E. Actions of etorphine hydrochloride, (M99): a potent morphine-like agent. Br J Pharmacol Chemother. 1967 May;30(1):11–22. doi: 10.1111/j.1476-5381.1967.tb02108.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blecher M. On the mechanism of action of phospholipase A and insulin on glucose entry into free adipose cells. Biochem Biophys Res Commun. 1966 Apr 6;23(1):68–74. doi: 10.1016/0006-291x(66)90270-1. [DOI] [PubMed] [Google Scholar]
  3. Dole V. P. Biochemistry of addiction. Annu Rev Biochem. 1970;39:821–840. doi: 10.1146/annurev.bi.39.070170.004133. [DOI] [PubMed] [Google Scholar]
  4. Goldstein A., Lowney L. I., Pal B. K. Stereospecific and nonspecific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1742–1747. doi: 10.1073/pnas.68.8.1742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Pert C. B., Snyder S. H. Opiate receptor: demonstration in nervous tissue. Science. 1973 Mar 9;179(4077):1011–1014. doi: 10.1126/science.179.4077.1011. [DOI] [PubMed] [Google Scholar]
  7. Simon E. J., Dole W. P., Hiller J. M. Coupling of a new, active morphine derivative to sepharose for affinity chromatography. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1835–1837. doi: 10.1073/pnas.69.7.1835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Van Praag D., Simon E. J. Studies on the intracellular distribution and tissue binding of dihydromorphine-7,8-H3 in the rat. Proc Soc Exp Biol Med. 1966 May;122(1):6–11. doi: 10.3181/00379727-122-31036. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES