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Abstract

Background: As one of the most abundant agricultural wastes, sugarcane bagasse is largely under-exploited, but it
possesses a great potential for the biofuel, fermentation, and cellulosic biorefinery industries. It also provides a
unique ecological niche, as the microbes in this lignocellulose-rich environment thrive in relatively high temperatures
(50°C) with varying microenvironments of aerobic surface to anoxic interior. The microbial commmunity in bagasse thus
presents a good resource for the discovery and characterization of new biomass-degrading enzymes; however, it
remains largely unexplored.

Results: We have constructed a fosmid library of sugarcane bagasse and obtained the largest bagasse metagenome to
date. A taxonomic classification of the bagasse metagenome reviews the predominance of Proteobacteria, which are
also found in high abundance in other aerobic environments. Based on the functional characterization of biomass-
degrading enzymes, we have demonstrated that the bagasse microbial community benefits from a large repertoire of
lignocellulolytic enzymes, which allows them to digest different components of lignocelluoses into single molecule
sugars. Comparative genomic analyses with other lignocellulolytic and non-lignocellulolytic metagenomes show that
microbial communities are taxonomically separable by their aerobic “open” or anoxic “closed” environments.
Importantly, a functional analysis of lignocellulose-active genes (based on the CAZy classifications) reveals core
enzymes highly conserved within the lignocellulolytic group, regardless of their taxonomic compositions. Cellulases, in
particular, are markedly more pronounced compared to the non-lignocellulolytic group. In addition to the core
enzymes, the bagasse fosmid library also contains some uniquely enriched glycoside hydrolases, as well as a large
repertoire of the newly defined auxiliary activity proteins.

Conclusions: Our study demonstrates a conservation and diversification of carbohydrate-active genes among
diverse microbial species in different biomass-degrading niches, and signifies the importance of taking a global
approach to functionally investigate a microbial community as a whole, as compared to focusing on individual
organisms.
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Background

Lignocellulose is a basic constituent of plant biomass
and represents one of the most abundant sources of re-
newable carbon in the biosphere. Its complex structure
consists mainly of carbohydrate polymers: cellulose,
hemicellulose, and lignin. In nature, the degradation of
lignocellulose requires multiple enzymes produced by di-
verse microorganisms, which act corporately and attack
the complex structure of lignocellulosic biomass [1,2].
The growing number of studies on the complex path-
ways of lignocellulose degradation not only allows us to
comprehensively understand the mechanisms and inter-
play between microbes in maintaining carbon balance in
geobiochemical cycles, but may also lead to potential
discovery of uncharacterized microbes and novel en-
zymes, which in turn, could improve the conversion of
underused plant biomass to biofuels, chemicals, and
other materials for biorefinery industries [3-7].

An industrial bagasse collection site at sugar mills
represents a unique ecological niche for lignocellulose
decomposition due to its high enrichment of lignocellu-
losic materials under high temperature and low nitrogen,
with varying microenvironmental conditions, from the
aerobic pile surface to the anoxic interior region. Recent
studies have showed complexity in the bagasse microbial
community and inherent metabolic potential in plant
biomass decomposition, which provides novel genetic
resources for biotechnological exploration [5,8,9]. How-
ever, it remains to be seen how the phylogenetic diver-
sity and biomass-degrading enzyme repertoire of this
microbial community compare to those of previously
characterized lignocellulose-degrading environments.

Comparative metagenomic studies have been used to
investigate the microbial communities in different envi-
ronments in terms of taxonomy, gene contents, and also
biochemical and metabolic potentials [10-14]. Culture-
independent high-throughput sequencing has previously
been used to explore the complexity of metagenomes
obtained from several lignocellulose-degrading environ-
ments, including peat swamp forest [15], cow rumen
[16,17] wallaby gut [18], and termite gut [19]. A com-
parison of soil metagenomes from distinct geographical
locations, including cold and hot deserts, forests, grass-
lands, and tundra, has demonstrated the uniqueness of
microbial communities in terms of taxonomic diversity
and also the high relative abundance of functional genes
that can be linked to the metabolic capability required to
cope with specific environmental conditions [13]. Other
comparative metagenomic analyses performed in differ-
ent biomass-degrading environments also showed vari-
ation in metabolic potentials and enzymatic profiles
related to decomposition of plant biomass in various
ecological niches with different temperature, pH, and oxy-
gen availability, for example, composts from a tropical zoo
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park [20], animal guts [21], and structurally stable sym-
biotic biomass-degrading consortia [22]. These findings
thus shed light onto the highly complex mechanism of
plant biomass decomposition through cooperative in-
teractions between multiple microbial species and their
enzymes in different environments. Metagenomic stud-
ies from biomass-degrading environments also serve as
a useful starting point to discover new uncharacterized
enzymes. As demonstrated in a study using ultra-deep
sequencing of switchgrass degraded in cow rumens
[17], only 12% of carbohydrate-active genes sequenced
have 75% or more identity to known genes, suggesting
a great potential of new enzyme discovery.

In this study, a fosmid library of a microbial commu-
nity extracted from industrial sugarcane bagasse was
constructed and analyzed by shotgun pyrosequencing to
characterize and catalog the biodiversity of the microbe
community, as well as its lignocellulolytic enzyme poten-
tial in biomass decomposition. The metagenome se-
quenced from this bagasse fosmid library, called the
bagasse metagenome herein, was analyzed and compared
with several reported metagenomic datasets from both lig-
nocellulolytic and non-lignocellulolytic ecological niches.
As well as elucidating the taxonomic compositions of
microorganisms in different metagenomes, we have iden-
tified the biomass-degrading genes conserved among dif-
ferent microbial communities and the unique genes that
could be related to specific metagenomes, thus providing
a basis for understanding the roles and interplays of differ-
ent microbes and their enzymes in biomass degradation in
different environments.

Results and discussion

Constructing the fosmid library and pyrosequencing of
sugarcane bagasse metagenome

We first constructed a fosmid library from the microbial
DNA sequences obtained from the soil-contacting re-
gion of sugarcane bagasse collected from an industrial
collection site (see Methods for more details). The fos-
mid clones were pooled and pyrosequenced on one full
lane of a 454 Genome Sequencer FLX (Roche, Branford,
CA, USA). Approximately one million raw reads were
obtained, with an average read length of 570 bp (Table 1).
Low quality sequences including short reads (<100 bp)
and repetitive sequences were filtered out. The se-
quences contaminated by the vector and host genome
used in the fosmid library construction were also re-
moved at this step. After this data filtering, 726,980
reads remained with an average read length of 580 bp,
and were subsequently assembled for longer overlapping
sequences. This resulted in a total of 17,829 assembled
contigs and 185,543 non-redundant singletons, which
were then used for functional and comparative genomic
analyses (see Additional file 1: Figure S1 for summary of
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Table 1 Summary of bagasse fosmid pyrosequencing data
Raw reads
Dataset Number of sequences Number of nucleotides Sequence length

Average  SD Minimum Maximum
1. Raw reads 1,038,205 591,656,071 569.9 1733 40 1,595
2. Read screen repeats 982,383 569,556,388 579.8 164.7 40 1,595
3. Read screen repeats and trim vector 726,980 421,491,438 5798 166.0 40 1,595
Assembled sequences
Dataset Number of sequences Number of nucleotides Sequence length

Average SD Minimum Maximum
1. Contigs 17,829 32,867,905 1,843.5 23946 100 46,577
2. Singletons (non-redundant) 185,543 109,290,202 589.0 163.5 40 1,595

The bagasse fosmid library was sequenced on one full lane of the 454 GS-FLX Titanium, resulting in approximately one million raw reads. The reads with
contaminating sequences of vector or host genome were removed before contig assembling and redundant sequence cleaning.

data analyses). The entire bagasse metagenomic library
has been deposited to the National Center for Biotech-
nology Information (NCBI) Sequence Read Archive
(SRA) (SRX493840).

Taxonomic classification and microbial diversity of the
bagasse fosmid library

To explore the phylogenetic diversity and complexity of
the microbial community in the bagasse metagenome,
we first identified taxonomic classification of singletons
and contigs before removing duplicates, using BLASTN
against the NCBI non-redundant nucleotide database
(NT) [23] (Figure 1 and Additional file 2: Table S1).
Based on the NCBI attributes, most of the mapped se-
quences from our bagasse fosmid library are of bacterial
origin (94.4%, with a total of 1,164 assigned unique
bacterial species), together with a small amount of
eukaryotic DNA (4.3%), which are mainly from plants
and fungi, and only trace of archaeal DNA (0.6%). We
note; however, that functional genes of eukaryotes were
predicted with a smaller degree of confidence than those
of prokaryotes, as the genes are normally longer and fre-
quently contain isoforms. The rest of the sequenced
DNA comprises traces of DNA from viruses and other
unidentified sequences.

Focusing on bacteria, the majority of reads were
mapped to the Proteobacteria phylum (approximately
two thirds of all mapped reads), which is metabolically
versatile and spanned a wide range of bacterial taxa
capable of aerobic as well as fermentative anaerobic me-
tabolisms. The predominance of Proteobacteria in the
sample collected from the exterior of a bagasse pile is in
line with our previous observation in tagged 16S rRNA
of the bagasse samples [5]. In our bagasse metagenome,
most of the Proteobacteria have been assigned to one of
three major classes: Alpha-, Beta-, and Gammaproteo-
bacteria. Alphaproteobacteria is the largest class (22.5%
of mapped reads) of microbes found in the bagasse

metagenome, comprising both the aerobic and anaer-
obic bacterial orders Rhizobiales, Rhodospirillales, Sphin-
gomonadales, and Caulobacterales. The majority of
Gammaproteobacteria (19.1%) found belong to the Pseu-
domonadales, Chromatiales, Xanthomonadales, Methylo-
coccales, and Enterobacteriales orders, whereas almost
all Betaproteobacteria are from the genus Burkholderia
(13.6%).

The next largest phyla are Bacteroidetes (10.2%) and
Actinobacteria (7.9%), followed by relatively smaller
amounts of DNA from Acidobacteria, Chloroflexi, and
Firmicutes. Bacteroidetes are mostly anaerobic and are
widely distributed in soil, sediment, aquatic habitats, and
animal guts [6,24-27]. Actinobacteria are active biomass
degraders under aerobic conditions and either mesophi-
lic or thermophilic temperature ranges, and they have a
significant role in lignocellulose decomposition in soil
and aquatic environments [28,29].

Biomass-degrading metabolic potential in bagasse fosmid
library
We then explored the repertoire of lignocellulose-
degrading enzymes in the bagasse microbial community
by assigning the predicted open reading frames (ORFs)
with three carbohydrate-active enzyme families from
the CAZy database [30]: glycoside hydrolases (GHs),
carbohydrate-binding modules (CBMs), and the re-
cently introduced auxiliary activities (AAs), to the non-
redundant reads (see Methods). Of all the predicted
OREFs, 1,774 (approximately 1%) have hits to 72 GH, 18
CBM, and 7 AA families (as summarized in Figure 2).
The microbial community found in bagasse is capable
of producing various types of enzymes required to con-
vert cellulose, hemicellulose, and lignin into different
types of monosaccharides that are essential energy
sources for aerobic (via the tricarboxylic acid, or TCA,
cycle) as well as anaerobic bacteria (through fermenta-
tion processes). Of all the ORFs mapped to the GH
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Figure 1 Taxonomic distribution of a bagasse fosmid library. A large majority of sequences in the library were classified as of bacterial origin
(about 94%), followed by eukaryotes (about 4%) and archaea (about 0.5%). The taxonomic terms were obtained using BLASTN against non-redundant
NT database using E-value cutoff at Te-3. The pie chart represents percentages of reads that have the best hits (lowest E-value) to particular taxa.
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families, 679 ORFs (about 42%) are related to 27 GH
families that have lignocellulose-degrading enzymatic ac-
tivities (Table 2). The majority of enzymes that degrade
cellulose belong to two main families: GH5 and GH9,
which contain cellulases including endoglucanases, exo-
glucanases, and beta-glucosidases. The exo-acting cello-
biohydrolases are involved in initiating the attack on the
highly ordered cellulose fraction comprising crystalline
and amorphous regions. The cello-oligosaccharides and
cellobiose are further processed by the enzymes involv-
ing the hydrolysis of beta-linked dimers of oligosaccha-
rides such as beta-glucosidases from the GHI, 2, and 3
families.

Hemicellulose contains a greater variety of carbohy-
drate compositions and thus requires a broader range of
endo-acting enzymes to degrade, including endo-1,4-beta-
xylanase (GH10) for hydrolysis of xylan, the most abun-
dant hemicellulose in bagasse; endo-1,4-beta-mannosidase

(GH26) for mannan; and endo-1,4-beta-galactosidase
(GH16) for galactan. The genes encoding these enzymes
are all present in the bagasse metagenome. The higher
percentage of reads mapped to GH10 (2.6%) might reflect
the requirement to digest the greater abundance of xylan,
as compared to mannan (GH26, 04%) and galactan
(1.5%). Further downstream, xylan is degraded by xylo-
oligosaccharide hydrolyzing enzymes and side chain
cleaving hydrolases such as beta-glucosidases and beta-
xylosidases from multiple families, including GH3, 39,
43, and 52. The downstream decomposition of manno-
oligosaccharides and their dimeric sugars is catalyzed
by alpha-mannosidase (GH38), whereas the dimeric
sugars from galactan are degraded by beta-galactosidases
from GH2 and 35. We also observed a wide range of deb-
ranching enzymes such as alpha-L-arabinofuranosidase
(GH62), alpha-glucuronidase (GH67), and alpha-L-
rhamnosidase (GH78, relating to pectin degradation),
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reflecting corporate enzymatic functions in the deg-
radation of hemicellulose.

In addition to a variety of glycoside hydrolases that de-
grade cellulose and hemicellulose, we also observed a
moderate fraction of ORFs mapped to carbohydrate-
binding modules (CBMs), a group of non-catalytic pro-
teins that promote the association of the enzymes and
substrates. The majority of the CBM enzymes found in
the metagenome were identified as CBM50 (24.2%) and
CBM48 (17.4%), peptidoglycan-binding and glycogen-
binding proteins, respectively, although they are not
known to be directly related to lignocellulosic hydrolysis.
We also found a number of a recently defined CAZy
class of lignin-degrading enzymes known as auxiliary ac-
tivities (AAs), which contains eight families of ligninoly-
tic enzymes and three families of lytic polysaccharide
mono-oxygenases. The majority of lignin-breakdown en-
zymes found are multicopper oxidase (AA1, 25.0% of all
AAs) and choline dehydrogenase (AA3, 30.0%), followed
by smaller amounts of AA4, 5, 6, 7, and 9.

In terms of the microorganisms producing carbohydrate-
degrading enzymes, our results show that heteroge-
neous hemicellulose and cellulose are degraded by specific
endo-acting enzymes produced by all major bacterial
phyla: Actinobacteria, Bacteroidetes, Firmicutes, and Pro-
teobacteria (Figure 2), except for mannan, which specific-
ally requires the GH26 (beta-mannanase) family from
Bacteroidetes and Firmicutes. Mannobiose is then broken
down into a single-molecule sugar by GH38 (alpha-man-
nosidase) from Actinobacteria and Proteobacteria. Other
oligodimers from hydrolysis of lignocelluloses are subse-
quently degraded by specific exo-acting oligosaccharide-
degrading and debranching enzymes produced from
Actinobacteria, Bacteroidetes, and Proteobacteria, mainly
from the bacterial orders of Sphingobacteriales, Actino-
mycetales, Caulobacterales, Cytophagales, and Ignavibac-
teriales. Lignin-degrading enzymes, on the other hand, are
mostly generated by Bacteroidetes and Proteobacteria.

Proteobacteria is the most abundant phylum in the
sugarcane bagasse community; however, smaller phyla



Table 2 Summary of the number of reads from the bagasse metagenome mapped to lignocellulose-degrading genes

Enzyme_group Family Actinobacteria Bacteroidetes/ Chlamydiae/ Fibrobacteres/ Firmicutes Planctomycetes Proteobacteria Otherbacteria Other Activity
Chlorobi Verrucomicrobia Acidobacteria organisms

Cellulases GH5 18 1 3 4 4 0 0 Cellulase;
endoglucanase;
beta-glucosidase

Cellulases GHé 0 0 0 0 0 0 0 Endoglucanase;
cellobiohydrolase

Cellulases GH9 9 0 0 0 2 3 1 Endoglucanase;
beta-glucosidase

Cell wall GH16 12 0 0 0 5 0 0 Xyloglucan;

elongation licheninase

Cell wall GH17 0 0 0 0 28 0 0 Exo-beta-1,3-glucanase;

elongation licheninase

Cell wall GH74 0 0 0 2 0 0 0 Endoglucanase;

elongation xyloglucanase

Oligosaccharide- GH1 3 0 0 0 9 2 1 Beta-glucosidase;

degrading beta-galactosidase

enzymes

Oligosaccharide- GH2 64 5 5 10 9 4 0 Beta-mannosidase;

degrading beta-galactosidase

enzymes

Oligosaccharide- GH3 57 1 8 2 68 19 2 Beta-glucosidase;

degrading beta-glucosylceramidase

enzymes

Oligosaccharide- GH29 14 1 7 4 0 0 0 Alpha-L-fucosidase

degrading

enzymes

Oligosaccharide- GH35 0 3 0 0 3 0 1 Beta-galactosidase

degrading

enzymes

Oligosaccharide- GH38 0 0 0 0 2 0 0 Alpha-mannosidase

degrading

enzymes

Oligosaccharide- GH39 0 0 0 1 4 0 0 Beta-xylosidase

degrading

enzymes

Oligosaccharide- GH42 0 0 0 0 0 2 0 Beta-galactosidase

degrading

enzymes

Oligosaccharide- GH43 12 1 1 0 20 0 0 Beta-xylosidase

degrading

enzymes

Oligosaccharide- GH52 0 0 0 5 1 0 0 Beta-xylosidase

degrading

enzymes
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Table 2 Summary of the number of reads from the bagasse metagenome mapped to lignocellulose-degrading genes (Continued)

Endohemicellulases GH8 0 2 0 0 0 0 0 1 0 0 Endo-1,4-D-glucanase;
chitosanase

Endohemicellulases GH10 11 14 2 0 5 6 0 8 0 0 Xylanase; beta-1,
4-xylanase; endo-1,
4-beta-xylanase

Endohemicellulases GH11 1 0 0 0 0 0 0 1 1 1 Endo-1,4-beta-xylanase;
xylanase
Endohemicellulases GH12 0 0 0 0 0 0 0 2 0 1 Endoglucanase;

xyloglucan hydrolase

Endohemicellulases GH26 0 3 0 0 0 4 0 0 0 0 Beta-mannanase;
endo-14-beta-
mannosidase

Endohemicellulases GH28 0 15 0 0 4 9 0 2 4 0 Polygalacturonase;
pectate lyase;
endopolygalacturonase

Endohemicellulases GH53 0 2 0 0 0 0 0 0 0 0 Endo-14-beta-
galactosidase

Debranching GH51 4 7 2 2 13 1 0 3 0 0 Alpha-L-

enzymes arabinofuranosidase;
endoglucanase

Debranching GHe2 2 0 2 0 0 0 0 1 0 0 Alpha-L-

enzymes arabinofuranosidase

Debranching GH67 0 6 0 0 0 0 0 3 0 0 Alpha-glucuronidase

enzymes

Debranching GH78 0 11 0 3 1 0 0 0 0 0 Alpha-L-rhamnosidase

enzymes

91:8(5L07) S/anjoig 104 Abojouydajorg v 3o Buoyuenyy

Summary of the number of reads in the bagasse metagenome mapped to genes encoding lignocellulose-degrading enzyme homologs annotated by the CAZy database.
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such as Actinobacteria, Bacteroidetes, and Firmicutes
contribute as much to the production of lignocellulolytic
enzymes for the microbial community. Bacteroidetes, for
instance, is the second largest bacterial phylum in our
bagasse metagenome based on the number of mapped
reads (10.2%), but is still far behind the most abundant
phylum, Proteobacteria (66.1%). Intriguingly, the phylum
Bacteroidetes produces the largest repertoire of many
carbohydrate-degrading enzymes, especially cellulases
(GH5, 9), oligosaccharide-degrading enzymes (GH2),
and endo-hemicellulases (GH10, 28) (Table 2). This il-
lustrates a complex interactivity and synergism of the
microbial community in the decomposition of lignocel-
lulosic biomass in the environment.

Comparative genomic analysis of lignocellulolytic and
non-lignocellulolytic metagenomes

Having explored the newly assembled metagenome from
the sugarcane bagasse fosmid library, we now seek to in-
vestigate the shared and unique characteristics of the ba-
gasse microbial community with other publicly available
metagenomes. We have selected representative metagen-
omes from five other lignocellulolytic and six non-
lignocellulolytic environments available from the NCBI
Whole Genome Shotgun (WGS) and Sequence Read
Archive (SRA) projects [31], based on comparable num-
bers of sequences and average lengths (Additional file 3:
Table S2). The average number of reads is 98,000; the
largest is approximately 200,000 reads (sugarcane ba-
gasse from this study, and compost [32]), and the smal-
lest is about 25,000 reads (human distal gut [33] and
sludge [34]). The average read length of the combined
dataset is approximately 1,000 bp. To minimize a po-
tential bias from different analytic strategies previously
used by different groups, we obtained assembled reads
for each dataset and reanalyzed them using the same
pipeline, as used in our sugarcane bagasse dataset
(Additional file 1: Figure S1). We summarize the bac-
terial taxonomic distributions, which represent the lar-
gest superkingdom by far in these 12 metagenomes, in
Figure 3 and Additional file 4: Table S3.

In brief, bagasse pile, farm soil, and compost are classi-
fied as active lignocellulose-degrading environments,
comprising both aerobic and anoxic regions [5,32]. De-
composition of lignocellulose in bagasse in an open field
is a slow process characterized by its low nitrogen, low
moisture, and relatively high temperature conditions
[5,8]. Farm soil is a complex and nutrient-rich environ-
ment active in decomposition of plant biomass and a
wide range of organic materials [14]. The compost sys-
tem is considered a relatively aerobic environment with
dominant microorganisms in multi-phase composting
processes, in which the highest biomass decomposition
activity is found at the high-temperature thermophilic
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phase [32,35,36]. The gut ecosystems are closed anaer-
obic systems. Termite and wallaby guts represent exam-
ples of animal guts that are highly capable of digesting
plant cell walls, and are thus considered as anaerobic lig-
nocellulolytic environments [18,19]. However, we classi-
fied human and mouse guts as non-lignocellulolytic
metagenomes in this study because the environments
are relatively less effective in digesting a large amount of
lignocellulosic biomass, although some symbiotic bac-
teria that produce polysaccharide-degrading enzymes
can be found [25,37,38]. The rest of the metagenomes
are considered inactive lignocellulose-degrading eco-
logical niches under various physical and environmen-
tal conditions.

We first assessed the diversity of the above-mentioned
microbial communities using the Shannon diversity
index, based on 16S rRNA extracted from the metagen-
omes. The bagasse metagenome has a Shannon index of
2.08, comparable to the average of 2.76+0.73 (SD)
(Additional file 3: Table S2). There are 1,164 different
bacterial species detected in the bagasse metagenome,
whereas the average is 1,035.25 + 201.45 (SD). Using the
combined dataset from all 12 metagenomes as a refer-
ence, “all-combined” dataset herein, we observed that
the microbial community in bagasse is more enriched in
Proteobacteria than the average (all P-values < 2.2x107°,
Fisher’s exact test, unless indicated otherwise). This is
still true even when compared with other lignocellulo-
lytic datasets combined (Additional file 5: Table S4). By
contrast, the bagasse metagenome has smaller proportions
of reads identified as Actinobacteria, Cyanobacteria, and
Firmicutes than the all-combined and lignocellulolytic
datasets.

Proteobacteria dominates “open environment”
lignocellulolytic and non-lignocellulolytic metagenomes
Overall, the 12 microbial communities analyzed contain
different combinations and abundances of the bacterial
phyla, with five or more phyla in all the datasets ana-
lyzed (Figure 3A). Note that we present and discuss the
abundances of reads belonging to taxonomic groups or
functional categories as percentages of mapped reads in
that dataset, as well as numbers of unique species or
genes that any read in the dataset mapped to. The most
distinguishable characteristic in the taxonomic profile is
the prevalence of reads assigned to Proteobacteria be-
tween oxygenated “open” environments (for example, sug-
arcane bagasse, compost, and sludge) and anoxic “close”
environments (such as animal guts). We observed the
domination of reads from aerobic Proteobacteria in all the
open-environment metagenomes, which account for more
than half of all the mapped reads, whereas they are almost
entirely absent from the metagenomes of animal guts, in
agreement with previous studies [5,22]. Of all the four gut
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Figure 3 Taxonomic profiles of metagenomes of lignocellulosic (blue)- and non-lignocellulosic (red)-degrading sources. A) The relative

within the bars indicate numbers of unique genes that reads from metagenomic libraries mapped to. Proteobacteria dominate almost all
metagenomic communities, except for human gut, mouse gut, and wallaby gut, which are dominated by Firmicutes, and termite gut by

termite guts; this explains why their profiles are not clustered with other metagenomes in the PCA plot.

taxonomic distributions of bacterial phyla in different metagenomic datasets. Each bar represents the percentage of total reads. The numbers

Spirochaetes. B) Principal component analysis (PCA) of bacterial diversity profiles (left) and metagenome profiles (right). The bacteria of many
phyla are found in highly overlapping environments, except for Firmicutes and Spirochaetes, which are predominantly present in mammal and

metagenomes included in this study, the animal guts that
have relatively less effective cellulose-degrading function
(human and mouse) predominantly contain anaerobic

Firmicutes such as Clostridia, which have been shown to
possess a number of lignocellulose-degrading genes
[25,37-39]. Interestingly, the two herbivorous guts (termite
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and wallaby) contain different compositions of bacterial
phyla. In the termite gut metagenome, approximately half
of the sequenced reads were mapped to only 28 unique
Spirochaetes species, whereas less than 20% of reads were
mapped to 416 unique Proteobacteria, possibly because
Proteobacterial genes are better characterized. By contrast,
the majority of bacterial sequences in the wallaby gut be-
long to the Firmicutes phylum, similarly to what is ob-
served in human and mouse guts. This is in line with
earlier studies showing that gastrointestinal microbes of
warm-blooded animals mainly comprise Firmicutes and
Bacteroidetes [24,40,41].

We then performed a principal component analysis
(PCA) to quantitatively assess the similarity between the
presence/absence patterns of bacterial phyla in different
environments (Figure 3B left), as well as between meta-
genomic datasets that contain different bacterial consti-
tutions using a loading plot (Figure 3B right). The PCA
result supports our previous observation that the three
mammal gastrointestinal environments share similar sets
of bacterial phyla compositions, which are mostly anaer-
obic. The termite gut, by contrast, has a unique compos-
ition of microbes, most likely due to a much higher pH
environment [42]. This is also reflected by the distinct
prevalence of anaerobic Spirochaetes, which are mostly
found in the termite gut, but almost entirely disappear
from other guts and in the open environments. Our
comparative genomic analysis thus demonstrates that
lignocellulosic and non-lignocellulosic biomass-degrading
lifestyles are not necessarily linked to the taxonomic diver-
sity of the microbial communities. For comprehensive
analyses of genomes and their functions across multiple
gastrointestinal metagenomes, we refer the reader to an
earlier comparative genomic study [21].

Meta-analysis of functional gene contents reviews high
abundances of metabolic genes in biomass-degrading
metagenomes

To gain an overall picture of the functions of genes pos-
sessed by the 12 metagenomes, we first classified the
assembled reads to different Clusters of Orthologous
Groups (COGs) [43] (Figure 4 and Additional file 4:
Table S3). Globally, we observed a large proportion (ap-
proximately 40% or more) of reads mapped to genes in-
volving metabolic processes (green bars) in all the open
aerobic environments, especially energy production and
conservation [COG class C] and amino acid transport
and metabolism [E]. However, metabolic COGs are
present in only 20 to 30% of the reads from the animal
gut metagenomes, which are hierarchically clustered to-
gether. As expected, bagasse and other lignocellulolytic
metagenomes are more enriched in carbohydrate trans-
port and metabolism [G] genes than the all-combined
dataset, with the exception of wallaby guts (Additional
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file 5: Table S4). Interestingly, the majority of DNA se-
quences from the gastrointestinal metagenomes were
mapped to the information storage and processing (red)
genes, particularly replication recombination and repair
[L] and translation, ribosomal structure, and biogenesis
[J], and cellular processes and signaling (blue) genes, es-
pecially cell wall/membrane/envelope biogenesis [M].
The dominance of information and signaling genes is
most pronounced in the mouse gut, where more than
half of the mapped OREFs are involved in these two classes
combined. The mouse gut also possesses a twofold higher
amount of replication recombination and repair [L]
genes than average (P < 10™*°, Additional file 5: Table S4).
The gut microenvironments are anoxic and nutrient-rich,
and can have extremely low or high pH and temporal fluc-
tuation of feces [40,42,44]. This might impose additional
metabolic activities that require a large number of signal-
ing and regulatory genes to help maintain homeostasis of
cells in these unique environments [45-47].

Focusing on the number of unique genes that assembled
reads were mapped to (indicated by the numbers within
the bars), many metabolic COGs including the carbohy-
drate transport and metabolism [G] genes are most
enriched in three lignocellulolytic environments: compost
(577 unique genes), bagasse (541), and farm soil (319),
suggesting a greater diversity of carbohydrate-active genes
in these three metagenomes. However, one might consider
that the numbers of total reads in these datasets are
slightly larger than in other datasets (Additional file 3:
Table S2), and thus contribute to the larger numbers of
unique genes observed. We believe this is only partly true,
as the number of reads from the peat swamp forest dataset
is as large, but the numbers of unique genes are similar to
those from the datasets with lower numbers of total reads.

We then focused on metabolic potential of the meta-
genomes using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways [48] (Additional file 4: Table
S3 and Additional file 6: Figure S2). All the KEGG clas-
ses involved in carbohydrate metabolism can be found
in all the 12 metagenomes, and this is also true for most
of the enzymes related to the metabolism of amino
acids, and cofactors and vitamins. The gastrointestinal
tract environments are, again, more similar to one an-
other. We observed a number of KEGG classes specifically
absent or present at much lower percentages in animal
guts, including lipid metabolic classes such as alpha-
linolenic acid metabolism and fatty acid elongation,
whereas sphingolipid metabolic genes are more pro-
nounced (Additional file 4: Table S3). Looking at the num-
ber of unique genes mapped to the KEGG carbohydrate
metabolism pathways, a wide range of carbohydrate me-
tabolism enzymes are detected in all the datasets impar-
tially, except for the termite gut, which seems to have a
lower number of enzymes than other datasets.
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Figure 4 Comparison of Clusters of Orthologous Groups (COGs) in lignocellulolytic and non-lignocellulolytic metagenomes. The bar plots
represent the percentage of reads mapped to different COGs using BLAST, while the numbers within the bars indicate the number of unique genes.
Metagenomic profiles are clustered using hierarchical clustering (complete linkage method), based on the divergence of COG profiles.

Lignocellulolytic environments are enriched in enzymes
required for degrading large carbohydrate molecules

So far we have addressed the taxonomic and functional
genomic similarities between the sugarcane bagasse and
other selected lignocellulolytic and non-lignocellulolytic
metagenomes. In this section, we focus on the carbohy-
drate enzyme classifications from the CAZy database
[30], which provides manually curated information for
all characterized carbohydrate-active enzymes, covering
cellulases, hemicellulases, and pectinases.

As expected, lignocellulolytic metagenomes contain a
greater number of unique GH genes with lignocellulose-
degrading enzymatic activities (Figure 5, red), as well as
the numbers of reads mapped to these GH families
(Additional file 4: Table S3), especially those encoding
enzymes acting on large carbohydrate molecules, further
up the lignocellulose degradation pathway (see Figure 2
for a simplified pathway). To illustrate the point, the lig-
nocellulolytic metagenomes have a larger repertoire of

the so-called “true cellulases” (GHS5, 9), as the numbers
of unique genes are markedly higher than those of the
non-lignocellulolytic metagenomes. Interestingly, although
the lignocellulolytic metagenomes contain similar num-
bers of unique GH5 and 9 genes, they are most
enriched in the termite gut in terms of read abundance
(ninefold and fivefold of the all-combined dataset, respect-
ively, P < 10" Additional file 5: Table S4). Similarly, sev-
eral endo-acting hemicelluloses including GH10, 16, 26,
51, and 53 are all more abundant in the lignocellulolytic
metagenomes based on unique genes as well as mapped
reads, whereas GH11, a xylanase family, is almost entirely
absent from the non-lignocellulolytic environments. How-
ever, major oligosaccharide-degrading families such as
GH2 and 3, which are required at the later stage to break
down disaccharides into monosaccharides, are present in
nearly all the metagenomes analyzed at comparable gene
numbers and percentages, with the exception of sludge,
marine, and carcass, where GH2 is present at relatively



Mhuantong et al. Biotechnology for Biofuels (2015) 8:16

Page 12 of 17

Peat swamp forest
Human distal qut
Mouse gut

B Wallaby gut
Bl Compost

BR BB Termite out

BER B Bagesse
NERRR i o

Whale carcass

Sludge
Marine

0
I N CBMSO

LI | YR

Figure 5 Comparison of reads mapped to different KEGG metabolic pathways and CAZy enzyme families. Comparative genomic analysis
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lower abundances (P<10™° Additional file 5: Table S4).
This suggests a remarkable ability of the microorganism
communities in lignocellulolytic metagenomes to break
down large carbohydrate molecules. Accessory enzymes
involved in cleavages of hemicellulose side chains, for ex-
ample, beta-galactosidases and alpha-arabinofuranosidases
(GH43), are found in all open lignocellulolytic environ-
ments and in the guts of herbivores and omnivores. In
addition to these lignocellulolytic “core” enzymes, we also
observed a number of GH families most pronounced in

bagasse, namely GH15 (glucoamylase), GH17 (glucan
endo-1,3-beta-glucosidase) GH65 (maltose phosphoryl-
ase, rehalose phosphorylase), and GH115 (xylan alpha-
1,2-glucuronidase) (P <102 when compared with the
all-combined dataset).

In a similar manner to the majority of the GH families,
CBMs (for example, CBM2, 6, 9, and 32) are evidently
most enriched in the farm soil and compost metagen-
omes, with the exception of CBM48 and 50, which are
highly present in all the environments analyzed (Figure 5,
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blue). Note that although the numbers of raw reads and
mapped ORFs obtained from the farm soil and compost
environments are higher than the average of the 12
metagenomes, these numbers are still comparable to
those of the bagasse and peat swamp metagenomes. The
CBM2 family has been shown to bind to cellulose and
xylan, while CBM9 is found only in xylanase. CBM6 has
been demonstrated to function in binding of amorphous
cellulose and xylan, as well as beta-1,3 and beta-1,4 glu-
can. A high abundance of CBM32, involved in binding
to galactose and lactose, is also found in these two envi-
ronments. The CBM48 family, on the other hand, binds
to GH13, a large GH family that includes alpha-amylase,
which is also highly enriched in both groups of environ-
ments. Similarly, CBM50 binds to a number of GH families
including GH23, 24, 25, and 73, which are all found in both
lignocellulolytic and non-lignocellulolytic metagenomes.

The AA class represents families of ligninolytic en-
zymes and lytic polysaccharide mono-oxygenases [30].
As lignin is intimately associated with the carbohydrates
in the plant cell wall, these ligninolytic enzymes cooper-
ate with the classical GHs in decomposition of lignocel-
luloses. Intriguingly, the AA families are absent from
animal guts altogether (Figure 5, green). The two major
families AA1 and 3, for instance, are present in all the
microbial communities, except for the closed anaerobic
environments, possibly because most AAs identified to
date are related to aerobic fungi and bacteria. Import-
antly, the bagasse microbial community had the most
complete set of AA families (seven out of eight families
analyzed: AA1l, 3, 4, 5, 6, 7, and 9). AA9 (formerly
GH61) in particular, has received growing attention re-
cently, as the remarkable synergism between AA9 and
GHs in boosting enzymatic cleavages of lignocellulosic
biomass has been reported and patented [49-52]. The
AA9 proteins are copper-dependent lytic polysaccharide
monooxygenases (LPMOs), which function in cleaving
cellulose chains with oxidation of various carbons (C-1,
C-4, and C-6) [53]. The AA9 family found in the bagasse
metagenome originates from fungi, as in compost, the
only other metagenome in this study where AA9 is found.

To quantify the similarity between different metage-
nomic profiles, we have computed Pearson and Spearman
correlations among all the metagenomes based on the
three patterns of the four characteristics: taxonomic,
COG, KEGG, and CAZy profiles (Figure 6 and Additional
file 7: Table S5). As described in the previous sections,
Figure 6 recapitulates our observation that the two
groups of selected metagenomes: lignocellulolytic and
non-lignocellulolytic, are hardly distinguishable based
on the taxonomic, COG, or KEGG profiles. However,
here we show that the lignocellulolytic metagenomes
possess more similar sets of CAZy families, and also a
significantly greater similarity of proportions of reads
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mapped to different families, than those within the
non-lignocellulolytic group and also those between the
metagenomes from different groups. The lignocelluloly-
tic group also possesses a larger number of unique
CAZy genes (1,118.5 £ 538.0, SD, 931 in bagasse) com-
pared to the non-lignocellulolytic group (501.8 + 140.8,
SD). This signifies the common carbohydrate-degrading
gene repertoire and composition in the lignocellulolytic
metagenomes, which enable the microbial communities
as a whole to harvest energy and nutrients from ligno-
cellulosic biomass, regardless of the taxonomy and en-
richment of individual organisms in each microbial
community.

Conclusions

Sugarcane bagasse is one of the most abundant agricul-
tural biomasses, with a global production of over 250
million tons per year [5,54]. Microbial communities in
industrial bagasse piles provide a useful starting point
for the exploration and characterization of new biomass-
degrading enzymes, which are stable and active at rela-
tively high temperatures, in low amounts of nitrogen,
and under the varying microenvironmental conditions
commonly found in different regions of the piles. To the
best of our knowledge, the phylogenetic distribution of
microorganisms in the bagasse metagenome has previ-
ously been characterized using 16S rRNA and a re-
stricted number of shotgun sequencing reads (70,000
reads) [5,8], and thus the metagenome constructed from
the fosmid library in this study provides the largest col-
lection of metabolic genes found in this ecological niche
to date (approximately one million raw reads and over
200,000 assembled contigs plus singletons). This, for the
first time, allows us to investigate the functions, preva-
lence, diversity, and abundance of biomass-degrading
enzymes, all of which was not possible with the previous
16S rRNA and smaller shotgun sequencing libraries. The
bagasse formid library also serves as a useful resource
for subsequent enzymatic assays of prospective biomass-
degrading enzymes, which could be developed further
for industrial use. The fosmid library also allows easy re-
covery of genes of interest for further cloning and de-
tailed expression study [5,55].

We have characterized our newly constructed bagasse
metagenome and demonstrated that the microbe com-
munity is taxonomically diverse, and at the same time,
functionally capable of converting large polysaccharides
to monomeric sugars, as all the major cellulolytic and
hemicellulolytic enzymes were found. Based on our
comparative genomic analyses of the bagasse metaga-
nome with other publicly available lignocellulolytic and
non-lignocellulolytic metagenomes, we have shown that
the phylogenetic distributions of the microbes are sepa-
rated mainly by their aerobic/anoxic lifestyles. Intriguingly,
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although the lignocellulolytic and non-lignocellulolytic
groups are not distinguishable by their taxonomic con-
tents or by their high-level functional classifications
(COGs) and metabolic genes (KEGG), the lignocellulolytic
group possesses highly similar lignocellulose-degrading
core genes, which are produced by different types and
abundances of microbes within different lignocellulose-
degrading communities. That is, even though the species
compositions of lignocellulolytic metagenomes are no
more similar than when they are compared across the two
groups, their carbohydrate-active enzyme compositions
are significantly more conserved than those in non-
lignocellulolytic groups. This exemplifies an important
interplay between diverse microorganisms in the com-
munities that contribute to the enzyme repertoires
required to degrade lignocelluloses under mixed microen-
vironmental conditions, in different ecological systems.

Methods

Sample collection and DNA extraction

The sugarcane bagasse sample was collected from soil-
contacting regions of a bagasse pile (one meter from the
edge of the pile) at Phu Khieo Bio-Energy Chaiyaphum
province, Thailand (N 16°28'54”, W 102°07°05”). The ba-
gasse piles are normally approximately 10 m in height
covering an area of several acres. The sample was rapidly

frozen in liquid nitrogen and kept at -80°C for subsequent
experiments. Metagenomic DNA was directly extracted
from a sample by the SDS-based DNA extraction proced-
ure [56], with slight modifications [57]. Briefly, five grams
of sample was subjected to direct cell lysis with DNA ex-
traction buffer, proteinase K, and sodium dodecyl sulfate
(SDS). Protein contamination was removed by chloroform
extraction, and then the DNA was precipitated with iso-
propanol. High molecular weight DNA of size ranging
from 30 to 50 kb was selected and purified using pulse
field gel electrophoresis and electroelution techniques.
The extracted DNA was separated by electrophoresis in a
CHEF DRIII system (Bio-Rad, Hercules, CA, USA) in
0.5X Tris/borate/EDTA (TBE) at 14°C, using a 0.1 to
14 sec switch time at 6 V/cm for 12 h. The high molecular
weight DNA (30 to 50 kb) was excised from the gel and
recovered by electroelution techniques. The gel slice was
electroeluted in a dialysis bag (Spectra/Por 4, Spectrum
Laboratories, Rancho Dominguez, CA, USA) using a field
strength of 70 V at 4°C for 2 h. The purified DNA solution
was collected and subsequently concentrated using an
Amicon Ultra filter unit (Millipore, Billerica, MA, USA).

Fosmid library construction
A metagenomic fosmid library from the bagasse sample
was constructed using a CopyControl™ Fosmid Library
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Production Kit (Epicentre Biotechnologies, Madison,
WI, USA) according to the manufacturer’s instructions,
with slight modifications. The purified DNA was end-
repaired to generate blunt 5-phospholyrated ends and
then ligated to the pCC1FOS vector at 25°C for 3 h. The
ligated DNA was packaged using the lambda packaging
extract supplied and subsequently transformed into
Escherichia coli EPI300-T1R. The transformants were se-
lected on LB agar plates supplemented with 12.5 pg/ml
of chloramphenicol. The library was stored at -80°C in
15% glycerol in the form of individual clones as well as
pool libraries.

Shotgun pyrosequencing and data pre-processing

A total of 3,300 randomly selected fosmid clones were se-
quenced on one full lane of the 454 GS-FLX Genome Se-
quencer System using the Titanium platform (Roche,
Brandford, CT, USA) following the manufacturer’s proto-
col. Repeats in raw sequenced reads obtained were re-
moved using RepeatMasker (http://www.repeatmasker.
org). The vector and host sequences were filtered by
BLASTN, with an E-value cutoff of 1le-3. The filtered
reads were assembled using the Newbler assembly soft-
ware, developed by 454 Life Sciences (version 2.6, Roche).
Non-overlapping fragment singletons were clustered using
the CD-HIT software [58] to minimize redundant se-
quences. The overall process of metagenomic data prepar-
ation and analysis is summarized in Additional file 1:
Figure S1. The entire sequences of the bagasse fosmid li-
brary have been deposited to the NCBI Sequence Read
Archive (SRA), which can be accessed using the accession
number: SRX493840.

Functional gene annotation and metabolic pathway
analysis

The taxonomic classifications were performed on assem-
bled contigs and singletons using BLASTN against the
NT database. The E-value cutoff was set to 1e-3, and the
best BLAST hit was used to refer the taxonomic rank of
each sequence. The non-redundant singletons and con-
tigs were predicted for open reading frames (ORFs) by
MetaGeneMark [59]. The Shannon diversity index was
computed using mothur [60] on 16S rRNA sequences
extracted by BLASTN against the NCBI 16S microbial
database using E-value cutoff le-5 and a minimal align-
ment length of 50 bp. The functional annotation was ini-
tially performed by stand-alone BLAST on predicted
OREFs against the Non-Redundant protein database (NR)
[23] using an E-value cutoff of le-6. The BLAST results
containing the best hits were subsequently processed
using the Blast2GO program [61] to assign their func-
tional gene contents and enzymes based on the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [48].
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Orthologous genes were identified using Clusters of
Orthologous Groups (COGs) [43]. The carbohydrate-
active enzymes were predicted using BLAST against the
CAZy database using an E-value cutoff of le-10.

Comparative metagenomic analysis of lignocellulose- and
non-lignocellulose-degrading sources

We compared our bagasse metagenome to publicly
available metagenomic projects obtained from NCBI
Whole Genome Shotgun (WGS) and Sequence Read
Archive (SRA) projects [31]. All additional datasets ob-
tained were reanalyzed using the same procedures as de-
scribed previously (as seen in Additional file 1: Figure S1)
for an unbiased comparison. The publicly available data-
sets for lignocellulose-degrading and non-lignocellulose-
degrading environments used in this study include
metagenomic profiles from carcass [14], compost [32],
farm soil [14], fresh water [62], human distal gut [33], mar-
ine water, mouse gut [39], peat swamp forest [15], sludge
[34], termite gut [19], and wallaby gut [18] (summarized in
Additional file 3: Table S2). Taxonomic distributions and
functional genomic profiles of each metagenomic dataset
are presented as unique hits (that is species or functional
categories) or relative abundances, which are read counts
normalized by the total number of mapped reads in each
particular metagenome. Enrichment of read abundances
was assessed using Fisher’s exact test against the all-
combined dataset of the 12 metagenomes, or lignocellulo-
lytic and non-lignocellulolytic groups. The P-values from
Fisher’s exact test and odds ratios were derived using the
module SciPy in Python (http://www.scipy.org/).

Additional files

N
Additional file 1: Figure S1. Summary of data analyses and comparisons.
The bagasse metagenomic fosmid library was pyrosequenced, the vector

and host sequences removed, and it was assembled and deposited to the
NCBI Sequence Read Archive (SRA). Additional metagenomic libraries of

both lignocellulosic and non-lignocellulosic sources and their SRAs were
obtained, and the subsequent functional analyses were performed using the
same procedures.

Additional file 2: Table S1. Summary of the numbers of hits that reads
from the bagasse metagenomes were matched to for different taxonomic
classifications.

Additional file 3: Table S2. Numbers of total and mapped reads in
lignocellulolytic and non-lignocellulolytic metagenomes retrieved and
analyzed in this study.

Additional file 4: Table S3. Numbers and percentages of reads, mapped
to different NCBI taxonomy, COG, KEGG, and CAZy terms.

Additional file 5: Table S4. Enrichment of taxa, COGs, and CAZy families
in different metagenomes, as compared to reference set (lignocellulolytic
and non-lignocellulolytic groups and all-combined group). P-values were
computed using Fisher's exact test, together with odds ratios, as described
in the last tab in the table.

Additional file 6: Figure S2. Percentage of metagenomic sequences

mapped to the KEGG pathways, relative to all the reads in each
metagenomic dataset.
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Additional file 7: Table S5. Correlations based on similarity of taxonomy,
COGs, KEGG, and CAZy between the lignocellulose-degrading environment
group (O), non-lignocellulose-degrading group (N), or libraries from the two
different groups.
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