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Abstract

We implemented 6 confounding adjustment methods: 1) covariate-adjusted regression, 2) 

propensity score (PS) regression, 3) PS stratification, 4) PS matching with two calipers, 5) inverse-

probability-weighting, and 6) doubly-robust estimation to examine the associations between the 

BMI z-score at 3 years and two separate dichotomous exposure measures: exclusive breastfeeding 

versus formula only (N = 437) and cesarean section versus vaginal delivery (N = 1236). Data were 

drawn from a prospective pre-birth cohort study, Project Viva. The goal is to demonstrate the 

necessity and usefulness, and approaches for multiple confounding adjustment methods to analyze 

observational data.

Unadjusted (univariate) and covariate-adjusted linear regression associations of breastfeeding with 

BMI z-score were −0.33 (95% CI −0.53, −0.13) and −0.24 (−0.46, −0.02), respectively. The other 

approaches resulted in smaller N (204 to 276) because of poor overlap of covariates, but CIs were 

of similar width except for inverse-probability-weighting (75% wider) and PS matching with a 

wider caliper (76% wider). Point estimates ranged widely, however, from −0.01 to −0.38. For 

cesarean section, because of better covariate overlap, the covariate-adjusted regression estimate 

(0.20) was remarkably robust to all adjustment methods, and the widths of the 95% CIs differed 

less than in the breastfeeding example.

Choice of covariate adjustment method can matter. Lack of overlap in covariate structure between 

exposed and unexposed participants in observational studies can lead to erroneous covariate-
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adjusted estimates and confidence intervals. We recommend inspecting covariate overlap and 

using multiple confounding adjustment methods. Similar results bring reassurance. Contradictory 

results suggest issues with either the data or the analytic method.
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INTRODUCTION

Valid causal inference from observational data requires at least two critical conditions: i) all 

confounders are measured and ii) are appropriately adjusted for in the analyses. Approaches 

such as instrumental variables1 and sensitivity analyses2 can sometimes be used to account 

for unmeasured confounders. However, instrumental variable analysis is not always possible 

because acceptable instrumental variables may not exist3. In this paper, we focus on the 

appropriate adjustment of measured confounders and do not consider issues such as 

unmeasured confounders, measurement error, or exposure or outcome mis-classification.

The classic confounding adjustment method is covariate-adjusted regression. However, an 

alternative class of methods is gaining increasing popularity4. These methods use the 

propensity score (PS), the conditional probability of receiving the exposure of interest given 

confounders5. The PS is effectively a summary score that incorporates information from 

multiple confounders in a single value. PSs address the “curse-of-dimensionality”6: a large 

number of confounders relative to the number of observations. Moreover, PSs can help in 

assessing overlap in the covariate space7. However, despite the increasing use of the PS-

based methods and advanced methodological research in this area8–12, understanding of how 

to correctly apply these methods and their potential impact is still limited13,14.

Our purpose is to explore 6 confounding adjustment methods: covariate-adjusted 

regression15, PS regression16, PS stratification17, PS matching5, inverse-probability-

weighting18,19, and doubly-robust estimation20. These are described succinctly in Table 1. 

Other than covariate-adjusted regression, all of these methods use PSs to adjust for 

confounding. To demonstrate the potential effects of adjustment, we compare results from 

two early life exposures that we and others have reported are associated with childhood 

obesity: breastfeeding status21–24 and delivery type25,26. In both cases, randomized trials are 

at best impractical, though it may be possible to use data from related trials to gain insight27. 

Using these two examples, we review the strengths and weaknesses of the 6 confounding 

adjustment methods, use PSs to ensure overlap in the covariate space, examine the impact of 

choices made during implementation, discuss lessons learned from implementing them, and 

identify knowledge gaps.

In this paper, we implement the 6 methods to adjust for baseline confounding. We do not 

intend to infer causality in either application example for the following two reasons. Firstly, 

the assumption of no unmeasured confounders is debatable. Secondly, breastfeeding during 

the first 6 months of life is not a one-time decision24,28. During that period, mothers who 

breastfed likely considered multiple times whether to continue breastfeeding and made the 
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decisions based on multiple factors that themselves changed over time. Some of these 

factors may well affect the childhood obesity outcome. To reduce difficult methodological 

issues raised by these relationships, we restricted our analyses to those who either 

exclusively breastfed or used formula-only during the first 6 months of life.

We use a continuous outcome for illustration purposes, but these methods can be applied to 

other types of outcomes such as binary outcomes. In fact, with binary outcomes, the PS-

based approaches have more advantages over the covariate-adjusted regression approach 

because it is more challenging to impose a correct covariate-adjusted regression model for 

binary outcomes when the outcome is rare and the number of covariates is large relative to 

sample size.

METHODS

We begin by describing methods for covariate adjustment in more detail, then describe the 

two application examples.

Confounding adjustment methods

Covariate-adjusted regression—In covariate-adjusted linear regression, the outcome is 

regressed on the exposure variable and covariates. The validity of results depends on the 

correct specification of the regression model, meaning that all covariates, interactions, and 

quadratic, logarithmic, etc. functions affecting the exposure-outcome relationship are 

included. If these conditions are met, the parameter associated with the exposure is the 

difference in the outcome due to adding the exposure to any set of fixed values of the other 

covariates.

Propensity Scores—The propensity score (PS) is defined as the individual probability of 

receiving the exposure of interest5. PSs are typically estimated with a logistic regression 

model that regresses the exposure variable on observed confounders; PSs thus replace all of 

the confounders with a single value. In addition, PSs facilitate a requirement for valid 

covariate adjustment: overlapping covariate values, or “common support,” across the 

exposure groups. Common support is required to prevent extrapolation beyond the range of 

the data. Covariate overlap is absent, for example, when the exposure of interest group 

includes subjects aged 45–65 but the control group is limited to those aged 45–55. It can be 

challenging or tedious to detect poor covariate overlap when the ranges overlap, but the 

distribution in the two exposure groups differs substantially. For example, both groups 

might have ages between 45 and 65, but the exposed group might be 95% over age 55 and 

the unexposed 95% below age 55. It is quite difficult to detect this kind of differential 

distribution multidimesionally across a large set of covariates. However, it is relatively 

simple, as demonstrated below, to assess overlap using the PS.

After assessing overlap, PSs can be used to adjust for confounding in several ways: via 

regression, stratification, weighting, matching. The validity of each of these methods 

depends on a common assumption that the PS model is correctly specified, in the same sense 

as in the covariate-adjusted regression. The goodness-of-fit of the PS model can be assessed 

by comparing the distributions of the observed confounders between the exposure groups 
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after adjusting for the estimated PSs17. The confounders should be distributed similarly 

between the exposure groups after adjustment. Since confounding can only affect inference 

if the confounders are unequally distributed between the exposure groups, valid causal 

inference is possible once this similarity is achieved.

Common-support regression—Common-support regression is simply covariate-

adjusted regression conducted among the subset of patients within the common support. 

Common-support regression is generally preferred over covariate-adjusted regression as it 

avoids extrapolation into regions where one or the other exposure group provides little data.

PS regression—In PS regression, we regress the outcome on the exposure and the PS 

only. Conditional on the PS, exposure cannot be a result of confounding, so the exposure 

effect is un-confounded. However, analogous to covariate adjustment, the results might be 

biased if we do not adjust for PS appropriately in the regression model, for example if a 

required quadratic function of the PS is omitted16.

PS stratification—In PS stratification17, the study population is classified into strata with 

similar PSs. The exposure effect is estimated within each stratum and the exposure effects in 

each stratum are then pooled to obtain the population-wide average exposure effect. This 

approach does not require the additional modeling assumptions that PS regression does, but 

the results might be slightly biased because the PSs within strata are similar but not 

identical. Therefore, it is recommended to use more than 5 strata when sample size allows29.

PS matching—PS matching avoids some potential issues in simpler approaches but is 

more complex in theory and application. In PS matching, each exposed and/or unexposed 

subject is matched with at least one “control” from the other exposure group with the same 

PS. If a matched control is found only for each exposed subject, we are estimating the 

average exposure effect among the treated30 which sometimes is the preferred parameter of 

interest, but may be a biased estimate of the exposure effect in the population at large30. 

Matching each exposed and non-exposed case ensures that the estimate is unbiased for the 

effect of exposure in the population at large.

Exact matching is typically infeasible, however, so in practice matches are required to have 

only similar PSs. We refer to the maximum allowable difference in PSs for a matched pair 

as the “caliper”10. Common choices of caliper include an absolute value of 0.0516 or 0.2 

standard deviations of the logits of PS, i.e., of the log(PS/(1−PS))10. Subjects without 

eligible matches, i.e, no control with a PS within the caliper, are excluded from subsequent 

analyses. Conditional regression15 analyses are conducted among the matched pairs, to 

account for matching.

Matching can be done “with” or “without replacement”7,31; with replacement means that, 

for example, a non-exposed subject may be the control for more than one exposed subject, 

and some subjects will likely be included in the analysis more than once. Matching with 

replacement reduces bias and thus is recommended, although a special variance estimator is 

required to appropriately account for the correlation due to duplication32.
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In the sense that each PS-matched pair comprises two people with approximately equal 

probabilities of exposure, and one is in each exposure group, PS matching mimics 

randomization. Like stratification, PS matching does not require modeling the PS-outcome 

relationship. Residual confounding due to imperfect matching remains a concern for the 

validity of PS matching results.

Inverse probability weighting—In inverse-probability-weighting18,19, each subject is 

weighted by the inverse of the probability of being assigned to their actual exposure group: 

1/PS for exposed subjects and 1/(1 − PS) for unexposed subjects. Confounding is removed 

in the resulting weighted “pseudo-population” (7,8) so that linear regression applied to the 

pseudo-population estimates the un-confounded exposure effect.

The inverse-probability-weighting approach does not require modeling the PS-outcome 

relationship. In using the exact PS value, it avoids the risks of residual confounding within 

strata and imprecise matches. Moreover, it can be used without further modification in 

settings with multiple exposure groups. However, the standard error of the treatment effect 

may be large, due to large weights for subjects with PSs close to 0 or 1. Truncating weights 

or excluding subjects with extremely large weights may partially address this issue but could 

diminish the advantages described above and lead to estimating a different quantity than the 

one of interest.16,33

Doubly-robust estimation—Doubly-robust estimation combines the PS and covariate 

adjustment. In covariate-adjusted regression, the association between covariates and 

outcome needs to be accurately modeled; in the PS-based analyses described above, the 

logistic regression predicting the exposure needs to be correctly modeled. Doubly-robust 

estimation is valid if either model is correct but not necessarily both20. The original doubly-

robust approach, which was proposed in Bang et al.20, functions by adding to the inverse-

probability-weighting estimator an augmentation term, which depends on the predicted 

outcome from the multivariable regression model and the PSs. This term converges to zero 

when the PS is correct, but offsets the bias of the inverse-probability-weighting estimator 

when the PS is wrong and the outcome regression function is correct. This is a complex 

procedure. Interested readers are referred to Bang et. al.20 for technical details. A SAS 

macro is available to implement this method34.

Table 1 summarizes each of the 6 methods and their strengths and weaknesses.

Application examples

We apply the forgoing methods to assess the associations of breastfeeding and cesarean 

section with body mass index (BMI) at age 3.

Study population—Study subjects were participants in Project Viva, a prospective 

observational cohort study of pre- and peri-natal factors and maternal and child health35. 

Details of recruitment and retention procedures are available elsewhere35.

We have previously published on the association of both breastfeeding (16) and caesarean 

section (17) with 3-year BMI z-score in Project Viva.
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Outcome—At the 3-year Project Viva visit, we measured each child’s height with a 

research-standard stadiometer (Shorr Productions, Olney, Maryland, USA), and weight with 

a digital scale (Seca model 881, Seca Corporation, Hanover, Maryland, USA). We 

calculated BMI as weight in kg/(height in m)2. The outcome of interest was the age- and 

sex-specific BMI z-score at the participant’s 3-year visit, calculated using US national 

reference data36.

Exposure variables—Breastfeeding during the first 6 months of life was assessed by 

interviews at 6 months or 1 year postpartum21. We restricted our analyses to two subgroups: 

“exclusive breastfeeding” (infants whose only liquid energy source was breast milk during 

the first 6 months of life), and “formula only” (only formula during the first 6 months). 

Caesarean section versus vaginal delivery was derived from hospital medical records.

Covariates—In Tables 2 and 3, we list the potential confounders considered in the 

covariate-adjusted regression analyses in the original publications21,25; not all were included 

in the final published models. These are all baseline covariates measured prior to either 

exposure.

Statistical analyses

For both the breastfeeding and cesarean section examples, we implemented: 1) crude 

(univariate) regression; 2) covariate-adjusted regression using the covariates included in the 

final published models; and 3) covariate-adjusted regression with the larger set of covariates 

in Tables 2 and 3.

We fitted logistic regression models to estimate PSs, adjusting for the covariates listed in 

Tables 2 and 3. Variable selection in PS modeling is an important topic. We do not tackle 

this issue here. Project Viva collected a much larger set of covariates than those listed in 

Tables 2 and 3. In this paper, we only consider the subset of covariates that were selected by 

subject matter experts as potential confounders. Covariate balance was assessed using the F-

test after PS stratification with quintiles17.

Theoretical guidance on determining the common support is not available, and we 

determined the common support region on an ad-hoc basis. We plotted smoothed histograms 

of the PSs within each group, based on kernel density estimates. These plots (Figures 1 and 

2) show values of the PS for which each exposure group has at least a few observations, and 

we defined common support as the range of PS over which there are generally at least 5 

observations in each exposure group.

We implemented the three regression adjustment methods listed above and PS regression 

with and without considering the PS-based common support to directly assess the impact of 

limiting covariates to the region of common support. Observations outside the common 

support were excluded from other analyses.

In PS regression, we regressed the outcome on the exposure variable and the PS. Adding 

polynomial terms for the PS up to the 5th order had little impact on the estimated exposure 

effect and variance; we report the model with linear adjustment only. For PS stratification, 
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we used quintiles instead of higher-order quantiles due to relatively small numbers of 

formula-only babies and cesarean section births. In PS matching, we used two caliper 

values, 0.05 and 0.01. Each exposed and unexposed subject was matched to a subject in the 

other group, if one existed within the caliper. We used matching with replacement and 

accounted for this using the conservative Abadie-Imbens variance estimator32. In the 

breastfeeding example, we found some subjects with large weights in the inverse-

probability-weighting and doubly-robust approaches, and additionally re-calculated the 

estimates from these two methods with PSs truncated at 0.95; truncation near 0 was 

unnecessary because subjects with small values had already been removed due to a lack of 

common support. Truncation in the cesarean section example was unnecessary after 

removing subjects lacking common support. In doubly-robust estimation, we considered two 

multivariable regression models with one including all covariates and the other including 

published covariates only. All analyses were done in SAS 9.3 (SAS Institute, Cary NC) 

except PS matching, which was implemented using the R package ‘Matching’ (R 2.15.2)37.

RESULTS

For breastfeeding, there were 437 subjects in the univariate analyses; 412 had complete data 

on relevant variables and were included in the covariate-adjusted regression with published 

covariates. Sample size further decreased to 354 in the regression with a larger set of 

covariates. For cesarean section, the corresponding sample sizes were 1236, 1229, and 1019.

For the PS analyses, we first examined the PS overlap to determine the common support, 

illustrated in Figures 1 and 2. For breastfeeding, the common support region was (0.350, 

0.993), i.e., subjects with PSs less than or equal to 0.35 or greater than or equal to 0.993 

were excluded from further analyses. For cesarean section, the common support was (0.095, 

0.530). In eTable 1 in the supplementary material, we present the descriptive statistics 

among those that were within the common support versus those that were outside the 

common support.

In Tables 2 and 3, we present the descriptive statistics for the two examples respectively. For 

each example, we present the statistics among the entire study population, among those 

within the common support region, and among the matched pairs constructed in the common 

support with a caliper of 0.05. Subjects outside the support were younger, less educated, 

more likely to be non-white, less wealthy, heavier, to have smoked during pregnancy. Due 

to a poorer PS overlap in the breastfeeding example than in the cesarean section example, a 

larger proportion of subjects fell outside the common support and thus were excluded. It 

appears that covariate balance was improved by restricting to subjects within the common 

support region and further improved by PS matching.

In the breastfeeding example, all analyses yielded qualitatively similar results, with the 

exception of the doubly-robust method with all covariates. In addition, the doubly-robust 

method was sensitive to the choice of covariates in that all covariates resulted in very 

different estimates compared to published covariates. In contrast, in multivariable 

regression, the other method which uses multivariable outcome regression, this choice did 

not materially affect the results.
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Inverse-probability-weighting, PS matching with a caliper of 0.05, and doubly-robust 

estimation with published covariates yielded notably wider CIs than the other methods. The 

greater standard errors for the inverse-probability-weighting method were likely driven by 

the few formula-only babies whose PSs were close to 1 and whose weights were thus large. 

PS truncation at 0.95 helped to reduce the standard error. For PS matching, the selection of 

caliper affected CI width. The CI width was, surprisingly, narrower with a smaller caliper, 

despite a smaller sample size. A similar result was seen for the doubly-robust estimation.

For cesarean section, the estimated difference in BMI between caesarian and vaginally 

delivered children was remarkably consistent across adjusted methods, and the widths of the 

CIs differed less than in the breastfeeding example (Figure 4). The caliper choice had little 

impact. The CIs from PS matching were the widest, likely due to the conservative variance 

estimate32.

DISCUSSION

We implemented several confounding adjustment methods to examine the associations of 

exclusive breastfeeding and cesarean section with 3-year BMI z-score: naïve covariate-

adjusted regression, covariate-adjusted regression among all study subjects and among those 

within the common support, PS regression, PS stratification, PS matching, inverse-

probability-weighting, and doubly-robust estimation. Each of the 6 methods has its own 

advantages and disadvantages and none is uniformly superior to others. Analysts need to 

select the method(s) that suit their data setting and pay close attention to the implementation 

caveats we illustrated in this paper via the two empirical examples.

One important observation is that accounting for covariate overlap can have a substantial 

impact, even on results from multivariable regression. In the breastfeeding example, 

restricting the sample to those within common support attenuated the point estimate from 

multivariable regression by 18%, from −0.28 to −0.23. In the cesarean section example, 

point estimates and CIs were more similar, presumably because the proportion of overlap 

was greater. In addition, the definition of the common support region may affect the results 

from all methods. The breastfeeding effect estimate and CI both varied widely with various 

definitions of the common support region (data not shown). The impact is likely to be bigger 

when the sample size is relatively small and PS overlap is relatively poor.

Secondly, inverse-probability-weighting and doubly-robust estimation may have large 

standard errors. Truncating PS at a minimum value, e.g., 0.05, and a maximum value, e.g., 

0.95 may partially address this problem, but it may introduce bias. For breastfeeding, the CI 

width for inverse probability weighting and doubly-robust estimation with multivariable 

regression with published covariates decreased by 35% (from 0.77 to 0.50) and 47% (from 

0.90 to 0.48) respectively after PSs were truncated at 0.95. For cesarean section, PSs were 

bounded away from 0 and 1 and thus the weights not large in either exposure group. The 

other methods do not use these weights and thus are not subject to this issue.

Thirdly, the selection of caliper is important for PS matching. For breastfeeding, the point 

estimate remained the same when the caliper decreased from 0.05 to 0.01, but the 95% CI 
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width decreased by 19% (from 0.74 to 0.60). We do not recommend drawing conclusions 

based on an arbitrary criterion of whether the 95% CI includes or excludes the null value. 

But it is worth noting that if such an arbitrary criterion was used, different inference would 

have been obtained depending on which caliper was used.

Fourthly, the doubly-robust method in theory should result in estimates similar to either the 

covariate-adjusted regression or inverse-probability-weighting. In this example, however, 

the finite-sample performance of this method in the breastfeeding example is inconsistent 

with its large-sample, theoretical property. Thus, the corresponding results should not be 

used to derive inference in this case. The failure of the doubly-robust method here could be 

due to the small sample size, particularly the small number of formula-fed babies, and 

relatively poor overlap between the two exposure groups.

The six methods considered in this paper all assume there is no unmeasured confounding. 

The focus of this paper is on how to appropriately adjust for measured covariates. If residual 

confounding bias is a concern, there exist multiple sensitivity analyses methods38–42 that 

extend these confounding adjustment methods to assess how the results may vary as the 

amount of residual confounding bias exists. This is beyond the scope of this paper.

In summary, we compared several of the many existing confounding adjustment methods. 

For cesarean section, both the point and interval estimates were remarkably robust to 

method selection and implementation. This finding brings reassurance but does not 

guarantee the accuracy or precision of the estimated mean difference. The results for 

breastfeeding were less similar across analyses. However, apart from doubly-robust 

estimation, all other analyses yielded qualitatively similar results.

We recommend assessing covariate overlap and limiting covariates to the region of common 

support no matter which confounding adjustment method is used. In addition, we 

recommend conducting analyses with multiple methods and varying implementation factors 

to help identify potential issues. One particular method can be pre-specified as the primary 

analysis and others viewed as sensitivity analyses. Consistency or inconsistency among the 

results should be assessed by point and interval estimates, not by whether p-values were 

above or below the 0.05 cut-off. More work is needed to guide implementation of each 

method, including how to select the common support; whether and how to truncate PS 

weights; and how to select the PS matching caliper.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgement

We thank Sheryl Rifas for data preparation and help with familiarizing us with the datasets.

Financial Support

This work was supported by the National Heart, Lung, and Blood Institute [1P30HL101312 to Gillman MW].

Li et al. Page 9

J Dev Orig Health Dis. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



References

1. Imbens GW, Angrist JD. IDENTIFICATION AND ESTIMATION OF LOCAL AVERAGE 
TREATMENT EFFECTS. Econometrica. 1994 Mar; 62(2):467–475.

2. Lash, TL.; Fox, MP.; Fink, AK. Applying Quantitative Bias Analysis to Epidemiologic Data. New 
York, NY: Springer New York; 2009. 

3. Martens EP, Pestman WR, de Boer A, Belitser SV, Klungel OH. Instrumental variables: application 
and limitations. Epidemiology. 2006 May; 17(3):260–267. [PubMed: 16617274] 

4. Rubin DB. Estimating causal effects from large data sets using propensity scores. Ann Intern Med. 
1997 Oct 15; 127(8 Pt 2):757–763. [PubMed: 9382394] 

5. Rosenbaum PR, Rubin DB. The Central Role of the Propensity Score in Observational Studies for 
Causal Effects. Biometrika. 1983; 70(1):41–55.

6. Robins JM, Ritov Y. Toward a curse of dimensionality appropriate (CODA) asymptotic theory for 
semi-parametric models. Stat Med. 1997; 16(1–3):285–319. Jan 15–Feb 15. [PubMed: 9004398] 

7. Ho DE, Imai K, King G, Stuart EA. Matching as nonparametric preprocessing for reducing model 
dependence in parametric causal inference. Political Analysis. 2007; 15(3):199–236.

8. Glynn RJ, Schneeweiss S, Sturmer T. Indications for propensity scores and review of their use in 
pharmacoepidemiology. Basic & clinical pharmacology & toxicology. 2006 Mar; 98(3):253–259. 
[PubMed: 16611199] 

9. Sturmer T, Joshi M, Glynn RJ, Avorn J, Rothman KJ, Schneeweiss S. A review of the application of 
propensity score methods yielded increasing use, advantages in specific settings, but not 
substantially different estimates compared with conventional multivariable methods. J Clin 
Epidemiol. 2006 May; 59(5):437–447. [PubMed: 16632131] 

10. Austin PC. Optimal caliper widths for propensity-score matching when estimating differences in 
means and differences in proportions in observational studies. Pharm Stat. 2010 Apr 27.

11. Austin PC. The performance of different propensity-score methods for estimating relative risks. J 
Clin Epidemiol. 2008 Jun; 61(6):537–545. [PubMed: 18471657] 

12. Austin PC, Mamdani MM, Stukel TA, Anderson GM, Tu JV. The use of the propensity score for 
estimating treatment effects: administrative versus clinical data. Statistics in Medicine. 2005; 
24(10):1563–1578. [PubMed: 15706581] 

13. Austin PC. A critical appraisal of propensity-score matching in the medical literature between 1996 
and 2003. Stat Med. 2008 May 30; 27(12):2037–2049. [PubMed: 18038446] 

14. Stuart EA. Developing practical recommendations for the use of propensity scores: discussion of 
'A critical appraisal of propensity score matching in the medical literature between 1996 and 2003' 
by Peter Austin, Statistics in Medicine. Stat Med. 2008 May 30; 27(12):2062–2065. discussion 
2066–2069. [PubMed: 18286673] 

15. Casella, G.; Berger, RL. Statistical Inference. Vol. 2. Duxbury Pacific Grove, CA: 2002. 

16. Kurth T, Walker AM, Glynn RJ, et al. Results of multivariate logistic regression, propensity 
matching, propensity adjustment, and propensity-based weighting under conditions of nonuniform 
effect. American Journal of Epidemiology. 2005; 163(3):262–270. [PubMed: 16371515] 

17. Rosenbaum PR, Rubin DB. Reducing Bias in Observational Studies Using Subclassification on the 
Propensity Score. Journal of the American Statistical Association. 1984; 79(387):516–524.

18. Hernan MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of 
Zidovudine on the survival of HIV-positive men. Epidemiology. 2000; 11(5):561–570. [PubMed: 
10955409] 

19. Robins JM, Hernan MA, Brumback B. Marginal structural models and causal inference in 
epidemiology. Epidemiology. 2000; 11(5):550–560. [PubMed: 10955408] 

20. Bang H, Robins JM. Doubly robust estimation in missing data and causal inference models. 
Biometrics. 2005; 61:962–972. [PubMed: 16401269] 

21. van Rossem L, Taveras EM, Gillman MW, et al. Is the association of breastfeeding with child 
obesity explained by infant weight change? Int J Pediatr Obes. 2011 Jun; 6(2–2):e415–e422. Epub 
17472010 Oct 17477128. [PubMed: 20979572] 

Li et al. Page 10

J Dev Orig Health Dis. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



22. Owen CG, Martin RM, Whincup PH, Davey-Smith G, Gillman MW, Cook DG. The effect of 
breastfeeding on mean body mass index throughout life: a quantitative review of published and 
unpublished observational evidence. Am J Clin Nutr. 2005 Dec; 82(6):1298–1307. [PubMed: 
16332664] 

23. Owen CG, Martin RM, Whincup PH, Smith GD, Cook DG. Effect of infant feeding on the risk of 
obesity across the life course: a quantitative review of published evidence. Pediatrics. 2005 May; 
115(5):1367–1377. [PubMed: 15867049] 

24. Gillman MW. Commentary: breastfeeding and obesity--the 2011 Scorecard. Int J Epidemiol. 2011 
Jun; 40(3):681–684. [PubMed: 21666265] 

25. Huh SY, Rifas-Shiman SL, Zera CA, et al. Delivery by caesarean section and risk of obesity in 
preschool age children: a prospective cohort study. Arch Dis Child. 2012 Jul; 97(7):610–616. 
[PubMed: 22623615] 

26. Li HT, Zhou YB, Liu JM. The impact of cesarean section on offspring overweight and obesity: a 
systematic review and meta-analysis. International journal of obesity. 2012 Dec 4.

27. Kramer MS, Chalmers B, Hodnett ED, et al. Promotion of Breastfeeding Intervention Trial 
(PROBIT): a randomized trial in the Republic of Belarus. JAMA. 2001 Jan 24–31; 285(4):413–
420. [PubMed: 11242425] 

28. Kramer MS, Moodie EE, Dahhou M, Platt RW. Breastfeeding and infant size: evidence of reverse 
causality. Am J Epidemiol. 2011 May 1; 173(9):978–983. [PubMed: 21430194] 

29. Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of 
causal treatment effects: a comparative study. Statistics in Medicine. 2004; 23(19):2937–2960. 
[PubMed: 15351954] 

30. Imbens GW. Nonparametric estimation of average treatment effects under exogeneity: A review. 
Review of Economics and Statistics. 2004; 86(1):4–29.

31. Dehejia RH, Wahba S. Propensity score-matching methods for nonexperimental causal studies. 
Review of Economics and Statistics. 2002; 84(1):151–161.

32. Abadie A, Imbens GW. Large sample properties of matching estimators for average treatment 
effects. Econometrica. 2006; 74(1):235–267.

33. Hernan MA, Cole SR. Invited Commentary: Causal diagrams and measurement bias. Am J 
Epidemiol. 2009 Oct 15; 170(8):959–962. discussion 963-954. [PubMed: 19755635] 

34. Funk, MJ.; Westreich, D.; Davidian, M.; Weisen, C. SAS Global Forum. SAS, Inc; 2007. 
Introducing a SAS® macro for doubly robust estimation. 2007.

35. Gillman MW, Rich-Edwards JW, Rifas-Shiman SL, Lieberman ES, Kleinman KP, Lipshultz SE. 
Maternal age and other predictors of newborn blood pressure. J Pediatr. 2004 Feb; 144(2):240–
245. [PubMed: 14760269] 

36. Kuczmarski RJ, Ogden CL, Grummer-Strawn LM, et al. CDC growth charts: United States. 
Advance data. 2000 Jun 8.(314):1–27. [PubMed: 11183293] 

37. Sekhon JS. Multivariate and Propensity Score Matching Software with Automated Balance 
Optimization: The Matching Package for R. Journal of Statistical Software. 2011; 42(7):1–52.

38. Rosenbaum, P. Observational Studies. New York: Springer-Verlag; 2002. 

39. Brumback BA, Hernan MA, Haneuse SJPA, Robins JM. Sensitivity analyses for unmeasured 
confounding assuming a marginal structural model for repeated measures. Statistics in Medicine. 
2004; 23(5):749–767. [PubMed: 14981673] 

40. Li L, Shen CY, Wu AC, Li X. Propensity score-based sensitivity analysis method for uncontrolled 
confounding. American Journal of Epidemiology. 2011; 174(3) 2009. 

41. Robins, JM.; Rotnitzky, A.; Scharfstein, DO. Sensitivity analysis for selection bias and 
unmeasured confounding in missing data and causal inference models. In: Halloran, ME.; Berry, 
D., editors. Statistical Models in Epidemiology: The Environment and Clinical Trials. New York: 
Springer-Verlag; 1999. p. 1-92.

42. Shen CY, Li X, Li L, Were MC. Sensitivity analysis for causal inference using inverse probability 
weighting. Biometrical Journal. 2011; 53(5)

Li et al. Page 11

J Dev Orig Health Dis. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. Breastfeeding in First Six Months of Life (Exclusively-breastfed vs. Formula-fed Only): 
PS Kernel Density Estimates and Common Support
The solid (exclusive breastfeeding) and dotted (exclusive formula) curves indicate the 

within-group smoothed histograms for the PSs, based on kernel density estimates. The grey 

horizontal line indicates a reference at 5 observations. The vertical lines indicate the 

common support, which we define as the interval on which the within-group kernel density 

estimates are mostly 5 or above. Here is the observed common support is (0.350, 0.993).
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Figure 2. Delivery Mode (Cesarean Section vs. Vaginal Delivery): PS Kernel Density Estimates 
and Common Support
The solid (C-section) and dotted (vaginal birth) curves indicate the within-group smoothed 

histograms for the PSs, based on kernel density estimates. The grey horizontal line indicates 

a reference at 5 observations. The vertical lines indicate the common support, which we 

define as the interval on which the within-group kernel density estimates are mostly 5 or 

above. Here the observed common support is (0.095, 0.530).
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Figure 3. Breastfeeding in First Six Months of Life (Exclusively-breastfed vs. Formula-fed Only): 
Difference in 3-year BMI z-score
The last column indicates the ratio of each CI width to the CI width from the covariate-

adjusted regression with published covariates approach.
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Figure 4. Delivery Mode (Cesarean Section vs. Vaginal Delivery): Difference in 3-year BMI z-
score
The last column indicates the ratio of each CI width divided by the CI width from the 

covariate-adjusted regression with published covariates approach.
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Table 1

Comparisons of the Six Confounding Adjustment Methods

Method* Brief Summary Strengths Weaknesses

Covariate-adjusted regression15 • Fit multivariable 
regression regressing 
the outcome on the 
exposure variable and 
confounders

• Conventional 
approach

• Results relatively 
easy to understand 
and interpret

• Can be 
implemented in 
many statistical 
packages

• Difficult to assess 
covariate overlap

• Limited covariates 
possible with rare 
binary outcomes

Propensity scores (applies to the 
five PS-based methods below)5

• Fit logistic regression 
regressing exposure 
on the confounders

• Calculate propensity 
score (PS) as the 
probability of 
receiving the 
exposure of interest 
from this regression

• Confounding is 
removed 
conditional on PS

• Facilitates the 
assessment of 
covariate overlap

• May be possible to 
adjust for multiple 
covariates and 
complex non-linear 
terms even with 
rare outcomes

PS regression16 • Fit multivariable 
regression regressing 
the outcome on the 
exposure variable and 
the estimated PS

• Requires PS to be 
correctly adjusted 
for in the regression 
model

PS stratification17 • Estimate treatment 
effect within strata 
having similar PS

• Estimate treatment 
effect by combining 
stratum-specific 
effects

• No additional 
modeling 
assumption

• Residual 
confounding within 
strata since subjects 
have similar but 
non-identical PS

PS matching5 • Construct matched 
pairs with subjects 
with similar PSs from 
each exposure group

• Conduct conditional 
analyses among the 
matched pairs to 
estimate treatment 
effect

• No additional 
modeling 
assumption

• Can estimate either 
average treatment 
effect or average 
treatment effect on 
the treated

• Residual 
confounding due to 
similar but non-
identical PS within 
matched pair

• Different matching 
algorithms with 
respective 
advantages and 
disadvantages

• Different caliper 
may affect results

Inverse probability weighting18,19 • Weight each subject 
by the inverse of the 
probability of 
receiving observed 
exposure

• Compare the 
outcomes between 
the two exposure 

• No additional 
modeling 
assumption

• Applies easily to 
settings with more 
than two exposure 
groups

• Exposed subjects 
with very small PSs 
or unexposed 
subjects with very 
large PSs have 
large weights and 
may lead to large 
standard errors.
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Method* Brief Summary Strengths Weaknesses

groups in the 
weighted population

• Can be extended to 
handle time-varying 
exposure and time-
varying 
confounding

Doubly robust estimation20 • Combine the 
covariate adjusted 
model and the 
inverse probability 
weight using a 
complex 
augmentation term

• Gives valid 
inference if either 
model is correct but 
not necessarily both

• Complex

• Subjects with large 
weights may lead to 
large standard 
errors

*
All methods are subject to bias if covariate overlap is not present. All methods require correct specification of models. For regression, this is the 

relationship between the confounders and the outcome. For PS, this is the relationship between the confounders and the exposure. The exception is 
doubly robust estimation, for which one of these may be incorrect.
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