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Abstract

The control of sympathetic outflow in the chronic heart failure state (CHF) is markedly abnormal. 

Patients with heart failure present with increased plasma norepinephrine and increased 

sympathetic nerve activity. The mechanism for this sympatho-excitation are multiple and varied. 

Both depression in negative feedback sensory control mechanisms and augmentation of excitatory 

reflexes contribute to this sympatho-excitation. These include the arterial baroreflex, cardiac 

reflexes, arterial chemoreflexes and cardiac sympathetic afferent reflexes. In addition, 

abnormalities in central signaling in autonomic pathways have been implicated in the sympatho-

excitatory process in CHF. These mechanisms include increases in central Angiotensin II and the 

Type 1 receptor, increased in reactive oxygen stress, up regulation in glutamate signaling and NR1 

(N-methyl-D-aspartate subtype 1) receptors and others. Exercise training in the CHF state has 

been shown to reduce sympathetic outflow and result in increased survival and reduced cardiac 

events. Exercise training has been shown to reduce central Angiotensin II signaling including the 

Type 1 receptor and reduce oxidative stress by lowering the expression of many of the subunits of 

NADPH oxidase. In addition, there are profound effects on the central generation of nitric oxide 

and nitric oxide synthase in sympatho-regulatory areas of the brain. Recent studies have pointed to 

the balance between Angiotensin Converting Enzyme (ACE) and ACE2, translating into 

Angiotensin II and Angiotensin 1–7 as important regulators of sympathetic outflow. These 

enzymes appear to be normalized following exercise training in CHF. Understanding the precise 

molecular mechanisms by which exercise training is sympatho-inhibitory will uncover new targets 

for therapy.
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Introduction

The syndrome of chronic heart failure (CHF) impacts every organ system including skeletal 

muscle both at rest and during exercise (Drexler et al., 1987; Hambrecht et al., 2000; Just, 

1991; Magnusson, 1995; Musch et al., 1989; Parmley, 1989; Riley et al., 1990). Further, 

exercise was initially thought to worsen left ventricular dysfunction in CHF patients 

(McDonald et al., 1972). One of the most frequent complaints of patients with even mild 

CHF is the inability to exercise. One would think the mechanism at the root cause of 

exercise intolerance in CHF is simply a lack of cardiac reserve and an inability to adjust 

cardiac output to workload. However, because CHF impacts sympathetic outflow, 

endothelial function, peripheral vascular resistance and skeletal muscle protein synthesis and 

metabolism, the mechanism of exercise intolerance is multifactorial in this disease state. 

While the standard of care for CHF in the mid-20th century was bed rest and diuretic and/or 

cardiac glycoside therapy it has become increasingly accepted that all but the most severe 

CHF patients can carry out some form of exercise (Downing et al., 2011; McKelvie, 2008). 

In fact, the American Heart Association has advocated exercise training as a safe form of 

therapy (Piña et al., 2003). Several clinical studies now show substantial benefits of exercise 

training in patients with CHF including quality of life, a reduction in hospitalization, cardiac 

events and survival (Belardinelli et al., 1999; Chicco et al., 2008; Piepoli et al., 2000). The 

HF-ACTION trial demonstrated a decrease in all-cause mortality and hospitalization in CHF 

patients who underwent a moderate exercise training regimen (aerobic exercise of either 

cycling or treadmill walking for 40 minutes at 60% to 70% of heart rate reserve, five times 

per week) (O’Connor et al., 2009). These benefits are not limited to a single type of exercise 

modality; resistance training, aerobic exercise, and even calisthenics as tolerated after a 

cardiac event are all considered to be effective (Piepoli et al., 2000). In fact, a reduction of 

physical activity in this same CHF patient population may be a contributor to future exercise 

intolerance and impaired peripheral vascular resistance (Hunt et al., 2005). While there is 

consensus that exercise training is beneficial in the CHF state, the underlying mechanisms 

responsible for these effects are not at all clear. Pre-clinical experimental studies have been 

extremely useful in shedding light on potential pathophysiological mechanisms. This review 

will focus primarily on the effects of exercise training on sympathetic and cardiovascular 

reflex function in CHF however, it should be kept in mind that changes in sympathetic 

outflow is just one mechanism responsible for the beneficial effects of exercise training in 

CHF.

Sympatho-excitation in CHF

The neural control of cardiovascular function relies on an ancient controller dominated by 

classical negative feedback servo control systems scattered throughout the cardiovascular 

system. Normally, just the right amount of sympathetic nerve activity is provided to 

maintain peripheral vascular resistance and arterial pressure at a set point necessary for 

adequate tissue perfusion. The sensors are primarily located in the great vessels 

(baroreceptors), the heart, and in the carotid and aortic bodies (chemoreceptors). A large 

number of studies, both basic and clinical, have shown marked abnormalities in the ability 

of these sensors to correctly transmit information concerning arterial pressure, blood volume 

and oxygen tension (Eckberg et al., 1971; Ellenbogen et al., 1989; La Rovere et al., 2009; 
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Mohanty et al., 1989; Ponikowski et al., 1997; Zucker, 1991) in the setting of CHF. Early 

work suggested that depression in baroreflex gain mediated sympatho-excitation in patients 

and animals with CHF (Ferguson et al., 1984; Ferguson et al., 1992; Mancia et al., 1992). 

Reflexes mediated by sensory endings in the low pressure side of the circulation have also 

been shown to exhibit reduced gain and contribute to sympatho-excitation by removal of 

inhibitory restraint (Patel et al., 1996a; Pliquett et al., 2003; Zheng et al., 2006). Further 

studies also suggested that an increase in chemoreceptor sensitivity in CHF drives 

sympatho-excitation (Chua et al., 1996; Chua et al., 1997; Chugh et al., 1996; Ponikowski et 

al., 1997; Schultz et al., 2007; Sun et al., 1999a; Sun et al., 1999b). Finally, excitatory input 

from so called “cardiac sympathetic afferents” has also been shown to be augmented in the 

CHF state (Gao et al., 2007a; Gao et al., 2005a; Gao et al., 2004b; Wang et al., 2006; Zhu et 

al., 2004a; Zhu et al., 2004b; Zhu et al., 2002; Wang and Zucker, 1996). While there is little 

doubt that these reflexes contribute to sympatho-excitation in CHF the question still remains 

as to whether these abnormalities are initiating factors or a consequence of the CHF state?

In addition to dysfunction in cardiovascular sensory function there are many alterations in 

various components in the reflex arcs mediating autonomic outflow in CHF. Central changes 

in synaptic transmission and membrane sensitivity of pre-sympathetic neurons at several 

hypothalamic and medullary sites also participate in sympatho-excitation in CHF. Changes 

in discharge sensitivity of neurons in the rostral ventrolateral medulla (RVLM) and in the 

paraventricular nucleus (PVN) have been prominent in this regard (Gao et al., 2008; Patel et 

al., 2000). While it is beyond the scope of this review to detail all of the central changes that 

take place in CHF some of these changes will be highlighted below because exercise 

training profoundly influences them.

Does exercise training lower sympathetic outflow in heart failure?

Studies carried out on patients with CHF have shown a reduction in sympathetic outflow 

following a supervised exercise training regimen (stationary cycling 60 minutes 3 times per 

week), measured by either direct recording of muscle sympathetic nerve activity (Fraga et 

al., 2007; Roveda et al., 2003) or urinary norepinephrine excretion (Yousufuddin et al., 

2000). Softer indices of sympatho-excitation such as heart rate variability and power spectral 

analysis have also pointed to a lowering of sympathetic outflow following exercise training 

in the CHF population (Coats et al., 1992; Colombo et al., 1999; Scalvini et al., 1998). These 

indices coincide with improvement in baroreflex and chemoreflex sensitivity in CHF (Gao 

et al., 2007b; Li et al., 2008; Liu et al., 2000; Liu et al., 2002; Negraõ et al., 2008a; Negraõ 

et al., 2008b). In a recent study by Rengo et al. (Rengo et al., 2014) it was shown that 

exercise training resulted in a decrease in heart rate, plasma norepinephrine, and brain 

natriuretic peptide (BNP) while increasing maximal oxygen consumption (MVO2) and 

ejection fraction slightly. Importantly, these data were prognostic as to outcomes. Those 

patients with the greatest change in norepinephrine and BNP exhibited significantly better 

survival profiles. These data support earlier work showing that mortality was reduced in 

CHF patients that underwent and exercise training program (Belardinelli et al., 1999; 

Hagerman et al., 2005; Keteyian et al., 2012; O'Connor et al., 2009; Rosenwinkel et al., 

2001; Smart et al., 2004). On the other hand, a recent analysis of the HF ACTION database 

by Ahmad et al. (Ahmad et al., 2014) showed no effect on BNP or cardiac function but an 
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improvement in hospitalizations and survival. In total however, it seems clear that exercise 

training does indeed impact sympathetic outflow and survival if not cardiac function per se.

What central mechanisms are responsible for sympatho-inhibition 

following exercise training in CHF?

The discharge sensitivity of pre-sympathetic neurons in the RVLM and of sympathetic 

projecting neurons in the PVN is determined ultimately by activity in membrane ion channel 

proteins and currents. In the CHF state alterations in several neuronal signaling pathways 

have been defined that impact channel activity and may be impacted by exercise training. 

The focus of this work has largely been in three areas; 1. The renin-Angiotensin II (Ang II) 

system, 2. Reactive oxygen stress (ROS) and 3. Nitric oxide synthase (NOS). In addition, 

exercise training impacts glutamate signaling in CHF (Kleiber et al., 2008; Llewellyn et al., 

2012). Sympatho-excitatory neurons in the RVLM and PVN express Angiotensin II Type 1 

receptors (AT1R) (Gao et al., 2005b; Gao et al., 2008; Liu et al., 2000; Wang et al., 2004) 

that modulate sympathetic discharge when stimulated with Ang II (Gao et al., 2008a). 

Experiments in various species and models of CHF have shown that AT1R protein and 

mRNA is increased in CHF in these sympatho-excitatory regions (Gao et al., 2005b). 

Signaling through the AT1R increases neuronal excitability, in part, by increasing 

superoxide production thorough activation of NADPH oxidase. Following an exercise 

training regimen rabbits with CHF exhibit a profound reduction in renal sympathetic nerve 

activity at rest, and normalization of plasma Ang II (figure 1)(Liu et al., 2000). In addition, 

exercise trained CHF rabbits exhibited a decrease in AT1R expression in the RVLM (Gao et 

al., 2004a; Gao et al., 2005b), a decrease in central oxidative stress (Gao et al., 2007b) and 

an increase in both CuZn and Mn superoxide dismutase (SOD) (Gao et al., 2004a). 

Importantly, the changes in central AT1R expression, baseline sympathetic nerve activity 

and the improvement in baroreflex function could be prevented by concomitant systemic 

infusion of Ang II in order to prevent the normalization of Ang II by exercise training 

(figure 1)(Mousa et al., 2008). These data fit with the idea that Ang II, derived either from 

de novo synthesis in the brain or from circulating Ang II that gains access to the central 

nervous system through the circumventricular organs or in areas with a disrupted blood 

brain barrier (Biancardi et al., 2014), activates the AT1R pathway. Exercise training, by 

abrogating AT1R expression and upregulating antioxidant enzymes in the brain reduces this 

angiotensinergic drive and decreases sympathetic nerve activity (Liu, et al., 2000; Mousa, et 

al., 2008; Gao, et al. 2007b).

The regulation of AT1R expression in neurons in the heart failure state and following 

exercise training is complex but appears to involve an NFkB (nuclear factor kappa B) – 

dependent cascade at the DNA level. NFkB is a protein dimer that is a transcription factor 

for a number of other pro-inflammatory cytokines and stress response genes (Kumar et al., J 

Mol Med (2004) 82:434–448). It is not clear if exercise training alters this pathway but data 

from our laboratory indicates that NFkB is reduced following exercise training in animals 

with CHF (figure 2)(Haack et al., 2012). In addition, the regulation of AT1R turnover may 

be affected by changes in the G-protein coupled receptor, GRK5 (Haack et al., 2012). 

Importantly, exercise training in heart failure also reduces cytokine levels, a major source of 
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NFkB activation (Conraads et al., 2002; Gielen et al., 2003; LeMaitre et al., 2004). A study 

by Nunes and others demonstrated that aerobic exercise in CHF rats decreased plasma levels 

of the inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α) 

(Nunes et al., 2013). The reduction in plasma IL-6 and TNF-α following exercise training 

was also seen in CHF patients (Smart and Steele, 2011).

Current evidence suggests that nitric oxide (NO) is an important sympatho-inhibitory 

molecule in the medulla and hypothalamus (Ma et al., 1999; Wang et al., 2013; Zheng et al., 

2011a; Zhu et al., 2004c). It has been known for some time that NO is reduced in the 

medulla and hypothalamus of animals with CHF (Patel et al., 1996; Zhang et al., 2001; 

Zhang et al., 1998). This is due, in part, to a reduction in NO synthase (NOS) (mostly 

neuronal NOS, nNOS) protein and mRNA and, in part, to a reduction in the bioavailability 

of NO due to increased superoxide production (Campese et al., 2004; Chan et al., 2012; 

Zanzinger et al., 2000). Exercise training has clearly been shown to increase nNOS in the 

kidney (Ito et al., 2013), vasculature (Kuru et al., 2009; Mayhan et al., 2011), skeletal 

muscle (Kingwell, 2000), in the carotid body (Li et al., 2008) and in the brain (Zheng et al., 

2005). The sympatho-inhibitory effects of NO in animals with CHF are increased following 

upregulation of nNOS in the PVN or after exercise training. Another potential mechanism 

by which upregulation of nNOS and formation of NO may be beneficial in the heart failure 

state is by inhibition of glutamate signaling. In a study by Zheng et al. (Zheng et al., 2011a)) 

adenoviral gene transfer of the PVN with nNOS in rats with CHF inhibited the sympatho-

excitatory response to the neurotransmitter N-methyl D aspartate (NMDA) and reduced 

NMDA receptor (NR1) expression. Furthermore, Kleiber et al. showed that exercise training 

in the CHF state reduced the response to NMDA in the PVN (Kleiber et al., 2008).

Another potential mechanism that can influence the sympatho-inhibitory action of NO is the 

balance between Angiotensin Converting Enzyme (ACE) and Angiotensin Converting 

Enzyme 2 (ACE2) in the central nervous system of animals with CHF. These two enzymes 

regulate the amount of pro-AT1R (Ang II and superoxide production) vs pro-mas receptor 

signaling (Ang 1–7 and NO production). In rabbits with pacing – induced CHF we showed 

increased ACE protein and decreased ACE2 protein in the rostral ventrolateral medulla 

(RVLM) and PVN (Kar et al., 2010). Importantly, those CHF rabbits that underwent an 

exercise training regimen exhibited normal levels of both proteins. Zheng et al. (Zheng et 

al., 2011b) showed that adenoviral overexpression of ACE2 in the PVN of rats with CHF 

increased NOS synthesis and reversed the abnormal hemodynamic and sympathetic 

responses to PVN L-NMMA (L-N-monomethyl arginine, a nonselective inhibitor of all 

NOS isoforms) microinjection, thereby mimicking the effects of exercise training. 

Additional data supporting an important role of Ang 1–7/Ang II balance in the CHF state 

comes from the use of transgenic mice that overexpress human ACE2 selectively in central 

neurons (Feng et al., 2009). When these mice develop CHF (infarction model) they exhibit 

lower renal sympathetic nerve activity and improved baroreflex function (Xiao et al., 2011). 

A similar effect is observed in rabbits with CHF in response if intracerebroventricular 

infusion of Ang 1–7 (Kar et al., 2011). Future studies are needed to examine the relative 

abundance of these pathways following exercise training in CHF patients.
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Summary

Taken together, there is a wealth of information strongly suggesting that the benefits of 

exercise training are multiple in the CHF state. Every organ system is positively impacted by 

exercise training as is negatively impacted by heart failure. Those stimuli that have been 

shown to increase the discharge sensitivity of pre-sympathetic neurons in CHF are 

significantly ameliorated following an exercise training regimen. These include Ang II, 

ROS, glutamate, NOS/NO, ACE and ACE2 and antioxidant enzymes such as SOD. There 

are many other substances that have not been discussed in this short review (e.g. 

endothelin-1, vasopressin, etc.), all of which have been, or are targets for therapy in the CHF 

state. Figure 3 provides a summary of the beneficial effects of exercise training on 

sympathetic outflow and the neurohumoral mediators affected. Clearly the mechanisms by 

which exercise training operates to reduce sympatho-excitation in diseases such as heart 

failure and hypertension is complex and further research will be necessary to understand 

exactly how this paradigm translated to normalization of pre-sympathetic neuronal function.
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Highlights

• Although initially considered deleterious, exercise training in chronic heart 

failure (CHF) patients improves quality of life outcomes and decreases all-cause 

mortality.

• A hallmark of chronic heart failure is an increase in sympathetic drive; this is 

markedly reduced in both animal models and patients with CHF. In addition, 

exercise training restores baroreflex sensitivity and decreases chemoreflex 

sensitivity in CHF.

• Potential mechanisms underlying this improvement in autonomic imbalance 

following exercise training include: a reduction in reactive oxygen species and a 

concomitant increase in nitric oxide signaling, a reduction in Angiotensin II type 

1 receptor signaling and a restoration of the imbalance of Angiotensin 

converting enzyme (ACE) and ACE2 expression, a decrease in circulating pro-

inflammatory cytokines like NFkB, TNF-α, and IL-6, and a decrease in N-

methyl D-aspartate (NMDA) receptor expression and signaling.

Haack and Zucker Page 12

Auton Neurosci. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. 
Renal sympathetic nerve activity (A and B) and AT1 receptor expression (C) in the RVLM 

from rabbits with CHF that underwent an exercise training regimen or were sedentary. (A. 

from Liu, J.L. et al. 2000; B and C from Mousa, T.M. et al. 2008, with persmission.)
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Figure 2. 
Western blot data from rostral ventrolateral medulla and paraventricular nucleus in rats with 

heart failure and following exercise training. Exercise training reduces AT1R, GRK5, NFkB 

and β-arrestin in heart failure. (from Haack, KK. et al., 2012; with permission)
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Figure 3. 
A schematic overview of some of the factors impacted by exercise training in the heart 

failure state. Arrows denote the direction of the changes.
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