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Abstract

In response to oncogene activation and oncogene-induced aberrant proliferation, mammalian cells 

activate apoptosis and senescence, usually via the p53-ARF tumor suppressor pathway. Apoptosis 

is a known barrier to cancer and is usually down-regulated prior to full malignancy, but 

senescence as an anticancer barrier is controversial due to its presence in the tumor environment. 

In addition, senescence may aid cancer progression via releasing senescence-associated factors 

that instigate neighboring tumor cells. Here, it is demonstrated that apoptosis unexpectedly 

remains robust in ErbB2 (ERBB2/HER2)-initiated mammary early lesions arising in adult mice 

null for either p53 or ARF. These early lesions, however, down-regulate senescence significantly. 

This diminished senescence response is associated with accelerated progression to cancer in ARF-

null mice compared to ARF-wild-type mice. Thus, the ARF-p53 pathway is dispensable for the 

apoptosis anticancer barrier in the initiation of ErbB2 breast cancer, the apoptosis barrier alone 

cannot halt mammary tumorigenesis, and that senescence is a key barrier against carcinogenesis.

Implications—Findings in this relevant mouse model of HER2-driven breast cancer suggest that 

effective prevention relies upon preserving both ARF/p53-independent apoptosis and ARF/p53-

dependent senescence.
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Introduction

Oncogene activation in otherwise normal cells can trigger the induction of apoptosis and 

senescence (1). Apoptosis is widely accepted to be one of the most critical safety 

mechanisms employed by cells to protect against unbridled proliferation and malignant 
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transformation(2). In accordance with it being a barrier to cancer, apoptosis usually subsides 

as precancerous lesions progress to full malignancy(3,4). Furthermore, forced 

downregulation of genes that activate apoptosis accelerates the progression to 

cancer(reviewed in 2).

Senescence is also detected in precancerous lesions in humans and animal models (5), and 

has also been reported to function as a physiologic barrier to the development of tumors of 

the hematopoietic system, lung, prostate, and skin (6-10). However, senescence has also 

been detected in some tumors, and senescent cells within a cancer have been found to aid 

tumor progression viareleasing senescence-associated factors that instigate neighboring 

tumor cells(11-14). Therefore, it remains controversial whether senescence actually imposes 

a significant barrier to tumorigenesis.

We have reported mouse models of sporadic breast cancer by using intraductal injection of 

retrovirus to deliver oncogene into a small subset of mammary epithelial cells with an intact 

mammary gland(15-17). These models more closely mimic human breast cancer initiation 

than conventional transgenic and knockout models(18). Using retrovirus to introduce the 

gene encoding a activated version of ErbB2, a member of the epidermal growth factor 

receptor family of tyrosine kinases that is commonly over-activated in human breast cancers, 

we detected robust apoptosis and senescence in the resulting early lesions(19,20). As these 

lesions progress to frank tumors, apoptosis diminishes, but senescence remains resilient(19). 

Here, we use this mouse model to examine the role of senescence as a barrier to mammary 

tumorigenesis and show that loss of p53-ARF-dependent senescence is associated with rapid 

tumor induction by ErbB2 despite the erection of a robust apoptotic response, suggesting 

that senescence is, indeed, a critical barrier to tumor formation in the mammary gland.

Materials and Methods

Mice

The animal protocol used in this study was approved by the IACUC of Baylor College of 

Medicine, Houston, TX. ARF-null mice (21) on B6.129 background were acquired from the 

NCI Mouse Repository (strain number 01XG7), then back-crossed 2-3 generations to FVB 

wildtype mice before interbreeding for ARF-wildtype, -heterozygous, and -null females for 

experiments. Mouse genotype was determined using primers and PCR settings published by 

the NCI (http://mouse.ncifcrf.gov/available_details.asp?ID=01XG7). p16-null mice (22) on 

FVB.129 background were acquired from the NCI Mouse Repository (strain number 

01XE4), then mated once to FVB wildtype mice before generating p16-wildtype, -

heterozygous, and -null females for experiments. Mouse genotype was determined using 

primers and PCR settings published by the NCI (http://mouse.ncifcrf.gov/

available_details.asp?ID=01XE4). Tyrosinase-tagged p53-null mice (23)were graciously 

provided by Dr. Lawrence A. Donehower, Baylor College of Medicine, Houston, TX. Mice 

were crossed 3 generations to FVB wildtype females to generate p53-wildtype and -null 

females for experiments. Mouse genotype was determined by color and confirmed with 

PCR, as described (23). All animals were euthanized according to NIH guidelines.
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Viral preparation and delivery

Constitutively activated ErbB2 (caErbB2) oncogene used to induce premalignant lesions 

and tumors was carried by either the lentiviral vector FUCGW (24)or the avian leucosis 

virus-derived RCAS(Replication-Competent ASLV long terminal repeat with a Splice 

acceptor)(25). Virus was prepared as described (15,24). Viral particles were concentrated by 

ultracentrifugation at 27000 rpm for 90 minutes, and then stored at -80°C until titration or 

intraductal injection. Viral titer was determined via limiting dilution transduction of either 

293T (for lentivirus) or DF1 (for RCAS virus) cells. To preserve titer, intraductal injection 

was performed within 3 hours of thawing virus.

Generation of premalignant lesions

Virgin female mice aged 12-14 weeks old (for ARF WT/KO and p16 WT/KO) or 6-10 

weeks old (for p53 WT/KO) were intraductally injected with 106 IU of virus harboring the 

caErbB2 oncogene. Mammary glands were collected two-to-three weeks after injection, 

embedded in paraffin or frozen tissue matrix (OCT), and sectioned for analysis. Uninjected 

mammary glands were used as controls.

Immunofluorescence (IF) and immunohistochemical (IHC) staining and quantification

Staining and image capture were performed on 3μm formalin-fixed and paraffin-embedded 

sections as described(15,20). Primary antibodies used included mouse monoclonal 

antibodies against hemagglutinin tag (HA, MMS-101P, Covance, 1:500), p21 (cat#sc-6246 

Santa Cruz, 1:200), gamma-H2AX (cat#05-636 Millipore, 1:500), and pATM 

(cat#200-301-500 Rockland, 1:200), as well as rabbit polyclonal antibodies against cleaved 

caspase 3 (CC3, cat#9661S Cell Signaling Technology, 1:200), Ki67 (cat#NCL-Ki67P 

Novocastra, 1:200), phospho-histone 3 (pH3, cat#06-570 Millipore, 1:200), macroH2A 

(cat#ab37264 Abcam, 1:150), p16 (cat#sc-1207 Santa Cruz, 1:200), and p53 (cat#NCL-p53-

CM5p Novacastra, 1:1000). Cell counting was achieved using Image J software as well as 

Adobe Photoshop.

Terminal Deoxynucleotidyl Transferase dUTP Nick-end Labeling (TUNEL) Assay

Formalin-fixed and paraffin-embedded 3μm sections were prepared and stained using the 

ApopTag® Red In Situ Apoptosis Detection Kit (cat#S7165, Chemicon) according to 

manufacturer’s instructions.

Senescence-associated beta-galactosidase staining

Mammaryglands bearing premalignant lesions embedded in OCT were sectioned at 10 μm 

and stained for senescence-associated β-galactosidase activity as described (26-28). Briefly, 

frozen sections were fixed with glutaraldehyde, treated with X-gal, incubated for 12-16 

hours until color developed, counterstained with hematoxylin, and then mounted.

Infection rate determination

Virgin female mice aged 12-14 weeks old were intraductally injected into left and right #4 

mammary glands with106 IU of RCAS virus harboring GFP. Mammary epithelial cells were 

isolated from injected glands four days post-injection and analyzed for GFP by flow 
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cytometry to determine the percentage of infected mammary epithelial cells. Uninjected 

mammary glands were used as GFP-negative controls.

Wholemount preparation and quantification

Mice that were WT or KO for ARF were intraductally injected with 106 IU of virus 

harboring the caErbB2 oncogene. Mammary glands were collected two weeks later, neutral-

red stained (29), and wholemounted. Images of the wholemounted gland were captured 

using the Leica MZ16 F stereomicroscope (Leica, Houston TX) and Leica DFC300 FX 

Digital Color Camera (Leica, Houston TX). The number of lesions of diameters 200-299um, 

300-399um, 400-499um, 500-599um, and 600um were quantified using Image J.

Tumor latency and growth rate determination

Virgin female mice aged 12-14 weeks old were intraductally injected in one #4 mammary 

gland with106 IU of RCAS virus harboring the caErbB2 oncogene and monitored for tumor 

incidence by palpation of the mammary gland at least twice a week. Tumor latency was 

determined by recording the number of days post injection at which tumor was first 

palpable. Tumor growth was monitored by taking caliper and/or palpation measurements of 

up to three dimensions. Tumor volume was calculated using the formula 4/3*Pi*(x/2)(y/2)

(z/2), where x, y, and z are the three measured dimensions. The uninjected contralateral #4 

mammary gland was used as control.

Results

Early lesions arisingin p53-null mammary glands exhibit diminishedsenescence but intact 
apoptosis

We have reported that intraductal injection of retrovirus carrying the gene encoding 

constitutively activated ErbB2 (caErbB2) led to early lesions with elevated levels of pATM, 

γH2AX, and other markers of an active DNA damage response (DDR) pathway(19). 

Genetic ablation of ATM, with an accompanying decrease in p53 levels, diminished both 

apoptosis and senescence in these premalignant lesions(19), suggesting that an intact DDR 

(perhaps ATM-p53, specifically) is necessary for robust induction of both apoptosis and 

senescence.

To determine the effect of p53loss on apoptosis and senescence, we generated premalignant 

lesions in wildtype and p53-null mice(23)(Fig1A) by intraductally injecting female virgin 

mammary glands with a lentiviralvector (FUCGW) harboring caErbB2(FUCGW-caErbB2)

(17). Injected mammary glands were collected two-to-three weeks post-injection. The 

resultant premalignant lesions were evaluated for senescence by measuring levels of 

macroH2A, a histone variant that is enriched in senescence-associated heterochromatic 

foci(30), as well as expression of senescence-mediator p16 (31). We observed that loss of 

p53 led to a severe decrease in senescence response compared to wildtype (Fig 1B, C), 

suggesting that p53 is required for senescence following ErbB2 activation in the mammary 

gland.
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We next determined effect of p53 on the apoptotic response via TUNEL detection of DNA 

fragmentation characteristic of dying cells and via presence of cleaved caspase 3 (CC3), a 

critical player in programmed cell death. Surprisingly, loss of p53 did not impair the 

apoptotic response in premalignant lesions (Fig 1D, E), which is contrary to the expected 

role of p53 in mediating apoptosis in early stages of tumorigenesis.

Loss of ARF recapitulates p53ablation in failing to activate senescence but maintaining 
intact apoptosis

Like ATM, ARF is a key upstream regulator of p53 (reviewed in 23). While ARF has been 

reported to regulate senescence as well as apoptosis via p53(32), its role in regulating 

apoptosis and senescence as well tumorigenesis in the mammary gland has not been 

rigorously tested(10,33). We have reported that ARF is activated in mammary early lesions 

induced by caErbB2(19). To determine whether the ARF tumor suppressor can mediate 

apoptosis and senescence following oncogene activation, we again generated premalignant 

lesions in wildtypeand ARF-null mice(21)using FUCGW-caErbB2(Fig 2A), confirmed 

diminished p53 activity by assessing p21 levels (Supplemental fig 1A), and then evaluated 

lesions for senescence and apoptosis. As in p53-null mice, we observed a significant 

impairment of the senescence response in premalignant lesions arising inthe ARF-null 

mammary epithelium (Fig 2B-D) based on staining for macroH2A, SA-β-gal, and p16. 

Interestingly, there was no impairment of the induction of apoptosis(Fig 2E, F). This 

impairment of senescence with preservation of the apoptosis response was also observed 

when caErbB2 was delivered via RCAS retrovirus (RCAS-caErB2) (15)(Supplementary Fig 

1A-E). Therefore, these data suggest that ARF, like p53, is required for full induction of 

senescence in early lesions but is dispensable for the apoptosis response. This phenocopying 

of p53 by ARF, given the existing knowledge of ARF as a p53 regulator(34), suggests that 

any role of ARF in mediating a barrier to mammary tumorigenesis is likely and primarily via 

p53 signaling.

Of note, although p16 has also been reported to be an alternative mediator of the senescence 

response(9,22,35,36), we found that caErbB2-initiated premalignant lesions in p16-null mice 

(22)did not exhibit a diminished senescence response following oncogene-activation 

(Supplementary Fig 2), suggesting that pathways converging upon p53 (such as the ATM-

p53 and ARF-p53 axes), rather than those regulating p16, play more critical roles in 

mediating the senescence response in the mammary cells that have suffered an oncogenic 

mutation.

Loss of the senescence response in ARF-null mice is associated with a heavier 
premalignant lesion load

Next, we determined whether senescence is truly a barrier to tumorigenesis by examining 

the effect of senescence-loss on premalignant lesion advancement and tumor latency. 

Historically, this study has been difficult to conduct since loss of senescence and loss of 

apoptosis often occur concurrently, confounding interpretation of the results. However, we 

have presented above two mouse models in which, at least in the mammary gland, 

senescence is severely diminished but apoptosis is completely preserved following oncogene 

activation. The early lethality experienced by p53-null mice (due to the early and frequent 
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development of lymphoma and other non-mammary cancers) (37)precluded the use of these 

mice in long term studies. Therefore, we elected to use the ARF-null model, which 

recapitulates the effect of p53-loss on apoptosis and senescence, but has a longer lifespan 

amenable to long term tumor latency studies.

To determine whether loss of senescence is associated with failure of the mammary 

epithelium to eliminate premalignant lesions, we first quantified the premalignant lesion 

load following oncogene activation. After confirming that both mammary gland 

development and RCAS viral infection rates were comparable between wildtype and ARF-

null mammary glands (Supplementary Fig 3), we quantified lesion load of the entire 

wholemounted (Fig 3A) mammary gland following RCAS-mediated caErbB2 delivery, and 

observed a significant increase in number of both total (>200 μm; Fig 3B) and advanced 

(>600 μm; Fig 3C) premalignant lesions in ARF-null mammary glands compared to 

wildtype. To ensure that the observed increase in premalignant lesion load was due to 

primarily to impairment of senescence, as opposed to loss of other functionsof ARF, we 

examined the effect of ARF-loss on proliferation rates and induction of autophagy, both of 

which have been reported to be at least partially regulated by ARF(38,39). We found that 

both proliferation rates and levels of autophagy were comparable between wildtype and 

ARF-null early lesions (Supplementary Fig 4). Taken together, these data suggest that ARF 

regulates a senescence-mediated barrier that functions to (1) prevent oncogene-activated 

mammary epithelial cells from forming premalignant lesions and (2) subsequently impair 

the progression of these early lesions to advanced lesions.

Loss of senescence is associated with more rapid tumor induction

To determine whether loss of senescence equates to the loss of a critical tumor barrier in the 

mammary gland, we carried out a tumor study in which mammary epithelia of ARF-null and 

wildtype mice were infected with RCAS-caErbB2 and then palpated for tumors. We found 

that loss of ARF ledto significantly decreased tumor latency (Fig 4A), strongly suggesting 

that oncogene-induced senescence truly inhibits tumorigenesis independently of apoptosis. 

ARF-null tumors also grew more rapidly (Fig 4B).Together, these findings suggest that 

senescence playsa critical role as a barrier to tumor initiation and growth.

Discussion

Previous studies have identified the DNA-damage response pathways as critical for 

mediating apoptosis and senescence following oncogene activation(19,40-45). A large 

volume of data points to the p53 tumor suppressor as an important mediator of apoptosis, 

cell cycle arrest, and senescence under a variety of cellular circumstances(reveiwed in 

38-41).However, it has been recently reported (44), and we have confirmed (Supplementary 

Fig 5A), that complete loss of p53 does not perturb the oncogene-induced DNA damage 

complex formation and upstream signaling. In this report, we show that p53 is critical for at 

least the senescence response to oncogene-activation, and that the ARF-p53 axis likely 

works in concert with the ATM-p53 axis to execute a robust senescence response and inhibit 

tumorigenesis. In support of this, we find that loss of ARF leads to a compensatory increase 

in the DDR (Supplementary figure 4D), which is diminishedin frank tumors (Supplementary 

Sinha et al. Page 6

Mol Cancer Res. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



figure 6B). These findings are in agreement with those of Evangelou et al.(45)and Gupta et 

al.(44), both of which suggest that the DNA damage response and the ARF pathway interact 

cooperatively to erect barriers to tumorigenesis. However, in contrast with the suggestion by 

Gupta et al. (44)that the ARF pathway is required as a tumor barrier only in the context of 

impaired DDR, our studies indicate that ARF is a necessary tumor suppressor even in the 

context of an intact (and even elevated) DDR. Based on the observation that ARF is induced 

at a higher threshold of oncogenic stress than is the DDR(45), we hypothesize that impaired 

DDR leads to a more rapid accumulation of DNA damage and replicative stress, thereby 

triggering an early robust induction of ARF. It would be interesting to determine whether 

oncogene-activated DDR-wild type cells are able to induce ARF to a similar degree as 

DDR-impaired cells, albeit in a delayed manner.

Our observation thatp53-null lesions exhibit robust apoptosisis heavily contrary to 

conventional wisdom that places p53 as a central mediator of apoptosis, oncogene-induced 

or otherwise(46-49). It is possible that oncoprotein-induced cellular stresses (such as 

replicative and metabolic stress) can access multiple p53-independent pathways that 

culminate in apoptosis. Based on our findings, it seems that the senescence barrier, more 

than the apoptotic barrier, relies primarily on the ARF-p53 axis for full induction. Because 

of the abundance of evidence identifying p53 as a pivotal and multifaceted tumor 

suppressor, it would certainly be of keen interest to clearly delineate additional processes by 

which p53 plays its most decisive tumor suppressive roles.

Our data revealed that loss of ARF led to an increased premalignant lesion load and more 

rapid tumor induction. These findings are in agreement with the documented role of ARF as 

tumor suppressor since the early 1990s(21,50,51). Previous attempts to determine the role of 

ARF in the mammary gland in vivo have yielded limited conclusions, presumably because 

ARF-null mice succumb to lymphoma prior to the incidence of mammary tumors using 

transgenic models (50,52). Intraductally delivering an activated oncogene to the mammary 

epithelium allows us to generate premalignant lesions and tumors before the development of 

lymphoma in ARF-null mice. Incidentally, though it is not the primary aim of study to focus 

on ARF, the set of data we have presented is the first to prove, using a completely in vivo 

model, that ARF functions as a bona fide mammary tumor suppressor.

Although ARF has been reported to regulate other processes in the cell, including autophagy 

and proliferation via ribosome biogenesis (34), the only difference we have been able to 

detect between wildtype and ARF-null mice is in the induction of senescence following 

oncogene-activation, leading us to propose that it truly is this senescence difference that is 

responsible for the ultimate ARF-null phenotype of increased lesion load and shortened 

tumor latency. Further, we found that senescence in wildtype tumors are reduced to levels 

comparable to that in ARF-null tumors (Supplementary Fig 6A), suggesting that senescence 

in wildtype mice must have been disabled over the course of tumor progression, in line with 

the role of senescence as a barrier to tumorigenesis.

Mammary glands from ARF-null virgin mice have been reported to be similar to those of 

wild type mice with the exception of possibly increased dilation of primary ducts and 

enhanced tertiary branches (53). Our whole mount staining confirmed similar ductal trees 
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between ARF-null versus wild type mice (Supplementary fig 3). It has also been reported 

that ductal proliferation in virgin mice was unaltered by AFR loss (53). Nevertheless, we 

cannot exclude the possibility that ARF loss skewed the mammary gland cell fate, resulting 

into a more susceptible state to transformation by ErbB2. ARF loss-induced reduction in 

cellular senescence (Fig 2) and increase in transplantation potential of mammary epithelial 

cells (53)suggest an expanded stem cell population in ARF-null mammary glands. However, 

the mammary cell subtype that is most susceptible to tumor induction by ErbB2 seems to be 

committed luminal cells expressing the alveolar cell marker whey acidic protein(20,54)or 

luminal progenitor cells (55)but not the less differentiated cells expressing keratin 6 (56)or 

cells with active Wnt signaling (57).

Our in vivo evidence that the induction of senescence at the premalignant lesion stage can 

greatly inhibit progression of premalignant mammary lesions has significant implications for 

cancer chemoprevention; our observations suggest that chemoprevention administered to 

patients bearing premalignant lesions may be more effective in halting or delaying tumor 

formation if both apoptosis and senescence are efficiently induced. However, because of 

increasing reports that within an established cancer senescence instigate tumor 

progressionvia a pro-tumor secretory mechanism(12), it is essential to elucidate why 

senescent cells within an established cancer are tumor-supportive while senescent cells 

within a premalignant lesion are tumor-suppressive.

In summary, p53 and ARF are required for a robust senescence response in breast cells that 

have suffered an oncogenic mutation while they are unexpectedly dispensable to an 

apoptosis response. Furthermore, the ARF gene function providesa critical barrier to 

mammary tumorigenesis, most likely via induction of a robust senescence response 

following oncogene activation. In addition, our data strongly suggest that weakening of the 

senescence barrier at the premalignant stage promote tumor formation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. ErbB2-initiatedearly lesions in p53-null mammary glands exhibit decreased senescence 
but intact apoptosis
Lentivirus was used to carry caErbB2 into the mammary glands. Early lesions were 

analyzed two weeks following viral injection. Scale bar = 20μm. For bar graphs, columns 

represent the mean, and error bars represent the SEM.

A. H&E of premalignant lesions from wildtype and p53-null mammary glands.

B. Quantification of macroH2A-positive cells in premalignant lesions from widltype and 

p53-null mice (n=3, 4). Representative images shown.

C. Quantification of p16-positive cells in premalignant lesions from widltype and p53-null 

mice (n=4, 5). Representative images shown.

D. Quantification of TUNEL-positive cells (red) in premalignant lesions from widltype and 

p53-null mice (n=4). Representative images shown.
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E. Quantification of CC3-positive cells (red) in premalignant lesions from widltype and p53-

null mice (n=3,4). Representative images shown.
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Figure 2. ErbB2-initiatedearly lesions in ARF-null mammary glands exhibit decreased 
senescence but intact apoptosis
Lentivirus was used to carry caErbb2 into the mammary glands. Early lesions were analyzed 

two weeks following viral injection.Scale bar = 20μm. For bar graphs, columns represent the 

mean, and error bars represent the SEM.

A. H&E of premalignant lesions from wildtype and ARF-null mammary glands.

B. Quantification of cells positive for macroH2A-positive foci (green) in premalignant 

lesions from wildtype and ARF-null mice (n=3). Representative images shown.

C. Quantification of positivity of early lesions for senescence-associated β-galactosidase 

from wildtype and ARF-null mice (n=4, 6). Positivity was scored based on area of staining 

as a percentage of area of lesion. Representative images shown.
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D. Quantification of p16-positive cells in premalignant lesions from wildtype and ARF-null 

mice (n= 4). Representative images shown.

E. Quantification of TUNEL-positive cells (red) in premalignant lesions from wildtype and 

ARF-null mice (n=4). Representative images shown.

F. Quantification of CC3-positive cells (green) in premalignant lesions from wildtype and 

ARF-null mice (n=4). Representative images shown.
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Figure 3. Loss of senescence in ARF-null mice is associated with a heavier premalignant lesion 
load
RCAS retrovirus was used to carry caErbb2 into the mammary glands. Early lesions were 

analyzed two weeks following viral injection.

A. Wholemounted mammary glands from ARF-null and wildtype stained with neutral red. 

Arrows indicate examples of structures considered to be lesions <600μm, arrowhead 

indicates lesion >600 μm. (Scale bar = 1mm)

B &C. Quantification of the number of lesions in total (B) and the number of larger lesions 

(C) based on images of wholemounted glands (n =11,7). Columns represent the mean, and 

error bars represent the SEM.
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Figure 4. Loss of senescencein ARF-null miceis associated with more rapid tumor induction
A. Kaplan-Meier survival curve comparing mammary tumor-free survival between wildtype 

and ARF-null mice (n=30, 28) injected with RCAS retrovirus carrying caErbB2.

B. Tumor growth curves of the above mice (n=17, 27).
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