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Abstract

Subjects performed a visual detection task in which the probability of target occurrence at each of 

the two possible locations, and the rewards for correct responses for each, were varied across 

conditions. To maximize monetary gain, observers should bias their responses, choosing one 

location more often than the other in line with the varied probabilities and rewards. Typically, and 

in our task, observers do not bias their responses to the extent they should, and instead distribute 

their responses more evenly across locations, a phenomenon referred to as ‘conservatism.’ We 

investigated several hypotheses regarding the source of the conservatism. We measured utility and 

probability weighting functions under Prospect Theory for each subject in an independent 

economic choice task and used the weighting-function parameters to calculate each subject’s 

subjective utility (SU(c)) as a function of the criterion c, and the corresponding weighted optimal 

criteria (wcopt). Subjects’ criteria were not close to optimal relative to wcopt. The slope of SU (c) 

and of expected gain EG(c) at the neutral criterion corresponding to β = 1 were both predictive of 

subjects’ criteria. The slope of SU(c) was a better predictor of observers’ decision criteria overall. 

Thus, rather than behaving optimally, subjects move their criterion away from the neutral criterion 

by estimating how much they stand to gain by such a change based on the slope of subjective gain 

as a function of criterion, using inherently distorted probabilities and values.

Introduction

Visual search tasks with critical consequences are prominent in contemporary society. 

Advances in x-ray technology allow security screeners to search the contents of thousand of 

pieces of luggage per day for weapons and contraband. New medical imaging techniques 

make it possible to visually locate diseases that were previously hidden from sight.

In inspecting such images, the observer is presented with visual input and must make a 

decision regarding the presence of the target, be it a bomb or a cancer cell. In addition to the 

visual evidence, the decision must take into account the observer’s prior knowledge of, for 
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example, the prevalence of disease (Evans, Tambouret, Evered, Wilbur & Wolfe, 2011; 

Rich, Kunar, Van Wert, Hidalgo-Sotelo, Horowitz & Wolfe, 2008; Wolfe, Horowitz & 

Kenner, 2005; Wolfe & Van Wert, 2010). If the incidence of a particular type of cancer is 

particularly high, the probability, a priori, that a cancer cell is present in the image at hand is 

greater. A doctor may be less reluctant to deliver a positive diagnosis.

The observer must also consider the consequences of a correct or incorrect decision. Saying, 

“the target is present,” has positive consequences if correct: early detection may save a 

patient’s life. It has negative consequences if wrong: the patient will be unnecessarily 

traumatized and subjected to unnecessary treatments. Thus, an informed observer must 

adjust the criterion for saying, “the target is present,” based on prior knowledge and 

potential consequences.

In this paper, we ask how well people are able to adjust the criterion for saying “the target is 

present” so as to derive the maximum benefit from their decisions. We examine several 

hypotheses for factors that observers may use to select the criterion. We use signal detection 

theory as a framework for determining the optimal decision criteria given prior knowledge, 

rewards values, and uncertain visual information. We begin by defining optimality in this 

context and then look at some commonly observed patterns of suboptimal decision criteria 

when search tasks such as those above are carried out in controlled experiments.

Optimality in signal detection

In a standard signal-detection task, an observer is presented with a visual stimulus that may 

or may not contain a target signal. The observer must decide whether the signal is present. 

According to standard signal detection theory (Green & Swets, 1966), the decision is based 

on the observer’s internal response to the stimulus represented by the scalar-valued variable, 

x. This value is drawn from random variable XS (mean = d′, SD = 1) on signal trials, and XN 

(mean = 0, SD = 1) on noise (i.e., no-signal) trials. The variance of the response depends on 

factors that are external (e.g., pixel noise on the display) or internal (e.g., variability in 

neural firing rates). The observer adopts a criterion level, c, of the internal response above 

which they will respond ‘yes, the signal is present’.

At what level should the observer set the criterion? If the observer’s goal is to achieve the 

greatest reward, the response should be ‘yes’ when the expected value of saying ‘yes’ is 

greater than that of saying ‘no’. By Bayes’ rule (Coombs, Dawes & Tversky, 1970), this 

expected value is a function of the visual evidence (i.e., the likelihood of the observer’s 

internal response given that a signal or a noise stimulus is present), the observer’s prior 

knowledge, and the rewards. For example, the expected value of saying ‘yes’ (EVYes) and 

the expected value of saying ‘no’ (EVNo) are:

where p(S|x) and p(N|x) are the posterior probabilities that a signal or noise stimulus is 

present, respectively, given internal response x. V is the value (> 0) of responding correctly 
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given that a signal (S) or noise (N) stimulus is present. Here, and in all that follows, the 

penalty for an incorrect response is 0.

By Bayes’ rule, the expected values can be rewritten as:

where p(x|S) and p(x|N) are the likelihoods of internal response x occurring given that a 

signal or noise stimulus is present, p(S) and p(N) are the prior probabilities of a signal or 

noise stimulus occurring, and p(x) is the probability of internal response x occurring.

The observer maximizes expected reward by saying ‘yes’ when EVYes > EVNo. By 

rearranging the terms above, this decision rule can be represented as follows:

Say ‘yes’ when:

Rearranging further we get:

The term on the left is called the likelihood ratio (or β). The ratio  is referred to as the 

‘prior odds’. The decision rule is thus to say ‘yes’ when β is greater than or equal to the 

product of the prior odds and the reward ratio. The optimal criterion is the value of internal 

response that corresponds to

When the prior probabilities of a signal or noise stimulus occurring are equal and the 

rewards are equal, βopt = 1. The observer will say ‘yes’ whenever the likelihood that a signal 

is present exceeds that of only noise being present. When the priors are unequal, e.g., when 

the prior of a signal occurring is greater than that of noise, βopt will shift away from 1. 

Similarly, when the reward associated with a signal differs from that for noise, the observer 

maximizes their expected value by shifting their criterion away from that at which β = 1.

Observed suboptimality in signal detection

There are two common findings in tasks involving unequal priors and payoffs. First, 

observers tend to select ‘conservative’ criteria: observed β (βobs) is closer to 1 than βopt (Fig. 

1A). These effects have been observed in auditory detection (Green & Swets, 1966; Tanner, 
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1956), line-tilt discrimination (Ulehla, 1966), numerical decision (e.g., deciding whether a 

randomly selected number represents the height of a man or a woman, Healy & Kubovy, 

1981; Kubovy & Healy, 1977), memory tasks (Healy & Kubovy, 1978), and perceptual 

categorization tasks (Maddox, 2002). Second, the degree of suboptimality of criterion 

placement when priors are varied tends to differ from that when payoffs are varied. Green 

and Swets (1966) found that βobs is closer to optimal with unequal payoffs than with unequal 

priors. Healy and Kubovy (1981) and Maddox (2002) found the opposite pattern, with βobs 

tending to be closer to optimal with unequal priors.

Various explanations have been suggested for commonly observed patterns of conservative 

decision criteria including a demand characteristic (Green & Swets, 1966), probability 

matching (Healy & Kubovy, 1981; Lee & Janke, 1965; Thomas & Legge, 1970), and 

incorrect assumptions on the part of the researcher regarding the functional form of 

observers’ internal response distributions (Maloney & Thomas, 1991). Here we focus on 

four possible sources of the observed suboptimality and address each in turn.

1. The shape of the expected gain function—Maddox and Dodd (2001) suggest that 

observers, given a set of unequal rewards or priors, shift their criterion away from the 

position where β = 1 by an amount that depends on the expected increase in reward 

associated with shifting their criterion to that corresponding to βopt. Expected Gain (EG) as a 

function of criterion is calculated as follows:

where d′ is the discriminability of the signal calculated as the difference between the means 

of the observer’s internal responses to signal-plus-noise and to noise alone divided by the 

standard deviation of the noise, and Φ is the cumulative standard normal distribution. Φ(d′ − 

c) is the probability that the observer will respond correctly given the presence of a signal 

and Φ(c) is the probability of a correct response given noise alone.

Maddox and Dodd (2001) hypothesized that closer-to-optimal shifts in criterion will occur if 

reward increases more rapidly as the criterion is shifted away from the neutral criterion (Fig. 

1B). That is, the steeper the slope of EG(c) at a neutral criterion corresponding to β = 1, the 

closer to optimal we would expect the observer’s shift in criterion to be. The observer stands 

to lose little from a suboptimal choice of criterion when EG(c) is relatively flat (i.e., with a 

slope near 0). In this case the observer is likely to display a pattern of conservatism, 

maintaining their criterion near that at which β = 1 (see also von Winterfeldt & Edwards, 

1982).

Maddox and Dodd (2001) tested observers in a perceptual categorization task with several 

fixed sets of unequal rewards, penalties, and priors and three different levels of d′. Changing 

d′ while holding priors and rewards/penalties constant varies the steepness of EG(c). As 

predicted, they found a trend of closer-to-optimal criterion placement in the d′ conditions 

with the steepest EG functions.

Ackermann and Landy Page 4

Atten Percept Psychophys. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



2. Subjective weighting of rewards—Several authors (Galanter & Holman, 1967; 

Ulehla, 1966) have suggested that observers’ choices of decision criteria in psychophysical 

tasks are consistent with a systematic, subjective weighting of the rewards. In calculating the 

optimal criterion as above, observers do not seem to use the explicit rewards of the task (VS 

and VN ) but rather the utility of the rewards (i.e., u(VS) and u(VN )), where u(V ) is a 

monotonic and concave function of V. As such, they do not choose the response with the 

maximum expected value (e.g., p(S|x)VS) but rather, the one with the maximum expected 

utility (e.g., p(S|x)u(VS)).

The concept of expected utility originated with Daniel Bernoulli (1954/1738) to explain 

seemingly irrational patterns in economic decision making not accounted for by expected-

value maximization (Fox & Poldrack, 2009). Why, for example, would people consistently 

prefer $100 in cash to a 50% chance of winning either $200 or nothing? The expected values 

of both choices are equal ($100), but most people, when offered such a gamble, will choose 

the sure thing (Allais, 1953, 1979; Kahneman & Tversky, 1979).

According to Bernoulli, a reward represents an increase in wealth. People are innately 

inclined to judge the impact of an increase in wealth with respect to the current state of 

wealth. The impact of a reward decreases as the underlying wealth increases so that, for 

example, $100 seems to be a more substantial amount when the current state of wealth is $0 

than when it is $1000.

The utility function, u(·), weights all possible reward values to reflect this innate bias as it 

manifests in economic decision tasks. To return to the above example, the value of the 

potential payoff of the gamble, $200, is twice that of the cash payoff, $100. But, assuming a 

standard form of the utility function:

the utility of $200 is necessarily less than twice the utility of $100. Thus, although the 

expected values of the two choices are equal: 1 ×$100 = .5 ×$200, the expected utilities are 

not: 1 × u($100) > .5 × u($200). Hence, most will prefer the $100 cash payoff.

How does this relate to conservative criterion placement? Consider a task in which the prior 

probabilities for noise and signal stimuli are equal. The optimal criterion is the value 

corresponding to  . The observer calculates the optimal β using the utility of the 

rewards rather than their explicit values: . Assuming the form of the utility 

function above, β̂
opt will be closer to 1 than βopt for all values of VN and VS. That is, when 

observers should shift their criteria in response to varied rewards, the observer’s choice of 

criteria will display a typical pattern of conservatism. Note that this model does not explain 

conservative criterion shifts in response to varied probability of reward.

3. Subjective weighting of probabilities—People tend to misestimate the relative 

frequencies of events as they occur in nature (Attneave, 1953; Varey, Mellers & Birnbaum, 
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1990). This has been particularly well documented in tasks referred to as decision under risk 

(see Fox & Poldrack, 2009, for a review) of which the monetary gamble above is an 

example. Risk, in this context, refers to the fact that the outcomes (e.g., winning $200 or $0) 

are uncertain but the probability of each outcome is known explicitly. In such tasks, 

observers tend to behave as if they are not using the explicit probabilities but rather 

subjectively re-weighted ones where the re-weighting takes the form of a systematic over-

estimation of low and underestimation of high probabilities (Preston & Baratta, 1948; 

Tversky & Kahneman, 1992; Gonzalez & Wu, 1999).

The probability weighting function was invoked by Kahnemann and Tversky (1979) to 

explain biases in economic decision tasks not accounted for by utility theory. Take the 

following example (cited by Fox & Poldrack, 2009):

Choice 1.

a. $3000 for sure

b. 80% chance of winning $4000

Choice 2.

a. 25% chance of winning $3000

b. 20% chance of winning $4000

Each of the ‘choices’ above is referred to as a lottery. Each reward/probability pair is 

referred to here as a prospect. The observer selects a prospect from each lottery. People 

typically choose prospect a, the certain $3000, from the first lottery and prospect b, the 

lower probability $4000 payoff, from the second. Note, however, that the expected utility of 

each prospect in lottery 2 equals 1/4 that of each in lottery 1, because each corresponding 

probability has been multiplied by 1/4. Since scaling the expected utilities does not change 

their rank order, an expected utility maximizer who prefers a in lottery 1 should also prefer a 

in lottery 2. The violation of expected utility maximization is attributed to the use of a 

probability weighting function for which the difference between 1 and .8 is exaggerated 

relative to the difference between .25 and .20.

What is the effect of probability weighting on decision criteria? Consider a task in which the 

rewards for correctly detecting signal and noise stimuli are equal. The optimal criterion is 

the value corresponding to . We examine the precise form of the probability 

weighting function, w(·), below, but in its standard form, and assuming that p(N) = 1 − p(S), 

weighting the prior odds passes them through a power function with exponent γ:

Typical measured values of γ are less than 1 (Fox & Poldrack, 2009). Thus, in a case such as 

this in which observers select a criterion with varied prior probabilities, the weighted prior 

odds will be closer to 1 than the true prior odds and observers will display a typical pattern 

of conservative criterion placement.
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4. Misestimation of internal response variability—Finally, conservatism has been 

linked to a misestimation on the part of the observer as to the variability of their internal 

response distributions (i.e., XS and XN ) (Kubovy, 1977) (Fig. 1C). Having generated an 

internal response, x, to the stimulus, the observer must calculate its likelihood given that it 

arose from each distribution (i.e., p(x|S) and p(x|N), respectively). In order to do this, the 

observer must estimate the standard deviation of the response distributions from a finite 

sample of exposures to the stimuli.

If an observer underestimates the standard deviation of the internal response, x, the result is 

that values of the likelihood ratio (i.e., β) for a given value of x will be overestimated for x > 

1 and underestimated for x < 1 (Kubovy, 1977). The observer may calculate βopt correctly, 

but they will set their criterion response at a value corresponding to βopt in the misestimated 

distribution. In terms of the actual underlying distribution, the criterion will be conservative.

The current study

In the current study, we examined observer’s decision criteria in a detection task in which 

the rewards for correct detection and the probabilities of target occurrence were varied. We 

compared observers’ decision criteria to the optimal criteria for each set of rewards and 

probabilities. The rewards and probabilities were varied independently enabling us to 

examine their differential effects on observers’ choice of criterion. The degree of 

conservatism when rewards were varied was significantly greater than that found when 

probabilities were varied.

We tested several hypotheses regarding possible explanations of the overall patterns of 

conservative criterion placement. First, we asked whether observers’ criteria depend on the 

slope of EG(c) at the neutral criterion corresponding to β = 1. As noted above, Maddox and 

Dodd (2001) found a trend for closer-to-optimal criteria with increasingly steepness of the 

expected gain function. We first sought to replicate that finding.

Second, we ask whether observers select the optimal criterion given their subjectively 

weighted probabilities and rewards and a misestimation of internal response variance. Note 

that Maddox and Dodd did consider that their observers were in fact maximizing utility (and 

not EG(c), per se), but they employed a reward structure for which expected utility is 

approximately linear. That is, for which the expected gain and expected utility functions are 

approximately identical. They did not consider subjective weighting of probabilities. Here 

we explicitly tested whether observers’ use of utility and weighted probability affects their 

choice of criteria.

Finally, we asked whether observers’ performance is best predicted by a strategy that is 

independent of the Bayesian optimal one, namely, that observers’ criteria depend only the 

slope of the subjective utility function (i.e., the product of utility and weighted prior 

probabilities) at the neutral criterion. The evidence favors this latter hypothesis. We found 

no relationship between observers’ criteria and the Bayseian optimal criteria. The choice of 

criterion is predicted by a model that shifts criterion proportionally to the slope of the 

subjective utility function at a neutral criterion corresponding to β = 1.
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Methods

Participants

14 subjects participated in the experiments described below. 6 of these subjects were 

excluded from running Experiment 3 (‘Main Experiment’ below) and their data were 

excluded from subsequent analyses due to the adoption of ad hoc strategies in Experiment 2, 

i.e., performance strategies not accounted for by our model of probability and utility 

weighting functions. We discuss the criteria for exclusion in the detailed description of the 

methods for Experiment 2 in the Appendix. A total of 8 subjects (three female) including an 

author (JFA, ‘Subject 8’ below) completed all three experiments for compensation in the 

amount of $10 per session for five sessions completed on separate days plus an additional 

performance-based reward (described below), which ranged from $0–$50. All subjects other 

than the author were naive to the purpose and background of the study. All had normal or 

corrected-to-normal vision.

Apparatus

Stimuli were presented on a gamma-corrected, 36 × 27 cm, Sony Multiscan G400 monitor 

with a resolution of 1600 × 1200 pixels, a refresh rate of 75 Hz, and a mean luminance of 40 

cd/m2. Eye position was monitored in Experiments 1 and 3 using an SR Research 

Eyelink1000 desktop eyetracker with a sampling rate of 1000 Hz, controlled using the 

Eyelink Toolbox Matlab interface (Cornelissen, Peters & Palmer, 2002).

Stimuli

The target stimulus in Experiments 1 and 3 consisted of a 3 deg diameter, 3 cycle/deg Gabor 

patch in cosine phase (Gaussian envelope SD = 0.66 deg). It always appeared masked by 

additive Gaussian white noise covering the 3 deg diameter patch. Noise stimuli were 

generated by randomly sampling each pixel’s value from a normal distribution centered on 

the monitor’s mean luminance. Noise values were clipped at 3 SDs above and below the 

mean and then scaled so that the full range of values lay within 1/2 of the display gamut, 

resulting in a noise SD ≈ 16.5% contrast. Values of the Gabor patch were divided by 1/2 

prior to being added to the noise so that the peak signal contrast was at most 50%. Thus, the 

summed target and noise images always lay within the display gamut. The observer sat at a 

distance of 57 cm from the monitor. Head position was constrained by a chin rest.

Procedure

Experiment 1 - Contrast Threshold Measurement—As the detectability of a signal 

(d′) increases, the shift in criterion needed to achieve a particular value of β decreases. Thus 

at lower d′ levels a greater shift in criterion away from that at which β = 1 is required to 

achieve βopt. To determine whether the observer’s choice of criterion depends on d′, we need 

to examine criterion placement in each of the payoff and prior conditions with signal 

contrasts corresponding to low and high d′ values.

In Experiment 1, we used a 2AFC detection task to determine the Gabor contrasts 

corresponding to d′ = .5 and 1 for each subject for use in Experiment 3. Detailed methods 

for Experiment 1 are given in the Appendix. In summary, peak contrasts corresponding to d′ 
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= .5 and 1 were estimated. These contrast values ranged across subjects from .04 to .08 (d′ 

= .5), and .06 to .09 (d′ = 1).

Experiment 2 - Weighting Function Parameter Measurement—We hypothesize 

that criterion placement in the main experiment depends on the subjective weighting of the 

relevant prior probabilities and rewards, such that the choice of criterion is determined not 

by expected gain, but by expected utility u(v) with weighted probabilities w(p). We assumed 

standard functional forms for w and u (Tversky & Kahneman, 1992; Fox & Poldrack, 2009):

and estimated the values of the parameters, γ and α, (and additional parameters σ and δ 

described below) by modeling observers’ preferences for particular probability/reward pairs 

(i.e., prospects) in an economic choice task with the same probability/reward structure as 

Experiment 3. The estimated parameters for each subject were then used to model criterion 

choice in Experiment 3. Detailed methods for Experiment 2 are given in the Appendix. To 

summarize, the estimated parameters and weighting functions for each subject are shown in 

Fig. 2.

Experiment 3 - Main Experiment—In Experiment 3, subjects performed a 2AFC 

detection task in which the probability of target occurrence and the rewards for correct 

detection were varied across alternatives. The trial sequence is shown in Fig. 3. Each block 

began with a 9-point calibration of the eyetracker. On each trial, the subject fixated a central 

cross flanked at 10 deg of eccentricity by 3 deg diameter disks containing noise patches. 

Adjacent to each patch was an indication of the prior probability that the target stimulus 

would appear at that location and a dollar value giving the reward associated with correctly 

detecting the target should it appear there. The subject initiated the trial by key press at 

which time the probabilities and rewards disappeared. Following a random ISI of 300–700 

ms, the target stimulus appeared on the left or right side and remained visible for 200 ms. 

Target contrast corresponded to the low or high threshold contrast as measured in 

Experiment 1. The target stimulus disappeared leaving only the noise image. Trials in which 

the subject broke fixation between initiation of the trial and offset of the target were 

discontinued and rerun later on a randomly selected trial. If fixation was maintained, a small 

question mark appeared in place of the fixation cross instructing the observer to indicate the 

side on which the target stimulus appeared by key press. To avoid influencing the subjects’ 

choice of criterion, no feedback was given in the main experiment.

The probability/reward structure in all conditions had the following form:

The reward values on the left and right side, VL and VR, were always equal when the 

probabilities on each side were varied and the priors on each side, pL and pR, were equal 

Ackermann and Landy Page 9

Atten Percept Psychophys. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(i.e., pL = pR = .5) when the rewards were varied. This allows us to examine the independent 

effects of varying probabilities and rewards on the subject’s choice of criterion.

Prior probability and reward values were manipulated according to 3 conditions. In the first, 

‘Priors’, condition, priors were varied across five levels while rewards were held constant:

The prior values were selected to equate βopt for each level of the Priors condition with that 

of the respective level of the other two conditions.

In the second, ‘Rewards’, condition, the priors were held constant while the reward value on 

the right side was varied across 5 levels relative to the constant reward on the left:

The values of VR were selected to be approximately logarithmically spaced so that changes 

in value from one level to the next were likely to induce substantial shifts in criterion.

In the third, ‘Equated Priors Condition’, priors were varied across five levels as in the 

Rewards condition. VL and VR were equal but scaled for each level of the priors.

The reward values above are paired with the prior probabilities in the order shown. The 

scaled rewards equate the slope of EG(c) at the neutral criterion corresponding to β = 1 of 

each level of the Equated Priors condition with that in the respective levels of the Rewards 

condition. If we should find significant differences in the degree of conservative criterion 

choice between the Priors and Rewards conditions (and a similar degree between the 

Equated Priors and Rewards condition), this will allow us to determine whether the 

difference in the degree of conservatism with varied priors vs. varied rewards can be 

attributed to corresponding differences in the slope of EG(c) between the two conditions.

The values of VL and VR and p in each of the three conditions were selected such that βopt 

for each of the five reward/prior levels was equated across conditions. As explained above, 

the optimal β is that corresponding to the peak of EG(c), which takes on the following form 

in a 2IFC paradigm:
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EG(c) for the five levels of each of the three conditions and d′ level is shown in Fig. 4.

Experiment 3 was completed in three sessions on separate days. Each session consisted of 

two blocks of 500 trials each. d′ levels and conditions were blocked. The order in which the 

d′ levels were run and the order in which each of the three conditions were run within a d′ 

level were varied randomly between subjects. Subjects completed the three conditions 

within each d′ level in consecutive blocks. The five levels of each condition within a block 

were run in sequence from lowest to highest values of pR and VR. Pilot experiments showed 

that running the levels in sequence served to make the task more tractable to the subjects. At 

the end of the three sessions, a trial was selected at random from all those completed by the 

subject. If they correctly detected the target on that trial, they received the correspond value 

of VL or VR. Rewards ranged from $0–$16 across subjects.

Results

Overall patterns of conservative criterion placement

Each subject yielded data for three conditions: Rewards, Priors, and Equated Priors, at each 

of two d′ levels. We fit, by maximum likelihood, a single value of d′ across each of the three 

conditions at each d′ level, while simultaneously fitting 15 criterion values to the five 

reward/prior levels within each of the three conditions at each d′ level. Fit d′s ranged from .

24 – .63 for the ‘low’ d′ = .5 level, and .72 – 1.32 for the ‘high’ d′ = 1 level. The criteria 

were converted to βobs:

We tested for position bias (e.g., a bias to choose ‘left’) in the responses across each 

condition at each d′ level by means of a Pearson’s χ2 test. We corrected for significant bias 

within a condition by multiplying the five levels of βobs by the value of  in the level for 

which βobs = 1.

Fig. 5 shows βobs as a function of βopt for each subject. Observed β values falling on the 

diagonal are optimal. Those falling closer to 1 than the diagonal are indicative of 

conservative criterion placement. Thus, we will summarize the data across the five payoff/

prior conditions by the slope of a line fit to these data. A slope of 1 corresponds to ideal 

behavior, whereas lower slopes imply increasing amounts of conservatism.

We regressed each subject’s βobs values onto the corresponding βopt values for each of the 

three conditions within each d′ level. Figure 6 shows the average regression slopes across 

subjects. Two-tailed t-tests show the slope to be significantly less than 1 (p < .05) in all 

conditions, indicating the predicted overall pattern of conservative criterion placement. Note 

that there is more error associated with the average slopes, reflecting noisier βobs, at the 

Ackermann and Landy Page 11

Atten Percept Psychophys. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



higher d′ level. This is due to the fact, noted above, that small changes in criterion result in 

larger changes in beta when d′ is high. Thus small errors in the measurement of criterion are 

effectively amplified in the conversion to β at the higher, relative to the lower, d′ level.

Next we ask whether the levels of each condition brought about a significant change in the 

subjects’ βobs, i.e., that the observed suboptimality is not due to the subjects merely ignoring 

the probabilities and rewards. We assume the slopes to be equal to or greater than 0 (since 

slopes < 0 would infer a subjective inversion of probabilities and rewards) and compare the 

average slopes to 0 using one-tailed t-tests. The average slopes in all conditions are 

significantly greater than 0 (p < .05) suggesting a significant effect of the levels for each 

condition.

We compared slopes between conditions and d′ levels by means of a 3 × 2 repeated-

measures ANOVA. Results show a significant main effect of d′ level on regression slope 

(F(1, 7) = 8.29, p < .05), a significant main effect of condition, (F(2, 14) = 8.37, p < .05), 

and a significant interaction between d′ level and condition (F(2, 14) = 4.84, p < .05), 

reflecting the relative increase in the slope in the Priors and Equated Priors conditions at the 

higher d′ level. That slopes are significantly greater at the higher d′ level is to be expected 

as, again, smaller changes in criterion are needed to achieve the optimal criterion as d′ 

increases. That slopes for the Priors and Equated Priors conditions appear to be significantly 

greater than those in the Rewards is addressed next.

Having found significant effects of condition and d′ level, we can compare the average 

slopes for the regression of βobs onto βopt across conditions by means of two-tailed 

dependent-sample t-tests. The results are shown in Fig. 6. Within each level of d′, regression 

slopes for the Priors and Equated Priors are significantly closer to optimal than those of the 

Rewards condition. Slopes for the Priors and Equated Priors conditions do not differ 

significantly. This suggests that the relatively lower level of conservatism observed in the 

conditions in which the prior probabilities are varied, over those in which rewards are 

varied, is not due to a difference in the shape of the respective expected gain functions (since 

expected gain in the Equated Priors condition is nearly equal to that in the Rewards 

condition). We address this further in the Discussion section.

The cost of conservative criterion placement

We have found that observers place their criteria conservatively. We next ask whether 

suboptimal choice of criterion resulted in a significant cost to the observers. We computed 

the cost of the suboptimal criterion placement for each level of the Payoffs, Priors, and 

Equated Priors conditions, within each d′ level. Cost is calculated as the difference between 

maximum EG (given the optimal criterion, copt) and the observer’s EG (given their observed 

criterion, cobs). We normalized cost relative to the expected gain of an unshifted criterion 

(i.e., c = 0, corresponding to βobs = 1):
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Fig. 7 shows the median normalized cost across the levels of each condition (excluding 

those for which copt = 0) and across subjects. Error bars show the central 95th percentile 

range of the median normalized cost. The cost is significantly greater than 0 in all 

conditions. Suboptimal choice of criterion resulted in significant and, in many cases, 

substantial non-zero costs in all conditions.

We have found suboptimal criterion placement on the part of the observers and linked the 

suboptimal criteria to significant decrements in the observers’ expected gain for the task. We 

now investigate several potential causes of the suboptimal choice of criterion.

Effect of the shape of EG(c)

Here we assume that the observer’s ‘baseline’ criterion in the task corresponds to β = 1, i.e., 

the optimal criterion when rewards and priors are equal. We assume that the observer has 

knowledge of the optimal criterion given the altered rewards and probabilities and that the 

slope of EG(c) at a neutral, unshifted criterion is the driving force for the resulting shift from 

the neutral to the chosen criterion (Maddox & Dodd, 2001). We define EG′(c = 0) to be the 

value of the slope of EG(c) at the neutral criterion corresponding to β = 1:

where ϕ is the standard normal density.

To measure the degree to which observers shift their criterion as a function of EG′(c = 0), 

we calculated the magnitude of the criterion shift in terms of β, away from β = 1, normalized 

by the optimal criterion shift:

We regressed normalized shift onto |EG′(c = 0)|, on the data pooled across subjects. Having 

found significant effects of condition and d′ on the change in βobs, we regressed normalized 

shift separately across the levels of the Rewards and the two Priors conditions, for each d′ 

level. Because both normalized shift and the slope of the EG function depend on d′ as 

measured for each subject in the main experiment, we use a model, Total Least Squares 

(TLS) regression (Markovsky & Van Huffel, 2007; Petras & Bednarova, 2010), that 

accounts for the error in both variables. We achieve unit-invariance of the regression fit by 

normalizing the values of |EG′(c = 0)| and normalized shift by their respective SDs prior to 

regressing. Outlying values of |EG′(c = 0)| were identified by calculating their studentized 

residuals (Cook, 1982) and eliminated prior to regressing.

Fig. 8A shows normalized shift as a function of |EG′(c = 0)| with the TLS regression lines. 

The regression slopes are not significantly different from zero and r2 values are low. The 

results suggest that the steepness of the EG function has no effect on the magnitude of the 

shift in criterion away from β = 1 relative to the optimal criterion.
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Next, we ask whether there is a relationship between the slope of the EG function and the 

value of the observed criterion, independent of the optimal criterion. That is, we 

hypothesize, as the results above suggest, that the observer shifts their criterion in direct 

proportion to the slope of the EG function at the neutral criterion, and not in proportion to 

the optimal β. We assume that the observer sets their criterion in units of the internal 

response to the stimulus, and not in units of β (a non-linear function of the stimulus 

response). Thus, we performed linear regression of cobs directly onto EG′(c = 0) using the 

same method as above and tested for a regression slope significantly different from 0. Fig. 

8B shows the results of the TLS regression. Regression slopes are significantly different 

from 0 for both conditions and d′ levels and r2 values are moderate to high. The results 

indicate a strong linear relationship between the slope of the EG function and cobs, 

independent of copt.

We have found that the steepness of the expected gain function at a neutral criterion is 

predictive of the absolute magnitude of the observer’s criterion shift. Next we examine the 

effect of weighting probabilities and rewards on the choice of criterion.

Effect of weighted probabilities and rewards

Here we hypothesize that, following exposure to the signal stimulus, the observer calculates 

the subjective utility, SU, of choosing the left or right target position given the prior 

probabilities, p, and rewards, V, on each side, L and R, for the current condition and d′ level:

where u(VL) = VL
α, u(VR) = δVR

α in the Rewards condition when its value is changing 

relative to VL, and u(VR) = VR
α in the Priors and Equated Priors conditions when its value 

equals that of VL.

Note that in this model the observer weights only the explicitly presented probabilities, pL 

and pR, and not the implicit likelihood of the internal response or posterior probability of 

getting the reward. This is consistent with the observation that explicit probabilities are 

subject to the type of nonlinear weighting described by prospect theory and implicit 

“probabilities from experience” are not (Hertwig, Barron, Weber & Erev, 2004).

We assume that the observer underestimates the standard deviation of the internal signal-

response-difference distribution. σw (< 1) is the observer’s misestimated standard deviation. 

We further assume that observers choose the criterion, wcopt, corresponding to wβopt, the 

optimal β given the weighted probabilities and rewards:
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α and γ in the above equation refer to the values measured for each subject in Experiment 2. 

σw was fit to the data by maximum likelihood using the following iterative procedure: Given 

an initial estimate of σw, we calculated the SU(c) of choosing the left and right side as above, 

for each of the five levels, i, of each reward/prior condition, j, and d′ level, k. Note that the 

optimal criterion signal-response-difference, x = wcopt, corresponds to that at which the SUs 

for each side are equated. Thus wcopt can be derived by solving:

In other words, wcopt corresponds to the zero-crossings of the above function of x, which 

was solved using MATLAB function fzero. The binomial log likelihood of the resulting 

estimate of σw was then calculated given the estimated probability of a correct response, p̂

(cL) and p̂(cR), on the left and right sides, respectively:

summed across conditions and d′ levels, and maximized yielding the best estimate of σw for 

each subject.

As explained in the introduction, weighting probabilities and rewards has the effect of 

pushing wβopt closer to 1 than the unweighted βopt. Thus, we expect that βobs, though 

exhibiting conservatism in terms of the unweighted EG functions and veridical internal 

response distributions (i.e. with σ = 1), will be optimal given SU with misestimated noise, 

σw. We regressed βobs onto wβopt. Fig. 9 shows βobs as a function of wβopt with 

corresponding values of σw and Fig. 10 shows the linear regression slopes averaged across 

subjects. t-tests show the average slopes to be significantly less than 1 in three out of six 

cases indicating conservative criterion placement. Slopes in the Priors conditions for both d′ 

levels and Equated Priors condition for d′ = 1 are not significantly different from 1 

indicating optimal criterion placement. However, note that average slopes are greater than 1 

in the Priors and Equated Priors conditions (for d′ = 1) for subjects 1 and 3 – 7. Thus, the 

fact that the average slopes are not significantly different from 1 for those conditions does 

Ackermann and Landy Page 15

Atten Percept Psychophys. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



not suggest that subjects are selecting their criteria in an ‘optimal’ fashion with respect to the 

weighted optimal criteria. cobs tends to ‘overshoot’ wcopt in these cases.

In sum, we hypothesized that subjects’ βobs would be optimal with respect to wβopt. Our 

results show that this is not the case. We have found that βobs is suboptimal relative to the 

Bayesian optimal β both in the case where probabilities and rewards are treated veridically 

(βopt) and in the case where we factor in weighted probabilities and rewards (wβopt) and 

allow for an underestimation of internal response variability (σw). We next examine the 

effect of the shape of SU(c) on the choice of criterion.

Effect of the shape of SU(c)

Here we assume that the observer weights prior probabilities and rewards and uses them to 

calculate SU(c). The observer calculates the slope of SU(c) at a neutral criterion 

corresponding to β = 1 and shifts the criterion relative to wβopt in proportion to the slope. We 

do not assume that the observer sets their criterion to that corresponding to wβopt as above. 

The observer’s estimate of the internal response variance is assumed to equal 1 in all that 

follows. The form of SU(c) on a given trial is thus:

and the slope of SU(c) at β = 1 is given by:

We calculated the normalized criterion shift relative to the weighted optimal criterion as 

above:

and compare this to SU′(c = 0) by means of TLS regression as above. Fig. 11A shows 

normalized shift as a function of SU′(c = 0) across subjects, separately for the Rewards and 

two Priors conditions within each d′ level. The slope is significantly different from 0 in the 

Rewards condition at the low d′ level only. As with EG′, r2 values are low. All slopes are 

negative reflecting a larger increase in wβopt – 1 relative to βobs – 1 going from low to high 

levels of the priors and rewards; in other words, a failure of βobs to keep pace with shifts in 

βopt. As with the unweighted EG(c), the steepness of the SU(c) function does not predict the 

magnitude of the shift in criterion away from β = 1, relative to the weighted optimal 

criterion.

Next, we ask whether there is a relationship between the slope of the SU(c) and the value of 

cobs, independent of the optimal criterion. As above with EG′(c = 0), we regressed cobs 
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directly onto SU′(c = 0) and tested for a regression slope significantly different from 0. Fig. 

11B shows the results of TLS regression. Regression slopes are significantly different from 

0 in all cases and r2 values are moderate to high. As with EG, the results indicate a strong 

linear relationship between the slope of the SU function and cobs, independent of copt.

We have found that the slope of EG(c) and SU(c) are both predictive of βobs. We would like 

to compare the ability of each computation of expected value to predict βobs. Each differs 

only in the values of the probability weighting and utility function parameters used. In 

calculating EG(c), α, γ, and δ are effectively set to 1. In calculating SU(c) they are set to the 

values measured in Experiment 2. The parameters are constants in each case and so each 

regression model has the same number of free parameters. Thus we can simply compare the 

likelihood of the TLS regression fits of EG(c) and SU(c) to βobs. The log likelihood of the fit 

is given by:

where N is the number of data points being fit and  is the orthogonal residual variance.

Fig. 12 shows log likelihood of the fits summed across conditions and d′ levels. Larger 

values indicate a more predictive fit to the data. The likelihood of SU(c) is greater and thus 

we conclude that the slope of SU(c) at the neutral criterion is a better predictor of βobs than 

that of EG(c).

Discussion

We conducted a 2AFC detection task in which the probability of target occurrence and the 

reward for correct detection were varied across alternatives. Observers’ criteria for each 

level of the probabilities and rewards were conservative. That is, their corresponding β fell 

closer to 1 than the optimal β.

We explored several possible explanations for the conservative criterion placement. We did 

not find a relationship between the Bayesian-optimal criteria and the subjects’ criteria or 

evidence that subjects’ conservatism resulted from a misestimation of internal response 

variance. The Bayesian-optimal criteria, assuming weighted probabilities and rewards and a 

misestimation of internal response variance, consistently underestimated the observed 

criteria. Nor was there a significant correlation between the observers’ shift in criterion 

relative to the optimal one and the slope of unweighted, EG(c), or weighted, SU(c), expected 

value functions. We did find significant linear relationships between the observed criteria 

and the slope of both EG(c) and SU(c), independent of the optimal criteria. The slope of 

SU(c) was more predictive than that of EG(c).

We conclude that observers in our task selected their criteria, without regard to the 

Bayesian-optimal one, solely on the basis of the steepness of the subjective utility function, 

at the neutral criterion corresponding to β = 1. In other words, in a perceptual task such as 

this in which people are given a choice between alternatives with different values and 
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probabilities, people will choose based on a calculation of how much they stand to gain (per 

amount of criterion shift) by changing their strategy away from the neutral criterion. This 

increase in gain is estimated using subjectively distorted prior probabilities and values.

We found that subjects’ criteria were closer to optimal when the prior probabilities were 

varied than when rewards were varied. As noted, this result has been observed previously 

(Healy & Kubovy, 1981; Maddox, 2002). It is consistent with the adoption of competing 

strategies on the part of the observers. Namely, to maximize gain on one hand and to 

maximize accuracy on the other (Markman, Baldwin & Maddox, 2005; Maddox & Dodd, 

2001; Maddox & Bohil, 1998a). The observer who is attempting to maximize accuracy will 

set their criterion at that which maximizes hits and minimizes false alarms and which 

effectively matches the probability of target occurrence for each alternative. When rewards 

are varied and the probability of each alternative is equal, this strategy will result in a 

criterion close to 0 (β = 1), i.e. that at which the probability of being correct is the same for 

each alternative. When the prior probabilities are varied (and rewards held constant), the 

same strategy will result in a greater shift in criterion away from 0. We assert here that the 

observers seem to be using both reward and accuracy maximizing strategies since changing 

the rewards in our task brought about a significant shift in criterion. It is also worth noting 

that models that predict criterion as a function of the slope of the EG and SU functions do 

very well for both Priors and Reward conditions. The influence of rewards on criterion shift 

may explain why criteria in the two Priors conditions fall short of optimal. A simple 

probability-matching strategy would suffice to maximize accuracy (and achieve optimal 

criteria), but subjects seem to be accepting a higher degree of error, which is consistent with 

a competing reward-maximizing strategy.

Further confirmation of the dependence of criterion choice on weighted probabilities and 

rewards may come from altering people’s weighting functions and looking for an associated 

change in the chosen criterion for a given set of probabilities and rewards. In this paper, we 

have addressed a fundamental assertion of Prospect Theory, that people’s preferences 

depend on the weighting of both probabilities and rewards. A second, equally important 

aspect of Prospect Theory is that a person’s preference for a lottery depends on how it is 

framed (Tversky & Kahneman, 1986). For example, an observer’s preference can be altered 

by posing lotteries in terms of potential losses rather than potential rewards, by summing a 

lottery’s component prospects in order ‘hide’ its stochastic dominance (i.e., the fact that it 

possesses a higher probability of paying off a higher reward than all others), and by 

imposing ‘endowments’ that effectively raise the reference point of the utility function. 

Prospect Theory exposed these effects as violations of a rational decision making process. 

An experimenter, however, may capitalize on them in order to observe the subsequent effect 

on decision criteria. If probability and reward weighting functions are flexible, and if their 

effect on decision criteria proves robust, this also implies that they could be altered in the 

service of improving performance in the type of critical detection task described in the 

Introduction.

The conclusion that observers shift their criteria in proportion to the subsequent change in 

expected value suggests that shifting entails a cost. Future research may examine the nature 

of this cost. Does it, for example, entail a risk of lowering expected value by altering a 
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hitherto successful strategy? Or does shifting carry with it a transaction cost (Williamson, 

1981) such that it is costly in its own right independent of expected value? The cost may 

also be in terms of the increase in misses or false positives incurred by a criterion shift. 

Whereas, in our study, we model an ideal observer as one that maximizes expected value, 

our observers may have a conflicting goal of maximizing accuracy, as mentioned above. The 

reluctance to shift may reflect this conflict.

Finally, we address potential weaknesses of the study. First, the inclusion of the author as a 

subject is of concern since knowledge of optimal strategies, e.g. merely calculating the 

expected gain of all presented prospects in Experiment 2, or adoption of an intentionally 

suboptimal strategy could potentially skew the results. To confirm that Subject 8’s data 

don’t create statistical artifacts that may bias our conclusions, we performed the ANOVA 

for a significant effect of d′ and condition on the regression slope of observed β vs. optimal 

β, 8 times, systematically leaving out 1 of the 8 subjects on each run. The results for each 

run were the same. We found significant main effects of d′ and condition regardless of 

which subject was excluded. However, the interaction between d′ and condition obtains only 

when all 8 subjects are included, i.e., if any 1 subject is left out the interaction is not 

significant. Since β effectively normalizes criterion with respect to d′ and since the optimal β 

is the same across subjects in the above regression, and since the overall conclusions 

regarding EG(c) and SU(c) depend largely on these, we think this is a good indication that 

Subject 8’s criteria and d′ don’t represent outlying values that skew our conclusion.

Next, several studies have suggested that attaching value to a target enhances attention to it 

(Anderson, Laurent & Yantis, 2011; Libera & Chelazzi, 2006). It is well known that 

enhanced spatial attention has the effect of increasing sensitivity to contrast-defined targets 

(Carrasco, 2011, 2006). Thus, it may be that attaching different values to our targets led to 

an attentional effect that altered observers’ d′ values from those measured in Experiment 1 

and hence, our estimate of the optimal criteria in the main experiment.

In addition, we have assumed here that only explicitly presented probabilities are subject to 

non-linear weighting. The observers’ implicit estimates of internal response likelihood (i.e. 

p(x|S) and p(x|N)) were assumed to be un-weighted. This is not necessarily the case. The 

observer must estimate the likelihood of a response on a given trial based on the distribution 

of responses across previous trials. Such ‘probabilities from experience’ can be subject to a 

weighting such that the probabilities of rare values are underestimated (Hertwig, Barron, 

Weber & Erev, 2004), a pattern opposite to that observed with explicit probabilities. If p(x|S) 

and p(x|N) were subjectively weighted in this way, the observer’s weighted estimated β, wβ, 

for a given value of x would be further from 1 than the unweighted β. The observer, 

attempting to set their criterion at a value of x such that wβ = wβopt, would compensate by 

selecting a value of x closer to β = 1. That is, βobs would be conservative. If βobs is itself 

subject to non-linear weighting in this way, this may explain our observation that wβopt 

underestimates βobs. Future research may attempt to measure observers’ weighting 

parameters for ‘probabilities from experience’ and investigate their effect on observed 

values of β.
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Appendix

Experiment 1 - Contrast Threshold Measurement

Experiment 1 was completed in a single session. We used a 2AFC detection task to 

determine the Gabor contrasts corresponding to d′ = .5 and 1 for each subject for use in 

Experiment 3. The trial sequence is shown in Fig. 13. Each block began with a 9-point 

calibration of the eyetracker. On each trial, the subject fixated a central cross flanked at 10 
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deg of eccentricity by 3 deg diameter disks containing noise patches. They initiated the trial 

by key press. Following a random ISI of 300–700 ms, the target stimulus appeared on the 

left or right side, chosen at random, and remained visible for 200 ms. The target stimulus 

disappeared leaving only the noise image (the same noise image was used throughout the 

trial). Trials in which the subject broke fixation between initiation of the trial and offset of 

the target were discontinued and rerun later on a randomly selected trial. If fixation was 

maintained, a small question mark appeared in place of the fixation cross instructing the 

observer to indicate the side on which the target stimulus appeared by key press. Subjects 

received auditory feedback on each trial in the form of a high tone for a correct and a low 

tone for an incorrect response.

Stimulus contrast on each trial was determined by one of two staircases (1-up/3-down, 1-

up/2-down) selected at random independently of the side on which the target appeared. 

Contrasts were sampled from 25 logarithmically spaced values ranging from .01 – .95. The 

initial stepsize for each staircases was three. The step size was decreased by one after the 

first and second reversals. Each subject completed two blocks of 200 trials each in a single 

session. The staircases were initiated at the beginning of each block. The first block served 

to stabilize the subjects’ performance in the task. Only the 200 trials of the second block 

(100 per staircase) were analyzed. Each subject’s data were pooled across the two staircases. 

Probability correct as a function of contrast was modeled using a Weibull function fit to the 

data by maximum likelihood. Peak contrasts corresponding to d′ = .5 and 1 were estimated 

from the fit curve. These contrast values ranged from .04 to .08 (d′ = .5), and .06 to .09 (d′ = 

1).

Experiment 2 - Weighting Function Parameter Measurement

As mentioned above, observers’ preferences for a reward, V, given the probability of 

receiving it, p, deviate from those predicted by assuming the observer maximizes expected 

gain. They are well predicted by a model that assumes non-linear weighting of probabilites, 

w(p), and rewards, u(V ). Here we assume standard functional forms for w and u (Tversky & 

Kahneman, 1992; Fox & Poldrack, 2009):

and estimate the values of the parameters, γ and α, by modeling observers’ preferences for 

particular probability/reward pairs, i.e., prospects.

On each trial, observers were presented with a choice between a pair of prospects of the 

form (Fig. 14):

where X is a value that is held constant across trials, and V is a value that changes on each 

trial. They were instructed to choose which ‘gamble’ they would prefer. It was explained to 
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the subjects that the dollar values, X and V, were amounts they could actually win and that 

the probabilities represented the chance of “blindly reaching into a box containing a huge 

number of lottery tickets, some with the dollar value on them, some with $0 on them, and 

selecting a winning ticket.” All subjects indicated that they understood the task. Upon 

completion, a prospect was selected at random from all those chosen by the subject and the 

outcome of the gamble was generated pseudo-randomly by computer. The subject received 

the payoff, which ranged from $0–$50 across subjects.

On each trial, the value of pi was selected at random from: {.1, .18, .28, .4}. The value of X 

was fixed at $50. For each value of pi, five values of Vi,j were employed corresponding to 

five values of the psychometric function, {.2, .35, .5, .65, .8}, that gives probability, 

P(choose V ), of choosing the prospect containing Vi,j (as a function of only Vi,j) given the 

current estimates of the parameters γ and α.

An additional parameter, δ, was added to account for patterns of choice observed in piloting 

Experiment 2. In piloting the experiment, we found that subjects’ choices were consistent 

with an additional weighting of the changing value, δVi,j (for δ > 1), such that increases in 

its value are subjectively exaggerated. Experiment 2 results in data to which four 

psychometric functions (each corresponding to one of the four values of pi), giving P(choose 

V ) as a function of Vi,j, are fit. The parameters γ and α determine the relative spacing of the 

four psychometric functions. Increasing values of δ shift the four functions uniformly toward 

lower values of Vi,j. The addition of δ led to a substantial reduction in the error of the fits. 

The method for selecting the values of Vi,j is explained below.

Under prospect theory, as modified by the additional δ parameter, the subject will choose the 

lottery containing Vi,j when:

Putting this in terms of the unweighted value of Vi,j and rearranging the terms, we obtain:

and equivalently:

and taking the log of each side:
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We assume that the subject’s internal representation of the difference on the left of the 

inequality is corrupted by noise drawn as a random sample from a normal distribution with 

mean = 0. Furthermore, we assume under Weber’s law that the SD of the distribution for 

each value of i is equal in log value. The probability of choosing the lottery containing Vi,j is 

thus given by:

Initial values for Vi,j were derived by choosing five values for Pi(choose V ) that span the 

psychometric function: {.2, .35, .5, .65, .8}, and then solving:

with parameter values: α = .65, γ = .5, and σ = .2 chosen to represent reasonable parameter 

estimates given a survey of estimates across many studies (Fox & Poldrack, 2009), and the 

initial value of δ set to 1. The maximum value of Vi,j never exceeded $50 so that the 

prospect containing Vi,j was never stochastically dominant.

Prospects were presented using the method of constant stimuli. Values of pi and their 

corresponding Vi,j were chosen at random from each of the four probability and five value 

levels with equal numbers of trials from each level (i.e., five trials per probability/value pair) 

within each block. To avoid stereotyped responses, displayed values of Vi,j were randomly 

jittered by an amount no more than ±1/4 of the minimum difference between any two values 

of V for the given block. To avoid response-side bias, the side with the lottery containing V 

was selected at random on each trial. Subjects indicated their preferred prospect on each trial 

by key press.

Subjects completed four 100-trial blocks in a single session. At the end of each block, 

estimated α, γ, σ, and δ were fit to the binned data from all preceding blocks by maximum 

likelihood where the estimated probability of choosing the prospect containing Vi,j is given 

by:

The resulting estimates of α, γ, σ, and δ were used to select new values of Vi,j for use in the 

subsequent block. The fit parameters and weighting functions for each subject are shown in 

Fig. 2.
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All subjects were debriefed following the task as to any strategy they may have employed. 

One subject indicated that they had merely calculated the expected gain of the prospects. 

Their data were excluded from the analyses and they did not continue with Experiment 3. In 

addition, five subjects employed ad hoc strategies for which the model above cannot 

account. Two subjects chose the lottery containing the higher probability and lower value, V, 

on more than 90% of trials, a strategy which effectively ignores values. Three subjects chose 

the lottery containing the constant value X on the majority of trials when the probabilities 

associated with V and X were nearly equal, i.e. when p = .4, but seemed to employ more 

typical weightings of probabilities and values for other probability levels. These subjects’ 

data were also excluded and their participation was discontinued since the model above 

cannot account for these strategies nor can we make valid estimates of decision criteria in 

the subsequent experiment if such strategies are being employed. Note that these subjects 

were excluded not because they used strategies that are alternative to calculating the 

subjective utility of the prospects. Rather, we assume that all subjects, under general 

circumstances, subjectively weight probabilities and values in the way described by prospect 

theory. The ad hoc strategies employed simply make it impossible to measure their 

weighting functions without increasing the complexity of the model to account for 

idiosyncratic strategies.
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Figure 1. 
A. The typical pattern of conservative criterion placement. The internal response (x) to the 

stimulus is drawn from either the signal (S) or noise (N) distribution. The observer must 

select a criterion (c) level of x above which they respond, “The signal is present.” The 

observed criterion, cobs, is typically closer to that corresponding to β = 1 than the optimal 

criterion, copt, that maximizes expected gain, EG(c). B. Two expected-gain functions that 

are maximized at the same criterion. The slope of the function in gray is less steep at the 

neutral criterion corresponding to β = 1 and may induce less of a shift in criterion toward 
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copt. C. The effect of underestimation of internal response SD. An observer underestimates 

(in black) the SD of the actual distributions (in gray). The optimal β (βopt) in the 

misestimated distribution corresponds to a criterion closer to the criterion corresponding to β 

= 1 than the same value of βopt in the actual distribution.
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Figure 2. 
Probability weighting functions, w(p), and utility functions, u(V ), for each subject, with 

measured parameters γ, α, and δ.
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Figure 3. 
Trial sequence for Experiment 3.
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Figure 4. 
Expected gain as a function of criterion for each level of the Priors, Rewards, and Equated 

Priors conditions, and each nominal d′ level. Probabilities and values for the Priors and 

Rewards conditions are shown above each column.
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Figure 5. 
Observed β as a function of optimal β for each subject. Values of βobs closer to 1 than the the 

diagonal are conservative
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Figure 6. 
Slopes from the regression of βobs onto βopt averaged across subjects. Error bars are 2 SE 

above and below the mean. All average slopes are significantly different from 1 indicating 

an overall pattern of conservative criterion placement. All average slopes are significantly 

greater than 0 indicating a significant effect of the levels of the prior probabilities and 

rewards in each condition. Asterisks indicate a significant difference between conditions at p 

< .05.
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Figure 7. 
Median normalized cost (see text), calculated across subjects, for each condition and d′ 

level. Error bars show the central 95th percentile range. Normalized cost in all conditions is 

significantly greater than 0.
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Figure 8. 
A. Normalized shift (see text) as a function of the absolute value of the slope of EG(c) at the 

neutral criterion corresponding to β = 1, for all subjects. The top row shows the Rewards 

condition. The bottom row shows the Priors and Equated Priors conditions. The across-

subject average TLS regression lines (scaled to the original units) are shown. B. cobs as a 

function of the slope of EG(c) at the neutral criterion (c = 0) with the TLS regression lines. 

All other details as in A.
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Figure 9. 
Observed β as a function of weighted optimal β (see text) for each subject. Values of βobs 

closer to 1 than the the diagonal are conservative.
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Figure 10. 
Slopes from the regression of βobs ontp wβopt averaged across subjects. Error bars are 2 SE 

above and below the mean. Asterisks indicate that the average slopes are significantly 

different from 1 at p < .05.
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Figure 11. 
A. Normalized shift (see text) as a function of the absolute value of the slope of SU(c) (i.e., 

expected utility calculated using weighted priors) at the neutral criterion corresponding to β 

= 1, for all subjects. The top row shows the Rewards condition. The bottom row shows the 

Priors and Equated Priors conditions. The across-subject average TLS regression lines 

(scaled to the original units) are shown. B. cobs as a function of the slope of SU(c) at the 

neutral criterion (c = 0) with the TLS regression lines. All other details as in A.
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Figure 12. 
Log likehood of the TLS regression of cobs onto the slope of the expected gain function, EG′ 

(c = 0), and the subjective utility function, SU′ (c = 0), at the neutral criterion. Values closer 

to 0 indicate the more predictive fit. SU′ (c = 0) is more predictive of cobs.
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Figure 13. 
Trial sequence for Experiment 1.

Ackermann and Landy Page 39

Atten Percept Psychophys. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 14. 
Sample display from Experiment 2. See text for description.
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