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Abstract

Current medical therapies may delay chronic kidney disease progression. However, increasing 

experimental evidence indicates remission or even regression can be achieved. In order to study 

mechanisms progression vs. regression by different interventions, appropriate animal models and 

research design must be implemented. We review key information of selected models, including 

etiology, pathogenesis, procedure, time course and assessment of potential regression.

Introduction

Some renal diseases, such as rapidly progressive glomerulonephritis, quickly lead to 

irreversible end stage renal disease (ESRD). Most common nephropathies progress less 

rapidly, but still show gradual decrease in glomerular filtration rate (GFR). When scarring is 

beyond a certain level, further progression ensues due to activation of compensatory, but 

ultimately profibrotic mechanisms. However, several clinical studies show the potential 

remission or regression of chronic kidney disease (CKD), as assessed by proteinuria and 

decreased stable GFR. These include diabetic nephropathy, lupus nephritis and IgA 

nephropathy [1-4]. To enhance potential of regression, it is imperative that progression/

regression of renal injury is studied in depth experimentally [5-12]. Although progress has 

been made in the development and design of such animal models, not all kidney disease 

models reproduce the structural and functional changes in human kidney disease. In this 

article we review several rodent models, which have been studied for progression vs. 

regression of kidney diseases.

Definition and assessment of progression/regression in kidney disease

The kidney has partial regenerative ability. Many acute glomerular diseases are 

characterized by cell proliferation, necrosis and/or inflammatory processes that may be 
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reversed by aggressive immunomodulatory therapy. However, when parenchyma is lost, the 

limited renal regeneration capacity results in organization of injury to sclerosed tissue with 

loss of parenchyma. Regression and progression of kidney disease must therefore be studied 

experimentally in the sclerosing phase to translate to human CKD.

Regression vs. progression is clinically defined by functional parameters. In terms of kidney 

function, Ruggenenti et al. defined progression of chronic nephropathies as increasing 

proteinuria and declining GFR, and regression as decreasing proteinuria and increasing GFR 

[13]. Morphologically, progression is defined by the development of glomerulosclerosis and 

ongoing tubular injury resulting in tubulointerstitial fibrosis. Regression is defined 

morphologically by a decrease of existing fibrosis. To prove regression, it is therefore 

imperative to assess results of intervention at a starting point of existing sclerotic injury. 

Comparison may be done by examining tissues from different groups over time, or by repeat 

examination of tissue from one animal, by e.g. renal biopsy.

Of note, functional changes in animal models do not necessarily reflect structural changes. 

Proteinuria, especially urine albumin:creatinine ratio (ACR), is a sensitive marker of 

glomerulopathy. However, in several animal models, changes in ACR are not parallel to 

glomerular morphological change. Serum creatinine is an insensitive indicator of function, 

and only starts to increase after 30% reduction in GFR. GFR, measured by creatinine 

clearance or inulin clearance, is the gold standard for glomerular function.

Of note, experimental models typically are followed for a relatively short time, e.g. 2-3 

months, and functional changes over this interval may not accurately reflect long-term tissue 

remodeling. In particular in the remnant kidney model (see below), the surgically-induced 

remarkable acute decrease in GFR may make it difficult to detect any functional 

improvement after intervention in the few remaining nephrons. Additional biomarkers, such 

as Kim-1 and N-gal, may be useful for assessment of tubular function. Thus, morphologic 

assessment of scarring is also essential. In models of glomerulosclerosis, assessment of 

severity and extent of sclerosis, matrix accumulation within glomerular tufts and capillary 

tuft volume are useful measurements. Interstitial fibrosis is also a robust measure of 

parenchymal scarring.

Rodent models of progression vs. regression

Various kidney injury models have been developed in rodents. Some models have 

spontaneous remission, such as the single dose Thy-1 nephritis model. Some do not allow 

functional assessment, such as complete unilateral ureteral obstruction. Those suitable for 

studying progression vs. regression can be classified according to their initial injury site as 

models of glomerular, tubulointerstitial or vascular injury.

1. Glomerular injury models

Munich-Wistar-Frömter (MWF) rat—The MWF rat is a genetic model with a congenital 

deficit in nephron number by 30-50%, which predisposes to the development of 

hypertension and salt sensitivity in adulthood. By age 10 weeks, MWF rats develop 

proteinuria and hypertension with systolic blood pressure (SBP) ranging from 140 to 150 
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mmHg. By 50 weeks of age, SBP reaches 180 mmHg and the kidney exhibits significant 

glomerulosclerosis [14, 15]. Ten weeks treatment with ACE inhibition significantly reduced 

the volume of capillary tuft affected by sclerosis, indicating that some sclerotic lesions can 

be resolved by inhibition of ACE [5].

Aging—Progressive glomerulosclerosis, interstitial fibrosis, and tubular atrophy along with 

decreased glomerular filtration rate (GFR) develop with aging. Studies from naturally aging 

rat kidneys suggest that both genetic background and gender determine the rate and the 

severity of progression of age-related renal impairment and scarring. Sprague-Dawley rats 

are more susceptible than other strains. About 25% of male Sprague-Dawley rats become 

proteinuric with urinary protein excretion >10mg/day by 3 months of age, 38% by 6 months, 

56% at 12 months, and 94% at 24 months [15, 16]. GFR is maintained within normal range 

until 24 months of age. However, with advancing age, compensatory changes are 

insufficient to maintain GFR, and progressive decline of GFR manifests. The earliest renal 

morphologic changes, characterized by mesangial expansion and thickening of the 

glomerular basement membranes (GBM), begin at 3 months. By 24 months of age, GBM 

thickness and increased mesangial matrix are increased 2-3 fold vs. young adults and 

glomerulosclerosis and tubulointerstitial fibrosis ensue later [16]. Rats treated with the 

angiotensin receptor blocker (ARB) losartan from age 18 months till 24 months showed 

decreased kidney collagen content and reduced aorta wall thickness ratio, to levels even 

lower than that of the baseline 18-month control rats, indicating ARB not only slows the 

progression of glomerulosclerosis in aging, but can also induce regression [17].

Diabetic nephropathy—Diabetic nephropathy (DN) models include those artificially 

induced, spontaneous, and genetically engineered. Streptozotocin (STZ) induces type 1 

diabetes mellitus (T1DM) secondary to necrosis of pancreatic beta-cells, and is the most 

commonly used artificial DN model in rat. In one variant of this model, male rats at 8 weeks 

of age (200–250 g) were starved for 16 h and injected once into the tail vein with STZ (55 

mg/kg) in sodium citrate buffer (1 mL/kg). Uninephrectomy has been added to STZ-induced 

diabetic nephropathy to accelerate the progression of renal injury [18]. These STZ-treated 

models develop a modest degree of proteinuria and serum creatinine increase, as well as 

mesangial expansion and varying nonspecific glomerulosclerosis, depending on the genetic 

background. At 8 months after STZ injection, urinary albumin excretion was moderately 

increased to approximately 60 mg/24 h, nearly three times higher than non-diabetic control 

rats at the same age. This model has been used to study regression of DN. STZ diabetic rats 

were treated with losartan for 2 months, and showed partial regression of mesangial 

expansion and less sclerotic lesions [12]. STZ rats treated with ACEI from 4 months till 8 

months had amelioration of glomerulosclerosis, while regression was achieved by the 

addition of statin or endothelin (ET) A receptor antagonist [7, 19]. Regression of more 

advanced sclerosis was also observed by treatment for four weeks with hepatocyte growth 

factor gene therapy starting at 32 weeks after STZ injection [20]. Of note, STZ-induced 

diabetic rodents lack classic features of human DN, such as nodular sclerosis, and have little 

progression of tubulointerstitial fibrosis. These concerns have led to development of other 

rodent models to better capture human progressive DN.
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The BTBR (black and tan brachyuric) mouse strain with the ob/ob leptin deficiency 

mutation (BTBR ob/ob mice) is a spontaneous DN model of type 2 diabetes mellitus 

(T2DM). This strain develops glomerular injury similar to human DN. Characteristics of 

early DN such as glomerular hypertrophy, accumulation of mesangial matrix, and loss of 

podocytes are detectable by 8 weeks of age. Glomerular lesions of progressive, advanced 

DN are present by 20 weeks. By 22 weeks, there was 20% increase in GBM thickness, 50% 

increase in mesangial matrix, mesangiolysis, diffuse mesangial sclerosis, focal arteriolar 

hyalinosis, and focal mild interstitial fibrosis lesions [21]. Leptin replacement, which led to 

normalization of diabetic state and weight loss, but not inhibition of the renin-angiotensin 

system (RAS), resulted in near-complete reversal of both structural (mesangial matrix 

expansion, mesangiolysis, basement membrane thickening, podocyte loss) and functional 

(proteinuria, accumulation of reactive oxygen species) measures of advanced diabetic 

nephropathy [22].

The db/db/eNOS-/- mouse is another DN model of T2DM. Addition of eNOS deficiency to 

db/db mice on the C57BLKS/J (BKS) background resulted in a robust model of nodular DN. 

The mice have obesity, hyperglycemia, hyperinsulinemia and mild to moderate 

hypertension. Hyperglycemia is first apparent at 6 to 8 wk of age, and mice exhibit full-

blown functional and nephropathic changes by 16 to 20 wk. They develop significant 

albuminuria, decreased GFR, mesangial expansion, glomerular basement membrane 

thickening, arteriolar hyalinosis, mesangiolysis, nodular glomerulosclerosis, and 

tubulointerstitial injury [23]. These features establish db/db/eNOS-/- and BTBR ob/ob as 

some of the very few to develop features of more advanced DN akin to human DN. ACEI 

treatment for 12 weeks, starting from 8 wk of age, significantly reduced albuminuria, 

glomerulosclerosis, and tubulointerstitial injury in the db/db/eNOS-/- mouse [24]. We also 

found that Apoptosis Signal-Regulating Kinase 1 (ASK1) inhibitor halted progressive 

glomerulosclerosis and preserved GFR reduction from 10 wk till 16 wk in this model (Yang 

HC et al., SA-PO460, American Society of Nephrology Kidney Week 2012, San Diego, 

California, November 2012).

Puromycin aminonucleoside nephrosis (PAN)—Puromycin aminonucleoside 

inhibits protein synthesis with direct toxic damage to podocytes. It can be given by multiple 

intraperitoneal injections with initial administration of 10 mg/kg followed by 40 mg/kg 

every 4 weeks or as a single intravenous dose of 50 mg/kg to cause puromycin 

aminonucleoside-induced nephrosis (PAN). After injection, rats show an early nephrotic 

phase peaking at 10 days with complete foot process-effacement followed by apparent 

resolution. With multiple or higher doses, progressive lower-level proteinuria develops with 

early segmental sclerotic lesions develop from week 10-13, leading to well-defined 

segmental sclerosis at 18 weeks [25-27]. Regression was induced by ACEI or ARB, with 

less sclerosis at sacrifice at 28 weeks vs. biopsy at 16 wks at time of onset of therapy [28]. 

Combination of enalapril and low protein (from week 12 till 18) also reversed segmental 

glomerulosclerosis in the chronic PAN model [29].

5/6 nephrectomy—Subtotal nephrectomy, so called 5/6 nephrectomy, mimics the 

progressive renal failure after loss of renal mass in humans. There are different ways to 
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establish this model where one kidney is removed and 2/3 of the remaining kidney is 

ablated. One approach is the ligation model. Branches of the renal artery in the rat are 

ligated after contralateral uninephrectomy. This approach is not feasible in the mouse due to 

their limited renal artery branching. Another approach is the ablation model, which removes 

approximately 50% of the remaining kidney by polar excision 1–2 weeks after 

uninephrectomy. This approach can be used both in rat and mice. An additional approach is 

a combination of ligation and ablation model, which ties one or more branches of the mouse 

renal artery, with cautery performed as needed to remove additional renal mass, to achieve a 

total 5/6 nephrectomy. The natural history of this model depends on the methods used [15]. 

Approaches with infarction typically are associated with more severe proteinuria and 

hypertension than those with only excision of renal mass. The more severe hypertension 

with ligation is likely due to marked up-regulation of the renin angiotensin system in the 

peri-infarct zone. Proteinuria in the rat reaches 200-600 mg/24h, starting from week 2. There 

is early glomerular hypertrophy during the acute phase (0-4 weeks). By 8 weeks, glomeruli 

show mesangial expansion and focal and segmental glomerulosclerosis involves about 20% 

of glomeruli, accompanied by early interstitial fibrosis and tubular atrophy. By 12 weeks, 

widespread glomerulosclerosis and tubulointerstitial fibrosis are present [30]. Rats typically 

die of uremia starting at week 12. Although most rat strains are susceptible, C57BL/6 mice 

are highly resistant to development of sclerosis. 129/Sv and Swiss-Webster mice are among 

the few mouse strains susceptible to development of glomerulosclerosis with ablation [31]. 

Four weeks treatment with ACEI, ARB or spironolactone alone (from 8 wk till 12 wk) not 

only slowed development of glomerulosclerosis but also induced regression of existing 

glomerulosclerosis in some rats [10, 30, 32]. This was associated with a decrease in mean 

glomerular volume and mean glomerular tuft volume, a reduced number of capillaries per 

glomerulus, and reduced total length of capillaries per glomerulus, but without any 

significant change in the length of individual capillaries [10, 33]. Combining the ARB with 

nonhyperkalemic doses of spironolactone failed to further increase the regression of 

glomerulosclerosis [11]. Combining ARB with hydrochlorothiazide completely prevented 

progression of renal injury, even when it was initiated at advanced stages of the nephropathy 

(120 days after 5/6 nephrectomy) [34].

2. Tubulointerstitial injury models

Cyclosporine nephropathy—Cyclosporine A (CyA), an inhibitor of calcineurin, is used 

clinically as an immunosuppressant, but long-term CyA usage can induce renal fibrosis. In 

rats, administration of cyclosporin A (7.5 mg/kg/day and 15 mg/kg/day s.c.) for 28 days 

increases serum creatinine, BUN and decreases GFR with morphological changes including 

interstitial fibrosis, tubular atrophy, arteriolar injury and renal endothelial dysfunction. 

Mechanisms of cyclosporin A-induced nephropathy are multiple, including the renin 

angiotensin system, endothelin, and overexpression of IL-6, TGF-β and activation of 

NAD(P)H oxidase in endothelial cells [35]. Rats treated with high dose CyA for 28 days 

presented with advanced tubulointerstitial damage that progressed even after CyA 

withdrawal [36]. In contrast, rats treated with low dose CyA for 14 days had induced 

epithelial to mesenchymal transition (EMT) marker expression, and CyA withdrawal led to 

the gradual regression of histological lesions and decreased EMT markers after 6 weeks 

[37]. These findings suggest that injury stage determines progression or regression.
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Aristolochic acid and folic acid nephropathies—Both aristolochic acid I (AAI) and 

folic acid can induce interstitial fibrosis. A single dose of AAI (4.7 mg/kg) results in 

moderate acute kidney failure in the early stage (4-10 days) and renal fibrosis later (>21 

days) [38]. Multiple low doses of AAI (3 mg/kg, once every 3 days for 6 weeks) led to 

substantial tubulointerstitial fibrosis at 12 weeks [39]. High dosages of folic acid (250 ug/g 

BW) given i.p. in mice rapidly induces folic acid crystals with tubular necrosis in the acute 

phase (1-14 days) and patchy interstitial fibrosis in the chronic phase (28-42 days) [15]. 

Compared to the UUO model, both AAI and folic acid model provide functional data, and 

can be used in genetically modified mice. Thus, these models more closely model human 

tubulointerstitial nephritis resulting from toxic tubular necrosis.

Ischemia/reperfusion—Acute tubular necrosis induced by ischemia-reperfusion model 

(I/R) is usually a self-limited disease characterized by a remarkable ability of necrotic 

tubules to regenerate and for renal function to recover. Ischemia for 45 min followed by 24 h 

reperfusion is a commonly used animal model to simulate acute kidney injury in humans 

[40]. There are slight, yet detectable, increases in BUN between 6 and 12h of reperfusion 

and marked increases in BUN between 24 and 48h. During the time of peak injury, there is 

marked edema and matrix protein accumulation in the interstitium. In rats, at 40 weeks post 

I/R, dilated and shrunken tubules, thickened tubular basement membranes and interstitial 

fibrosis were detected [41]. After I/R, G2/M-arrested proximal tubular cells activate c-jun 

NH(2)-terminal kinase (JNK) signaling, which acts to upregulate profibrotic cytokine 

production. Treatment with a JNK inhibitor, or bypassing the G2/M arrest by administration 

of a p53 inhibitor, rescued fibrosis in the injured kidney [42].

Ggt1 DTR transgenic mice—The diphtheria toxin receptor (DTR) is encoded by human 

heparin-binding epidermal growth factor-like protein (hHB-EGF). Its mouse homolog, 

mHB-EGF, has very low affinity for DT because the amino acids critical for DT binding are 

missing. Transgenic expression of a construct containing the hHB-EGF cDNA with gamma 

glutamyl transferase (Ggt1), which is selectively expressed in the proximal tubule, has thus 

been used to develop a model of selective proximal tubule injury. After injection of DT, 

BUN and creatinine increase at day 2 with peak increases occurring at day 5. The alterations 

in renal function are accompanied by acute proximal tubular injury, with tubule dilation, loss 

of brush border, sloughing of individual epithelial cells, and distal cast formation [43]. Six 

weeks after DT injection, diffuse interstitial fibrosis develops, without proteinuria. This 

model thus also is suitable for study of regression of interstitial fibrosis and restoration of 

GFR.

3. Vascular injury models

Nitric oxide (NO) inhibition—Abrupt interruption of NO synthesis leads to hypertension 

and renal vasoconstriction. After treatment with nitro-L-arginine methyl ester (L-NAME, 20 

or 50 mg/kg/day in drinking water), an inhibitor of NO synthesis, for 4 to 6 weeks, rats 

develop kidney injury, including glomerular ischemia, glomerular segmental necrosis, 

glomerulosclerosis, interstitial expansion and arteriolar wall thickening. These injuries are 

associated with progressive albuminuria, which can be amplified nearly to the nephrotic 
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range by concomitant salt overload [44]. Treating with losartan from week 4 to 8 completely 

normalized the renal functional and histologic parameters [45].

Spontaneously hypertensive rats (SHR)—SHR capture many elements of human 

essential hypertension. Abnormalities in the vascular smooth muscle, which lead to 

augmented vasoconstrictor ability, contribute to the hypertension. SHR develop 

hypertension around 5–6 weeks of age, with systolic blood pressure (SBP) reaching 180-200 

mmHg in the adult age phase. Proteinuria begins to increase at 6 weeks of age in male SHR 

and increases linearly from 10 to 70 wk of age. GFR in male SHR decreases by 20% to 30% 

at 14 to 15 and 30 to 32 weeks of age, respectively, while there is no age-related GFR 

reduction in females. Starting between 40 and 50 weeks, SHR develop glomerulosclerosis 

and interstitial fibrosis [15, 46, 47]. Two weeks treatment with high dose ARB (at 16 weeks 

of age) causes regression of renal arteriolar hypertrophy in SHR, resulting in a sustained 

decrease in hypertension [48]. Treating younger (20 to 23 week old) SHR with L-NAME for 

3 weeks induced all of the pathophysiological alterations associated with nephrosclerosis in 

the 73-week-old SHR. ACE inhibitor treatment for 3 weeks after L-NAME reversed these 

pathophysiological alterations [49].

Conclusions

We have provided a brief overview of the most widely used animal models for studying 

progression vs. regression in kidney disease. Optimal experimental study design must 

include appropriate choice of model, time course and assessments. However, many of these 

models do not exactly mirror human diseases. Further model development is thus necessary 

to optimize translational research.
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