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SUMMARY

In this article, we present a systematic comparison of computational hemodynamics in arterial 

models with deformable vessel walls using a one-dimensional (1-D) and a three-dimensional (3-

D) method. The simulations were performed using a series of idealized compliant arterial models 

representing the common carotid artery, thoracic aorta, aortic bifurcation, and full aorta from the 

arch to the iliac bifurcation. The formulations share identical outflow boundary conditions and 

have compatible material laws. We also present an iterative algorithm to select the parameters for 

the outflow boundary conditions using the 1-D theory to achieve a desired systolic and diastolic 

pressure at a particular vessel. This 1-D/3-D framework can be used to efficiently determine 

material and boundary condition parameters for 3-D subject-specific arterial models with 

deformable vessel walls. Finally, we explore the impact of different anatomical features and 

hemodynamic conditions on the numerical predictions. The results show good agreement between 

the two schemes, especially during the diastolic phase of the cycle.
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1. INTRODUCTION

One-dimensional (1-D) and three-dimensional (3-D) formulations have been used 

extensively to simulate arterial hemodynamics. Landmark contributions in 1-D modeling 

include the works of Hughes and Lubliner [1], Stergiopulos et al. [2, 3], Olufsen et al. [4], 

Formaggia et al. [5], Sherwin et al. [6], Bessems et al. [7], Mynard and Nithiarasu [8], 

Alastruey et al. [9], and Müller and Toro [10]. Key contributions to 3-D blood flow 

modeling in deformable vessels include the works of Perktold et al. [11], Taylor et al. [12], 

Quarteroni et al. [13], Steinman et al. [14], Cebral et al. [15], Gerbeau et al. [16], and 

Figueroa et al. [17]. 1-D methods have been used to improve our theoretical understanding 
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of hemodynamics, in particular to study the mechanisms underlying pulse wave propagation 

[18, 19] and also clinically in applications such as wave intensity analysis [20]. Accurate 

predictions can be made when when the flow is predominantly unidirectional and there are 

no sudden changes in cross-sectional area. However, 1-D models require the introduction of 

additional empirical laws to account for recirculation and pressure losses in the presence of 

vessel curvatures, stenoses, aneurysms, etc. [2, 21, 22] These geometric complexities are 

intrinsically captured with 3-D models, which can provide localized hemodynamic 

quantities such as wall shear stress, particle residence time, etc. Additionally, 3-D modeling 

enables the use of structurally-motivated biaxial constitutive laws [23] and 

circumferentially-varying mechanical properties for the arterial wall [24] and the simulation 

of complex processes such as the interactions between the arterial wall and medical devices 

[25, 26]. Nevertheless, 1-D models typically contain far fewer degrees of freedom in 

comparison to 3-D models (on the order of 103 versus 106) and the simulations can be 

executed in a matter of minutes on a personal laptop computer.

Previous works have compared 1-D models and 3-D models with rigid walls in the context 

of cerebral arterial flow [27, 28] and with deformable vessels in the aorta under steady flow 

[29]. However, a systematic comparison between 1-D and 3-D models in a variety of 

deformable arterial configurations was still missing in the literature. In general, a good 

agreement between the two modeling techniques is expected when the flow is mostly 

unidirectional and there are no sudden changes in cross-sectional area, while larger 

differences are expected in more complex configurations, such as in curved vessels and 

areas with highly dynamic flows. For a proper comparison to be made, a framework 

containing the 1-D and 3-D formulations that share equivalent boundary conditions and 

material laws must be developed. In general, this framework can be used to quickly estimate 

boundary condition parameters and distributions of material coefficients for an extensive 

multi-branched 3-D model (e.g. a full-body scale arterial network model [30]), a task that is 

more time-consuming in the isolated 3-D setting. The purpose of this paper is twofold:

1. To perform a systematic comparison between cross-sectionally-averaged 

hemodynamics (i.e. average flow, average pressure and radial deformation) 

obtained with two specific implementations of the 1-D and 3-D formulations in a 

series of four increasingly complex idealized geometries representing the common 

carotid artery, the thoracic aorta, the aortoilliac bifurcation and the full aorta 

including the first generation of branches. This simplified set of geometries, as 

opposed to patient-specific geometries, allows for a more direct comparison 

between the 1-D and 3-D schemes. We investigated the differences in the 

hemodynamic predictions introduced by increased Reynolds number, the presence 

of tapering, curvature, and bifurcation angles. To ensure a consistent comparison 

between formulations, we used equivalent constitutive laws in the 1-D and 3-D 

formulations, imposed identical flow waveforms and velocity profiles at the inlets, 

and coupled three-element Windkessel models at the outlets. In these comparisons, 

the 1-D geometric parameters were obtained directly using dimensions taken from 

the idealized 3-D geometries (see Fig. 1).
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2. To develop a computational framework where a 1-D model is used to quickly 

determine boundary condition and material parameters to match patient data such 

as flow and pressure waveforms and localized measurements of distensibility. Once 

evaluated, the parameters are fed directly to the 3-D model to perform localized 

studies. Our aim is to exploit the advantages of both schemes: a computationally 

efficient 1-D model combined with a full 3-D model sharing identical boundary 

condition and constitutive laws. This overlapping 3-D/1-D approach can potentially 

accelerate the solution turn-around time of complex 3-D models, therefore 

improving their clinical applicability, and differs from previous efforts [13, 31, 32, 

33] where 3-D and 1-D models were coupled to represent spatially distinct parts of 

the arterial tree.

The structure of this paper is as follows: we first present the details of the 1-D and 3-D 

formulations utilized in this work, paying special attention to the description of boundary 

conditions and material laws that are consistent between the two approaches. We then 

compare the numerical predictions of both methods in a series of idealized geometries. 

Finally, we describe and discuss the similarities and differences in the results between the 

two formulations and finish with conclusions and future work.

2. METHODS

2.1. One-dimensional Formulation

Conservation of mass and momentum applied to a 1-D impermeable and deformable tubular 

control volume of an incompressible Newtonian fluid yields [6, 34, 19]

(1)

where x is the axial coordinate along the vessel, t is the time, A(x, t) is the cross-sectional 

area of the lumen, U(x, t) is the axial blood flow velocity averaged over the cross-section, 

P(x, t) is the blood pressure averaged over the cross-section, ρf is the density of blood 

assumed to be constant and f(x, t) is the frictional force per unit length. The momentum 

correction factor in the convection acceleration term of Eq. (1) was assumed to be equal to 

one, following the work of Stergiopulos et al. [2]. Equation (1) can also be derived by 

integrating the incompressible Navier-Stokes equations over a generic cross section of a 

cylindrical domain [1, 35, 36, 37].

In this work, the velocity profile is assumed to be constant in shape and axisymmetric. The 

axial velocity (u) is assumed to have the shape

(2)
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where r(x, t) is the lumen radius, ξ is the radial coordinate and ζ is the polynomial order. 

Following [35], ζ = 9 provides a good compromise fit to experimental data obtained at 

different points in the cardiac cycle.

Integration of the Navier-Stokes equations of an incompressible Newtonian fluid for 

axisymmetric vessels yields  [35]. For the velocity profile given by Eq. 

(2) we have f = −2(ζ + 2) μπU in which the local f is proportional to the local flow. Note that 

ζ = 2 leads to the Poiseuille flow resistance f = −8μπU. For all of the simulations presented, 

μ = 4 mPa s and ρf = 1060 kg/m3.

An explicit algebraic relationship between P and A (or tube law) is also required to close Eq. 

(1) and account for the fluid-structure interaction of the problem. In general we have P = 

(A(x, t); x, t), where the function  depends on the model used to describe the dynamics of 

the arterial wall.

We solved Eqs. (1) with the elastic tube law described in Section 2.3 using a discontinuous 

Galerkin scheme with a spectral/hp spatial discretization and a second-order Adams-

Bashforth time discretization [9]. The initial conditions are (A(x, 0), U(x, 0), P(x, 0)) = 

(A0(x), 0, 0), where A0 is the initial area that yields Ad at P = Pd, with Pd the diastolic 

pressure. In all our 1-D simulations we implemented boundary conditions and solved 

matching conditions at bifurcations by taking into account the correct propagation of the 

characteristic information and neglecting energy losses [19, 38].

2.2. Three-dimensional Formulation

The coupled-momentum method [17] is used to formulate the 3-D FSI problem. Here, the 

degrees of freedom for the vessel wall (displacements u) are described as a function of the 

fluid velocities at the fluid-wall interface, Σ, using an “enhanced” membrane formulation. 

Under the assumption of a fixed fluid domain, i.e. linearized kinematics of the vessel wall, 

the strong form is defined in an Eulerian configuration:

(3)

(4)

where Ωf denotes the fluid domain, v is the fluid velocity, p is the pressure, b is a body force 

(here, assumed to be zero), and τf = μ(∇v + (∇v)T) is the viscous stress tensor for a 

Newtonian fluid. The arterial wall is treated as a thin membrane with thickness h and density 

ρs where vs is the solid velocity, σs is the membrane stress tensor, and ns is the outward 

normal at the fluid-wall interface. The value of ρs was 0.001 g/mm3 for all models.

To account for the mechanical forces exerted by the external tissues on the arterial walls, an 

additional term, fsupport = (ksu + csv), was included in Eq. (4) which approximates the 

mechanical behavior of the external tissue [39], where the parameters ks and cs are the 
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stiffness and damping coefficients. This additional force can be used to eliminate spurious 

and nonphysiological oscillations in specific cases where the geometry is elongated and the 

vessel wall experiences asymmetric loads. For the simulations presented in this paper, unless 

explicitly stated, the values of ks and cs are set to zero.

With the assumption that the vessel wall thickness (h) is small and with appropriate choices 

for the solution and test function spaces, ,  and , the strong form gives rise to the 

variational equation:

(5)

where w ∈  and q ∈  are test functions. Γin is a Dirichlet boundary where the test 

functions w vanish and where the fluid velocities are prescribed, i.e. at the inlet. The traction 

term h(v, p) on the outlet boundary Γout is given as a function of v and p depending on the 

reduced-order model (i.e. three-element Windkessel) chosen to represent the downstream 

vasculature, as described by Vignon-Clementel et al. [40, 41]. The augmented Lagrangian 

scheme described by Kimet al. [42] was used to stabilize the outflow velocities in the 

presence of flow reversal at the outflow boundaries.

To discretize and solve Eq. (5), we employed a stabilized semi-discrete finite element 

method based on the work of Brooks and Hughes [43], Franca and Frey [44], Taylor et al. 

[12], and Whiting and Jansen [45], using equal-order interpolation (P1/P1 elements) for the 

velocity and pressure fields. The generalized α-method [46, 47] was used to integrate the 

system of ordinary differential equations resulting from the finite element discretization.

2.3. Material Laws

The arterial wall was modeled as a thin, incompressible, homogeneous, isotropic, linear 

elastic membrane characterized by an elastic modulus E, a Poisson’s ratio ν = 0.5, and a 

thickness h.

In the 1-D model, the arterial wall is assumed to deform axisymmetrically, each cross-

section independently of the others, so that the relationship between circumferential hoop 

stress, Tθ, and radial displacement is

(6)

where rd is the radius at diastolic pressure (Pd). Applying Laplace’s law, Tθ = (P − Pd)r/h, 

and assuming that 1/r can be approximated by 1/rd, we obtain the tube law [9]

(7)
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where Ad(x) is the luminal area at diastolic pressure. In Eq. (7), both E and h are functions of 

the position x. The pulse wave speed c(x, t) is related to A through

(8)

The initial area A0 is calculated by replacing P = 0 and A = A0 in Eq. (7), which leads to

(9)

In the 3-D formulation, no assumptions regarding axisymmetry were made. The enhanced 

membrane stress tensor σs is given as a function of a tensor K̃ of material parameters, a 

tensor P̃ describing the pre-stress of the wall, and the infinitesimal strain tensor ε̃; σs = K̃ ε̃, 

with

(10)

(11)

where k is a transverse shear factor and u is the displacement vector [48]. In general, the pre-

stress tensor can be specified using a variety of methods (see [39, 48, 49]). In the case of 

linear elasticity, the “pre-stress” can be incorporated by subtracting a reference displacement 

(i.e. at diastole) from the displacement field.

2.4. Boundary Conditions

The inlet and outlet boundary conditions were chosen to be consistent between the 1-D and 

3-D schemes. At the inlet, we prescribed a known flow rate with an axisymmetric velocity 

profile (Eq. (2)). At the outlet of each terminal vessel, we coupled a three-element 

Windkessel model (Fig. 1 ). This zero-dimensional (0-D) electrical circuit analogue of the 

downstream vasculature consists of a resistance (R1) connected in series with a parallel 

combination of a second resistance, (R2), and a compliance, (C); Pout is the pressure at 

which flow to the microcirculation ceases and is assumed to be zero in all models. Pressure 

and the flow at an outlet of the 1-D or 3-D domain is related by
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(12)

The numerical implementation of this 0-D model is detailed in [19, 38] for the 1-D 

formulation and [41] for the 3-D formulation.

2.5. Iterative Procedure for the Determination of Outflow Windkessel Parameters

The parameters of the three-element Windkessel outflow models were calculated as 

described below. Given a target diastolic (Pd) and systolic (Ps) pressure, and flow rate at the 

inlet (Qin(t)), the initial estimate for the net peripheral resistance (RT) was calculated as [50]

(13)

where Q̄
in is the mean flow rate and Pm is the mean blood pressure, assumed uniform 

throughout the arterial network. We then calculated the resistance R1 + R2 at the outlet of 

each terminal vessel that yields the desired flow distribution and satisfies

(14)

where M is the number of terminal branches and j = 1 corresponds to the aortic root. For 

each individual outlet, the proximal resistance (R1) is assumed to be equal to the 

characteristic impedance of the upstream 1-D domain; i.e.

(15)

where cd and Ad are, respectively, the wave speed and area at diastolic pressure (Pd). This 

choice of R1 minimizes the magnitude of the waves reflected at the outlet of the 1-D domain 

[38].

The total compliance (CT) was calculated from either (i) the time constant τ = 1.79 s of the 

exponential fall-off of pressure during diastole given in [51] or (ii) using an approximation 

to , where V(t) is the total blood volume contained in the systemic arteries. 

According to [50],

(16)

which can be calculated once RT is determined using Eq. (13). Alternatively,  can be 

approximated by [50]
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(17)

where Qmax and Qmin are the maximum and minimum flow rates at the inlet and Δt is the 

difference between the time at Qmax and the time at Qmin. We use both Eqs. ( 16) and (17) 

depending on the available input data.

According to [52] we have

(18)

where Cc is the total arterial conduit compliance, Cp is the total arterial peripheral 

compliance, N is the total number of vessels in the 1-D domain, M < N is the number of 

terminal branches (j = 1 denotes the inlet and is not included in the sum), R1, R2, and C are 

parameters of the three-element Windkessel model (Fig. 1) and C0D is the compliance of 

each vessel, which is calculated as

(19)

where L is the length of the vessel. We calculated Cp = CT − Cc and distributed it following 

the methodology described by Alastruey et al. [52] More specifically, we have

(20)

where C̃j is the terminal compliance of each branch distributed in proportion to flow as 

described by Stergiopulos et al. [2]. We then introduced a correction factor to arrive at the 

final value of Cj:

(21)

This expression follows from a linear analysis of the 1-D equations in a given arterial 

network in which each terminal branch is coupled to a three-element Windkessel model 

[52].

For all of the simulations, the Windkessel compliances and resistances (Cj, j = 2, …, M), 

(  and , j = 2, …, M) were iteratively calculated to achieve physiologically realistic 

pressure ranges. To reach a desired pulse pressure (Ppulse = Ps − Pd) and diastolic pressure 

(Pd) at a particular vessel, we calculated  and  given by Eqs. (13) and (16) or (17) using 

the iterative formulae
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(22)

(23)

where the superscript n is the iteration number of the windkessel parameter estimation 

process performed using the 1-D formulation, and  and  are the diastolic and pulse 

pressure, respectively, at a specific target location in the 1-D model, typically the inlet, at 

each iteration. Equations (22) and (23) follow from a first-order Taylor expansion of Eqs. 

(13) and (17) around the current mean and pulse pressures  and , respectively, with 

 approximated using the change in diastolic pressure. The total compliance was 

adjusted by altering the total peripheral compliance Cp, since the total conduit compliance 

Cc is a function of the vessel geometry and wall stiffness. This process was iterated using 

the 1-D model until  and  were smaller than 1% of the target Pd and Ppulse, 

respectively. Fig. 2 shows the evolution of the systolic, mean and diastolic pressure, net 

peripheral resistance and total compliance calculated using the 1-D formulation to match the 

target systolic and diastolic pressures for the baseline aorta model. The final values of the 

Windkessel compliances and resistances were used in the 3-D counterparts of the 1-D 

models.

Other methods have been proposed in the literature to estimate the parameters of the outflow 

boundary conditions. A root-finding method is described by Spilker and Taylor [53] in the 

context of 3-D models with compliant arterial walls. Devault et al. proposed a Kalman-filter 

based methodology in a 1-D model of the circle of Willis [54].

2.6. Error Calculations

The numerical solutions of pressure P and volumetric flow Q were compared between the 1-

D and 3-D models using the following relative error metrics [9]:

(24)

(25)

(26)
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(27)

where Nt is the number of time points where the comparison is made (typically around 

several thousand points over a single cardiac cycle depending on the time step size), 

 are the pressure and flow results at each time point i from the 1-D simulation at a 

single spatial location, and  are the cross-sectional averaged pressure and flow at 

each time point i from the 3-D model at a single cross-section perpendicular to the vessel 

centerline. εP,avg and εQ,avg are the average relative errors for pressure and flow, 

respectively, over one cardiac cycle, and εP,max and εQ,max are the maximum relative error 

in pressure and flow. εP,sys and εQ,sys are the errors for systolic pressure and flow, εP,dias and 

εQ,dias are the errors for diastolic pressure and flow. In order to avoid division by small 

values of flow, we normalized the flow error metrics by the maximum value of flow over the 

cardiac cycle, . The error metrics were calculated over a single cardiac cycle 

once both numerical solutions achieved periodic behavior.

3. RESULTS

We investigated the differences in the numerical prediction of flow and pressure between the 

1-D and 3-D formulations (where flow and pressure refer to cross-sectional averages in 

planes perpendicular to the vessel centerline) in a series of test cases using idealized 

geometries. The physical dimensions, vessel wall properties, and inflow and outflow 

boundary conditions were made to be consistent between the 1-D models and their 3-D 

counterparts. Mesh independence studies were undertaken to ensure that the results in the 

final meshes were not affected by inadequate mesh resolution.

3.1. Baseline Common Carotid

We considered a straight cylindrical vessel with representative dimensions of the common 

carotid artery (CCA). The initial total peripheral resistance (RT) and compliance (CT) were 

calculated from Eqs. (13) and (17), respectively, using a reference value of mean blood 

pressure (Pm) measured in a 23-year-old human [55, p. 343] and a reference inflow 

waveform [17]. The final values of RT and CT were then computed as described in Section 

2.5, requiring a single iteration to achieve convergence to the target pressures at the outlet. 

The parameters of the CCA model are given in Table I.

The 1-D simulation was run using 6 elements with a quadrature and polynomial order of 10 

and a time step of 0.1 ms. The velocity profile order was ζ = 2. The initial area A0 = 0.22 

cm2 that yields the reference diastolic area (Ad) at P = Pd was calculated using Eq. (9). The 

3-D geometry was constructed with the same dimensions as in the 1-D segment. The 

velocity on the inlet boundary was prescribed using Eq. (2) with ζ = 2 and with the same 

time-averaged flow-rate as at the inlet of the 1-D model. The 3-D simulation was run with a 

mesh containing 792,559 linear tetrahedral elements (145,394 nodes) and a time-step of 0.2 

ms.
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Fig. 3 shows the numerical predictions of flow rate, pressure, changes in luminal radius, and 

velocity profiles at several sites in the 1-D and 3-D models. The flow waveforms exhibit the 

typical attenuation observed in vivo between the inlet and outlet faces. We also include the 

pressure gradient (given as the difference between inlet and outlet pressures) predicted by 

the two numerical schemes. The results show excellent agreement between the two models, 

with average relative errors smaller than 1%. However, even though the flow waveforms in 

1-D and 3-D models are virtually identical, differences can be observed in the velocity 

profiles. These differences result from the linearized kinematics assumption (i.e. fixed 

computational domain) of the 3-D formulation, in contrast to the 1-D model, which accounts 

for changes in cross-sectional area. In all the examples considered in this manuscript, the 1-

D velocity profiles were plotted in the reference configuration given by the nominal 

(diastolic) diameter of the vessel to provide a qualitative comparison between the profile 

shapes.

3.2. Baseline Aorta

We considered a straight cylinder with diameter representative of the average diameter of 

the thoracic aorta. Here, the initial peripheral resistance was calculated using systolic and 

diastolic pressures from [51] and the total compliance CT was calculated from the time 

constant τ = 1.79 s [51] of the exponential fall-off of pressure during diastole using Eq. (16). 

The final values of RT and CT were obtained after seven iterations to reach convergence to 

the target pressures at the outlet. The parameters of the baseline aortic model are given in 

Table II.

For the 1-D model, the simulation was run using 12 elements with a quadrature and 

polynomial order of 5 and a time step of 0.1 ms. The initial area was calculated using Eq. (9) 

to be A0 = 3.06 cm2. The polynomial order of the velocity profile was chosen to be ζ = 9 

based on [35]. For the 3-D model, the velocity boundary condition at the inlet was 

prescribed with a profile of order ζ = 9. The 3-D simulation was run using a mesh containing 

1,480,048 linear tetrahedral elements (261,912 nodes) and a time step of 0.2 ms.

Fig. 4 shows the numerical predictions of flow rate, pressure, changes in luminal radius, and 

velocity profiles at several sites in the 1-D and 3-D models. Fig. 4 also contains a plot of the 

pressure gradient between the inlet and outlet. The overall agreement between the two 

formulations is still reasonably good, particularly during diastole, with average relative 

errors smaller than 2%. The largest differences in pressure are seen at the inlet during 

acceleration, and the largest differences in flow are observed during peak systolic flow at the 

mid-point and outlet locations. The velocity contours at deceleration (t = 0.33 s) are 

markedly different: while the 1-D solution preserves the fixed 9th-order velocity profile, the 

3-D results show near-wall flow reversal, resulting in a Womersley-like profile. 

Furthermore, the axisymmetry of the 3-D profile breaks down in the second half of the 

vessel during peak systole (t = 0.15 s). The pressure gradient plot shows larger absolute 

differences than in the carotid geometry and a slight phase-lag between the 3-D and 1-D 

predictions.
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3.3. Low Flow, and Larger Diameter Aorta

To study the impact of Reynolds number and flow inertia, we considered two more cases in 

addition to the baseline straight aorta model. In the first case, the flow prescribed at the inlet 

was reduced by a factor of 9.54 to match the peak Reynolds number to that of the CCA 

model (Re = 748). In the second case, the diameter of the cylindrical domain was increased 

to 1.5 cm from 1.2 cm, while the flow rate and vessel length remained unchanged (Re = 5, 

713 at peak systole). Figures 5 and 6 show the flow rate, pressure, change in luminal radius, 

and pressure gradient at several sites in the 1-D and 3-D models. While reducing the 

Reynolds number via decreasing the total flow did not decrease the error in the inlet 

pressures during acceleration (see Fig. 5), increasing the vessel diameter without altering the 

total flow (Fig. 6) did bring the 3-D and 1-D predictions closer.

3.4. Tapered Carotid

We considered a linearly tapered cylinder with the same length as the previous CCA 

geometry. Based on reference values for the degree of tapering of the left CCA in [56], the 

diameter was set to 8 mm at the inlet and 4 mm at the outlet. Although RT remained 

unchanged from the non-tapered CCA model, the resistance R1 (see Eq. (15)) was 

recalculated with the values of cd and Ad at the location of the outlet, giving a value of R1 = 

6.8548 · 108 Pa s m−3 and R2 = 1.4330 · 109 Pa sm−3. The remaining parameters were 

unchanged from those given in Table I.

For the 1-D model, the velocity profile was specified with ζ = 2 and the simulation was 

carried out using 6 elements with a quadrature and polynomial order of 10 and a time step of 

0.1 ms. For the 3-D model, the velocity boundary condition at the inlet was prescribed using 

a profile of order ζ = 2 and the simulation was run using a mesh containing 840,899 linear 

tetrahedral elements (153,539 nodes) and a time step of 0.2 ms.

Fig. 7 shows the flow rate, pressure, pressure gradient, velocity profiles and change in 

luminal radius at several sites in the 1-D and 3-D models. Slightly larger differences in 3-

D/1-D predicted pressure are observed at the inlet and in the center of the vessel. Compared 

to the non-tapered CCA geometry, there is also a significant increase in pressure gradient 

discrepancy.

3.5. Tapered Aorta

We considered a linearly tapered cylinder with length identical to that of the baseline non-

tapered aorta model. Based on typical reported aortic dimensions [56], the diameter was set 

to 3 cm at the inlet and 2 cm at the outlet. RT remained unchanged from the baseline non-

tapered aorta model, but the resistance R1 was recalculated with the values of cd and Ad at 

the location of the outlet. We obtained R1 = 1.8503 · 107 Pa s m−3 and R2 = 1.0492 · 108 Pa s 

m−3. The remaining parameters were unchanged from those in Table II.

For the 1-D model, the polynomial order of the velocity profile was chosen to be ζ = 9 and 

the 1-D simulation was run using 12 elements with a quadrature and polynomial order of 5 

and a time step of 0.1 ms. For the 3-D model, the velocity boundary condition at the inlet 

boundary was prescribed using a profile of order ζ = 9 and the simulation was run using a 
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mesh containing 1,663,772 linear tetrahedral elements (293,667 nodes) and a time step of 

0.2 ms.

Fig. 8 shows the flow rate, pressure, changes in luminal radius, velocity profile, and pressure 

gradient at several sites in the 1-D and 3-D models. Results show larger differences in 

pressure and flow waveforms at the midpoint and inlet locations, respectively, compared to 

those found in the tapered carotid case. The differences between the velocity contours are 

also more noticeable, with the 3-D profile displaying near-wall flow-reversal patterns.

3.6. Aorta with Curvatures

We considered two additional aortic models using the same inflow and outflow boundary 

conditions as the baseline aorta model with the purpose of studying the impact of vessel 

curvature on cross-sectional average pressure and velocity. In the first case, curvature was 

introduced in a single plane (sagittal) to represent an idealized aortic arch. In the second 

case, curvatures were introduced in three planes (sagittal, coronal, and transverse) as 

described by Yearwood and Chandran [57]. Lengths and diameters were kept unchanged 

relative to the baseline aorta case. Since the 1-D model is independent of curvature, the 1-D 

solution is identical to that obtained in Section 3.2. The boundary conditions and material 

parameters were identical to those in the baseline aorta model (see Table II).

Due to the centripetal loading experienced by the vessel wall in the curved portion of the 3-

D geometry, a small value for the external damping coefficient (cs = 300 Pa s m−1) was 

chosen to reduce nonphysiological oscillatory modes. The external damping smooths the 

pressure and flow waveforms predominantly where high frequencies are dominant, with 

distal waveforms being smoother than proximal ones. These results are in agreement with 

the linear analysis of wall viscoelasticity described in [50]. The simulation of the 3-D model 

containing the single plane of curvature was run using a mesh containing 1,691,525 linear 

tetrahedral elements (297,472 nodes) and a time step of 0.2 ms. The model containing three 

planes of curvature was simulated with a mesh containing 1,688,467 linear tetrahedral 

elements (297,083 nodes) and a time step of 0.2 ms.

Figures 9 and 10 show the flow rate, pressure, changes in luminal radius, and pressure 

gradient for the single-curvature and three-curvature cases, respectively, and compares them 

with the corresponding 1-D predictions, which are the same as those shown in Fig. 4. In-

plane and out-of-plane velocity profiles at three cross sections in the 3-D models illustrate 

the skewing of the velocity profile toward the outer wall during systole and the presence of 

backflow along the inner wall during diastole. Nevertheless, the relative errors in flow, 

pressure, and pressure gradient are similar to those observed in the baseline aorta case.

3.7. Aortic Bifurcation

Here, we considered an idealized model of the aortic bifurcation, containing a single parent 

segment, representing the abdominal aorta, and two branch segments representing the iliac 

arteries. The lengths and diameters are listed in Table III. The initial net peripheral 

resistance and total compliance were calculated from Equations (13) and (17) using the 

systolic and diastolic pressures from [51]. The final values of RT and CT were obtained after 
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three iterations to reach convergence to the target pressures at the inlet. The peripheral 

resistance R1 + R2 at the outlet of the iliac arteries was calculated assuming equal flow 

distribution.

For the 1-D model, the simulation was run using 12 elements with a quadrature and 

polynomial order of 5 and a time step of 0.1 ms. The initial area was calculated using Eq. (9) 

to be A0 = 1.8062 cm2 in the abdominal aorta and A0 = 0.9479 cm2 in the iliac branches. The 

velocity profile was chosen to have a polynomial order ζ = 9. For the 3-D model, the 

geometry was constructed from three cylinders with the same diameters and lengths as in the 

1-D network. The angle between the two iliac branches was set to 47.9 degrees [58]. The 

velocity boundary condition at the inlet was prescribed with a profile of order ζ = 9. The 

simulation was run using a mesh containing 1,799,117 linear tetrahedral elements (321,651 

nodes) and a time step of 0.2 ms.

Fig. 11 shows the flow rate, pressure, velocity and changes in luminal radius at several sites 

in the 1-D and 3-D models. The results show excellent agreement between the two models 

(average relative errors smaller than 2%), with similar relative errors to the baseline 

common carotid artery case.

3.8. Full Aorta

We considered an idealized geometry representing the aorta and the first generation of main 

branches from just above the sinuses to the aortic bifurcation, neglecting the coronary and 

intercostal vessels. The curvature and angulation from the sagittal plane in the aortic arch 

were based on published measurements from human cadavers [57, 59]. The dimensions and 

spacing between branch vessels were based on those reported in [3]. The parameters are 

summarized in Table IV and the geometry is illustrated in Fig. 12. The spatially-varying 

elastic moduli (E) were calculated from the pulse wave velocity, c, given by the empirical 

relationship [56] c = a2/(2rd)b2, where c is given in m/s, rd is the radius at diastolic pressure 

expressed in mm, a2 = 13.3 and b2 = 0.3. For each vessel segment, once c was determined, E 

was calculated using Eq. (8) with A = Ad. The spatially-varying wall thickness (h) was 

chosen to be 10% of rd [55] at the inlet of each segment.

The total peripheral resistance RT = 1.1583 · 108 Pa s m−3 was obtained from Eq. (13) with 

Q̄
in = 6.17 l min−1 Ps = 16.8 kPa and Pd = 9.5 kPa. At the outlet of each terminal branch, the 

resistance R1 + R2 was calculated to yield the flow distribution given in [2] (see Table V). 

Each resistance R1 follows from Eq. (15) with cd and rd calculated at the outlet of the 

terminal branch. The total compliance CT was calculated from the time constant τ = 1.79 s 

[51] of the exponential fall-off of pressure during diastole using Eq. (16); CT = τ/RT = 

1.5453 · 10−8 m3 Pa−1. The compliance C of each terminal RCR model was then calculated 

as described in Section 2.5. The final values of RT and CT were obtained after eight 

iterations to reach convergence to the target pressures at the outlet of the abdominal aorta.

For the 1-D model, the simulation was run using 46 elements with a quadrature and 

polynomial order of 5 in each vessel and a time step of 0.05 ms. The initial areas A0 that 

yield the diastolic areas Ad at P = Pd were calculated using Eq. (9) (A0 = 4.7203 cm2 at the 

aortic root). The velocity profile was chosen with polynomial order ζ = 9. For the 3-D 
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model, the external damping coefficient was assigned a small value (cs = 300 Pa s m−1) to 

reduce non-physiological oscillations. The simulation was run using a mesh containing 

2,554,521 linear tetrahedral elements (475,000 nodes) and a time-step of 0.2 ms. The 

velocity boundary condition at the inlet was prescribed with a profile of order ζ = 9.

Fig. 13 shows flow rate and pressure at a number of representative locations in the 1-D and 

3-D models. The differences in the pressure and flow predictions occur predominantly in 

peak systole, and these discrepancies are greater in distal sites than in the proximal aortic 

arch branches. Additionally, the results from the 3-D model exhibit fewer high-frequency 

features in the flow and pressure waveforms than in the 1-D model as a consequence of 

external damping.

4. DISCUSSION

4.1. Carotid vs. Aortic Geometry: Combined Impact of Reynolds Number, Wall Strain and 
Velocity Profile

In the baseline carotid case, the assumptions of the 1-D formulation, i.e. predominantly 

unidirectional flow, hold well. The relative errors in flow and pressure were small between 

the 1-D and 3-D carotid models, with εP,avg and εQ,avg generally less than 0.3%, as shown in 

Fig. 3. In the baseline aorta case, however, the differences between the 1-D and 3-D models 

were greater (Fig. 4), particularly at the inlet, where the 3-D model shows a more 

pronounced systolic “shoulder” (at t ≈ 0.1 s) in the pressure waveform compared to the 1-D 

model. Furthermore, the pressure gradient between the inlet and outlet is greater in the 3-D 

model during peak systole and also exhibits a phase-lag between the 1-D and 3-D models, 

i.e., the time at which the pressure gradient from the 3-D model reverses direction during 

systole is delayed compared to the 1-D model.

Inertial forces play a larger role in the aorta model compared to the carotid model, with the 

peak Reynolds number in the aorta model being nearly an order of magnitude greater than in 

the carotid model (Re = 7, 140 vs Re = 748). To investigate the impact of the Reynolds 

number in the pressure waveforms, we scaled down, by a factor of 9.54, the aorta model 

inflow to match the peak Reynolds number of the baseline carotid model. We observed that 

the average relative error in the pressure waveforms at the midpoint and outlet locations 

decreased, but the relative errors at the shoulder of the inlet pressure waveform and the 

phase lag in the pressure gradient were not reduced (Fig. 5).

To investigate the origin of these discrepancies further, we must reflect on the different 

treatments that our specific 1-D and 3-D implementations make regarding geometric 

nonlinearities. While both formulations consider equivalent linear material laws, the 3-D 

formulation assumes a linearized kinematics behavior for the vessel wall (i.e., a fixed 

computational grid is maintained throughout the simulation), whereas the 1-D formulation 

accounts for changes in cross-sectional area (see Eq. (7)). Therefore, the fixed-grid 

assumption of the 3-D formulation introduces errors in the velocity profile that are 

proportional in magnitude to the vessel wall strain. The aorta experiences both greater flow 

velocities and larger wall strains (ε = Δrmax/rd) compared to the carotid setting (i.e. εaortic = 

12.5% versus εcarotid = 6%). These two phenomena are responsible for the larger 
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discrepancies between the 1-D and 3-D results during systole in the baseline aorta compared 

to the carotid example. This idea is supported by the larger diameter aorta model. Despite 

being a more compliant model than the baseline aorta (due to a larger cross-sectional area), 

it experiences smaller wall strains. The centerline velocities are also reduced compared to 

the baseline aorta model. We therefore have a situation where both the Reynolds number 

and the wall strains are reduced. This ultimately results in a smaller relative error in the 

shoulder of the inlet pressure waveform (Fig. 6) compared to the baseline aorta model (Fig. 

4).

4.2. Impact of Tapering

The presence of tapering introduces errors between the 1-D and 3-D model in the systolic 

pressure (but not during the diastolic decay) in both carotid and aortic models (Figs. 7 and 

8). The 3-D model more accurately captures the spatial changes in the velocity profile, and 

therefore, the viscous friction losses in the tapered tube. With tapering we observed greater 

errors between the 1-D and 3-D model in the pressure gradient between the inlet and outlet, 

as the 3-D model predicts that a greater pressure gradient is needed to drive flow during 

peak systole. In the tapered aorta case, inertial and frictional effects are naturally better 

captured in the 3-D model, resulting in greater errors in the pressure waveform than in the 

tapered carotid case.

4.3. Impact of Curvature

The velocity field in the curved 3-D domain is complex and not axisymmetric (Figs. 9 and 

10). During systole, the region of higher velocity is located near the outer wall of the arch, 

and during deceleration, significant backflow occurs near the inner wall. As such, the 3-D 

model is inherently more accurate in capturing the inertial and frictional forces in the curved 

domain, which leads to differences in the integrated flow and pressure quantities compared 

to the 1-D model. Hence, we observed that the addition of a single plane of curvature 

slightly increased the relative errors in the pressure and flow waveforms (Fig. 9) compared 

to the uncurved baseline aorta case. In particular, the error in the systolic shoulder of the 

inlet pressure waveform was notably increased (compare Figs. 4 and 9).

External damping was necessary in the 3-D model to produce flow and pressure waves 

without spurious oscillations. This damping was not included in the 1-D formulation and 

contributes to some of the discrepancies observed. The added dissipation attenuated the 

high-frequency features of the flow and pressure waveforms in the 3-D model, whereas 

these features are more prominent in the 1-D model; i.e. the dicrotic notch and the early-

diastolic flow reversal phase. We further observed that the addition of the second and third 

planes of curvature to the 3-D model did not further introduce significant differences 

between the 3-D and 1-D predictions (Fig. 10) compared to the single curvature case (Fig. 

9). In Section 4.5 we investigate the relationship between external damping and curvature in 

the 3-D setting.

4.4. Bifurcation

The 1-D and 3-D model are in good agreement in the aortic bifurcation case. We observed 

small relative errors (average relative errors smaller than 2%) between the 1-D and 3-D 
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models (Fig. 11), which was expected considering the lower flow rate in comparison to the 

aorta case. Furthermore, changing the bifurcation angle from 47.9 degrees to 27.5 degrees 

resulted in a negligible change in the relative errors. A similar good agreement was obtained 

with a geometric model of the abdominal aorta featuring two 90 degree branches 

representing the renal arteries. These results suggest that the effect of energy losses at the 

aortic bifurcation on the pressure waveforms is minor, as was previously observed using in-

vitro data [22].

4.5. Full Aorta Comparison

The full aorta model is essentially a combination of all the previously considered geometric 

features, including tapering, curvature, branching, and a variety of vessel diameters. As 

such, we expected to observe larger differences in the prediction of flow and pressure 

waveforms between the two theories. In general, the largest differences occur in systole, 

whereas the diastolic predictions are much closer. We can explain the closer agreement 

between models during diastole using a 0-D Windkessel model for pressure. Starting with 

the 1-D formulation, a space-independent Windkessel pressure, pw(t), can be derived by 

neglecting nonlinearities, flow inertia and viscous dissipation, and assuming that wall 

compliance and fluid peripheral resistance are the dominant effects [52]. Under these 

premises, pw(t) is given by

(28)

where Qin(t) is the flow waveform at the inlet of the ascending aorta, pw(T0) is the pressure 

pw at t = T0, T0 is the time corresponding to the beginning of systole (T0 = 0 in Fig. 14 ), M 

− 1 < N is the number of terminal branches, and  is the outflow in the terminal 

Segment j. The net peripheral resistance (RT) is given by Eq. (14), and the total arterial 

compliance (CT) is given by Eq. (18). The parameters of the RCR Windkessel models are 

R1, C, R2 and Pout (Fig. 1 ). The validity of Eq. (28) is also supported by in-vivo studies, 

which show that the aortic pressure waveform is approximately uniform in space during 

approximately the last two thirds of diastole [60, 61].

Figure 14 (left) illustrates that the agreement between 3-D, 1-D and analytical pressures 

improves as diatole progresses, indicating that the physics of flow are fundamentally linear 

and inertia-free during this phase of the cardiac cycle. Conversely, systolic flow is 

fundamentally non-linear and advection/inertia dominated, and therefore larger differences 

between the two methods were observed.

The discrepancies observed in systole are partially due to the different treatment of the 

arterial wall mechanics in the two formulations: while both theories consider equivalent 

purely elastic material laws, the 3-D case requires a viscous dissipation term provided by the 

external tissue support model. Without this dissipation, the 3-D flow and pressure 

waveforms contain spurious, large amplitude high-frequency oscillations resulting from 

unconstrained rigid-body motion modes that are generated in non-axisymmetric flows. This 
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viscous damping, while necessary in the 3-D setting, attenuated the sharper features of the 

flow and pressure waveforms, most noticeably in the dicrotic notch and early-diastole flow 

reversal phases, compared to the predictions seen in the 1-D setting (Fig. 13).

It is worth noting that external tissue support can also be included in 1-D modeling, as 

recently demonstrated by [33]. That work focuses on the importance of including external 

tissue support in the 1-D formulation to reduce reflections at the 1-D/3-D interfaces. 

Furthermore, while the external tissue support will never be engaged in a 1-D setting to limit 

spurious wall motion as in the 3-D model, its presence will affect the deformation of the 

arterial wall due to the additional stiffness. Figure 14 (right) illustrates the impact of external 

tissue damping by introducing a new model consisting of a modified “straightened” full 

aorta geometry. We compared infrarenal flow and pressure waveforms in four different 

cases: 1) 3-D formulation in original full aorta geometry considering tissue damping; 2) 3-D 

fomulation in straightened full aorta geometry considering tissue damping; 3) 3-D 

formulation in straightened full aorta geometry without tissue damping; and 4) 1-D 

formulation. The results in the straightened 3-D aorta models (dashed blue and green lines) 

demonstrated sharper features than those observed in the 3-D curved aorta model (solid red 

lines) and, notwithstanding the larger pulse pressures in the 3-D model, resembled more 

closely the results from the 1-D model (dashed black lines). Furthermore, the exclusion of 

external tissue damping (green dashed lines) resulted in almost no difference in the pressure 

and flow waveforms in the straightened model. This behavior suggests that eliminating the 

aortic curvature reduced the rigid-body modes in the thoracic region and, even though the 

external viscous damping is still present, it is engaged to a lesser degree than in the original 

curved aorta model.

4.6. Limitations

It is important to note that the comparisons presented in this paper were between two 

particular implementations of 1-D and 3-D theories with equivalent boundary conditions and 

material laws. However, a one-to-one comparison of hemodynamics between the two 

theories is not always possible. A few examples of fundamental modeling differences that 

are not easy to overcome are: the inability to account for secondary flows and the 

assumption of a fixed velocity profile in the 1-D formulation; the linearized kinematics 

approach and the need for outflow boundary condition stabilization and external tissue 

support in the 3-D formulations.

To facilitate an improved comparison, the 1-D formulation could incorporate space- and 

time-varying velocity profiles [7, 56, 62, 63, 64]. Furthermore, external damping [9] and 

wall inertia [5] could be included in the 1-D model as well. On the other hand, the 3-D 

formulation would need to incorporate moving domains/meshes [11, 16] to enable a more 

consistent description of cross-sectional area changes between the two methods.

4.7. Implications of Fundamental Modeling Differences between 3-D and 1-D Theories

An inconsistency between our specific 1-D and 3-D implementations was introduced by 

assigning zero velocity boundary conditions at the inlet and outlet rings in the 3-D model, 

effectively clamping the vessels at those locations. Consequently, the conduit compliance 
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(Cc) of the vessels in the 3-D models is slightly reduced relative to the 1-D models; this 

becomes more significant as the length of the vessel domain decreases. The clamping has a 

negligible local effect on pressure and flow in the 3-D domain, even though the wall 

displacements near the inlets and outlets are reduced. A better treatment of the arterial wall 

boundary conditions in the 3-D formulation can be done using external tissue support 

formulations [39] and time-resolved medical-image data to inform both the radial and 

longitudinal components of the vessel wall motion. Lastly, an important inconsistency 

between our two modeling approaches is introduced by the need for external damping in the 

3-D model in complex and curved geometries, such as the curved aorta and full aorta.

5. CONCLUSIONS

In this article, we have compared 1-D and 3-D hemodynamics in a series of idealized 

compliant arterial models of the carotid artery, thoracic aorta, aortic bifurcation and full 

aorta. The 1-D and 3-D formulations share common inflow and outflow boundary conditions 

and have equivalent material laws. We also presented an iterative algorithm to determine the 

parameters of each outflow boundary condition module to achieve desired systolic and 

diastolic pressures at a particular vessel. We have demonstrated good agreement between 1-

D and 3-D predictions, especially during diastole. The larger differences in systole can be 

explained by the following: 1) the inability to account for secondary flow features, vessel 

curvature and a prescribed velocity profile shape in the 1-D model; and 2) the linearized 

treatment of the kinematics of the vessel wall and the external tissue support (which 

introduces viscous damping) in the 3-D model.

Our 1-D/3-D framework demonstrates the use of a 1-D model to determine boundary 

condition and material parameters that are subsequently fed to a corresponding 3-D model. 

Indeed, the relatively good agreement between the numerical predictions in the full aorta 

setting suggests that the 1-D model is a reasonable representation of the 3-D system in terms 

of the global behavior of the spatially-averaged pressure and flow waveforms. It follows that 

the 1-D model can be used to perform tasks such as 1) estimation of the parameters of 

outflow boundary conditions to reproduce clinical measurements and 2) sensitivity studies 

under different hemodynamic conditions to gain an understanding of the behavior of the 

arterial system. This overlapping 1-D/3-D approach will accelerate the selection of model 

parameters for 3-D subject-specific models.
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Figure 1. 
Schematic representation of the modeling approach adopted in this study: 1-D and 3-D 

models share common inflow and outflow boundary conditions, as well as compatible 

consitutive laws. The 1-D geometry is obtained from the centerlines of the 3-D model, and 

vessel diameters and wall thickness are identical.
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Figure 2. 

(a) Evolution of systolic ( ), mean ( ) and diastolic ( ) pressure, (b) net peripheral 

resistance (RT), and (c) total compliance CT with the iteration number (n) for the baseline 

aorta. The target systolic (Ps) an diastolic (Pd) pressures are shown in red dashed lines.
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Figure 3. 
Baseline common carotid case. Top: flow rate and pressure with time at the inlet, midpoint 

and outlet, radius with time at the midpoint, and pressure gradient between inlet and outlet in 

the 3-D model (solid lines) and 1-D model (dashed lines) with relative error metrics (Section 

2.6). Bottom: velocity magnitude in the reference domain of the 3-D model (colormap). 

Velocity profiles of the 3-D model (solid lines, axial velocity component) and the 1-D model 

(dashed lines) at three locations and two time points.
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Figure 4. 
Baseline aorta case. Top: flow rate and pressure with time at the inlet, midpoint and outlet, 

radius with time at the midpoint, and pressure gradient between inlet and outlet in the 3-D 

model (solid lines) and 1-D model (dashed lines) with relative error metrics (Section 2.6). 

Bottom: velocity magnitude in the reference domain of the 3-D model (colormap). Velocity 

profiles of the 3-D model (solid lines, axial velocity component) and the 1-D model (dashed 

lines) at three locations and two time points.
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Figure 5. 
Low-flow aorta case. Top: flow rate and pressure with time at the inlet, midpoint and outlet, 

radius with time at the midpoint, and the pressure gradient between inlet and outlet in the 3-

D model (solid lines) and 1-D model (dashed lines) with relative error metrics (Section 2.6).
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Figure 6. 
Larger-diameter aorta case. Top: flow rate and pressure with time at the inlet, midpoint and 

outlet, radius with time at the midpoint, and pressure gradient between inlet and outlet in the 

3-D model (solid lines) and 1-D model (dashed lines) with relative error metrics (Section 

2.6).
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Figure 7. 
Tapered carotid case. Top: flow rate and pressure with time at the inlet, midpoint and outlet, 

radius with time at the midpoint, and pressure gradient between inlet and outlet in the 3-D 

model (solid lines) and 1-D model (dashed lines) with relative error metrics (Section 2.6). 

Bottom: velocity magnitude in the reference domain of the 3-D model (colormap). Velocity 

profiles of the 3-D model (solid lines, axial velocity component) and the 1-D model (dashed 

lines) at three locations and two time points.
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Figure 8. 
Tapered aorta case. Top: flow rate and pressure with time at the inlet, midpoint and outlet, 

radius with time at the midpoint, and pressure gradient between inlet and outlet in the 3-D 

model (solid lines) and 1-D model (dashed lines) with relative error metrics (Section 2.6). 

Bottom: velocity magnitude in the reference domain of the 3-D model (colormap). Velocity 

profiles of the 3-D model (solid lines, axial velocity component) and the 1-D model (dashed 

lines) at three locations and two time points.
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Figure 9. 
Single-curvature aorta case. Top: flow rate and pressure with time at the inlet, midpoint and 

outlet, radius with time at the midpoint, and pressure gradient between inlet and outlet in the 

3-D model (solid lines) and 1-D model (dashed lines) with relative error metrics (Section 

2.6). Bottom: in-plane (colormap and arrows, left) velocity and out-of-plane (colormap, 

right) components of the velocity field in the 3-D model at three cross-sections. Velocities 

are given in cm/s. The outer and inner curvatures are labeled as “O” and “I”, respectively.
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Figure 10. 
Multiple-curvature aorta case. Top: flow rate and pressure with time at the inlet, midpoint 

and outlet, radius with time at the midpoint, and the pressure gradient between inlet and 

outlet in the 3-D model (solid lines) and 1-D model (dashed lines) with relative error metrics 

(Section 2.6). Bottom: in-plane (colormap and arrows, left) velocity and out-of-plane 

(colormap, right) components of the velocity field in the 3-D model at three cross-sections. 

Velocities are given in cm/s. The outer and inner curvatures are labeled as “O” and “I”, 

respectively.
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Figure 11. 
Aortic bifurcation case. Top: flow rate, pressure, change in radius with time at several 

locations and pressure gradient between inlet and outlet in the 3-D model (solid lines) and 1-

D model (dashed lines) with relative error metrics (Section 2.6). Bottom: velocity magnitude 

in the reference domain of the 3-D model (colormap). Velocity profiles of the 3-D model 

(solid lines, axial velocity component) and the 1-D model (dashed lines) at three locations 

and two time points.
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Figure 12. 
Idealized full aorta geometry and vessel wall material properties. (a): coronal (left) and 

sagittal (right) views with lengths and diameters. (b): close-up view of the arch and branches 

with lengths and diameters and the primary radius of curvature. (c): close-up view of the 

arch showing the degree of curvature in the ascending arch (left) and transverse view of the 

arch (right), showing the degree of transverse curvature and the degree of angulation from 

the sagittal plane. (d): the spatial distributions of wall thickness (h) and elastic modulus (E).
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Figure 13. 
Full aorta case. Flow rate (left) and pressure (right) with time at 8 outlets in the 3-D model 

(solid lines) and 1-D model (dashed lines) with relative error metrics (Section 2.6).
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Figure 14. 
Left: Analytical prediction of pressure (dotted lines) shows good agreement with 1-D and 3-

D models during diastole. Right: Pressure and flow rate at the midpoint of the abdominal 

aorta for the curved 3-D aorta tree model with external damping (red), the straight 3-D aorta 

model with external damping (dashed blue), the straight 3-D aorta model without external 

damping (dashed green), and the 1-D model (dashed black). The level of external damping 

cs = 300 Pa s m−1 and is identical for all the 3-D models.

The waveforms for the straight 3-D model with and without damping are essentially 

identical.
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Xiao et al. Page 39

Table I

Normal hemodynamic properties of the human common carotid artery. The geometry, inflow rate and 

mechanical properties of the blood were taken from [17], the Young’s modulus E from [65] and the pressures 

from [55, p. 343]. The parameters of the RCR windkessel model were calculated as described in the text. The 

resulting wave speed at mean pressure is cm = 6.74 m s−1.

Property Value

Length, L 126 mm

Radius at diastolic pressure, rd 3 mm

Wall thickness, h 0.3 mm

Young’s modulus, E 700.0 kPa

Mean flow rate, Q̄
in 0.39 l min−1

Systolic pressure, Ps 16.7 kPa

Diastolic pressure, Pd 10.9 kPa

Windkessel resistance, R1 2.4875 · 108 Pa s m−3

Windkessel compliance, C 1.7529 · 1010 m3 Pa−1

Windkessel resistance, R2 1.8697 · 109 Pa s m−3
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Xiao et al. Page 40

Table II

Normal hemodynamic properties of the human aorta, from the ascending to the thoracic part. The inflow rate 

was taken from [50] and the pressures from [51]. The parameters of the RCR windkessel model were 

calculated as described in the text. The resulting wave speed at mean pressure is cm = 5.17 m s−1.

Property Value

Length, L 24.137 cm

Radius at diastolic pressure, rd 1.2 cm

Wall thickness, h 1.2 mm

Young’s modulus, E 400.0 kPa

Mean flow rate, Q̄
in 6.170 l min−1

Systolic pressure, Ps 16.8 kPa

Diastolic pressure, Pd 9.5 kPa

Windkessel resistance, R1 1.1752 · 107 Pa s m−3

Windkessel compliance, C 1.0163 · 108 m3 Pa−1

Windkessel resistance, R2 1.1167 · 108Pa s m−3
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Xiao et al. Page 41

Table III

Normal hemodynamic properties of the human aortic bifurcation. The dimensions are based on data given in 

[3]. The flow rate is taken from [66] and the pressures from [51]. The parameters of the two RCR models were 

calculated as described in the text. The resulting wave speed at mean pressure is cm = 6.26 m s−1 in the 

abdominal aorta and cm = 7.4 m s−1 in both iliac arteries.

Property Aorta Iliac

Length, L 8.6 cm 8.5 cm

Radius at diastolic pressure, rd 0.86 cm 0.60 cm

Wall thickness, h 1.032 mm 0.72 mm

Young’s modulus, E 500.0 kPa 700.0 kPa

Mean flow rate, Q̄
in 0.4791 l min−1

Systolic pressure, Ps 16.8 kPa

Diastolic pressure, Pd 9.5 kPa

Windkessel resistance, R1 – 6.8123 · 107 Pa s m−3

Windkessel compliance, C – 3.6664 · 1010 m3 Pa−1

Windkessel resistance, R2 – 3.1013 · 109Pa s m−3

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2015 February 23.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Xiao et al. Page 42

T
ab

le
 IV

Pa
ra

m
et

er
s 

of
 th

e 
fu

ll-
ao

rt
a 

m
od

el
. r

in
 →

 r
ou

t: 
di

as
to

lic
 c

ro
ss

-s
ec

tio
na

l r
ad

ii 
at

 th
e 

in
le

t a
nd

 o
ut

le
t o

f 
th

e 
ar

te
ri

al
 s

eg
m

en
t. 

c i
n 

→
 c

ou
t: 

w
av

e 
sp

ee
d 

at
 

di
as

to
lic

 p
re

ss
ur

e 
at

 th
e 

in
le

t a
nd

 o
ut

le
t o

f 
th

e 
ar

te
ri

al
 s

eg
m

en
t.

A
rt

er
ia

l s
eg

m
en

t
L

en
gt

h 
(c

m
)

r i
n 

→
 r

ou
t (

m
m

)
c i

n 
→

 c
ou

t (
m

/s
)

R
1 

(1
07  

P
a 

s 
m

−3
)

R
2 

(1
08  

P
a 

m
−3

)
C

(1
0−1

0  
m

3  
P

a−1
)

1.
 A

o 
I

7.
03

57
15

.2
 →

 1
3.

9
4.

77
 →

 4
.9

1
-

-
-

2.
 A

o 
II

0.
8

13
.9

 →
 1

3.
7

4.
91

 →
 4

.9
3

-
-

-

3.
 A

o 
II

I
0.

9
13

.7
 →

 1
3.

5
4.

93
 →

 4
.9

4
-

-
-

4.
 A

o 
IV

6.
47

37
13

.5
 →

 1
2.

3
4.

94
 →

 5
.0

9
-

-
-

5.
 A

o 
V

15
.2

12
.3

 →
 9

.9
5.

09
 →

 5
.4

3
-

-
-

6.
 A

o 
V

I
1.

8
9.

9 
→

 9
.7

5.
43

 →
 5

.4
6

-
-

-

7.
 A

o 
V

II
0.

7
9.

7 
→

 9
.6

2
5.

46
 →

 5
.4

8
-

-
-

8.
 A

o 
V

II
I

0.
7

9.
62

 →
 9

.5
5

5.
48

 →
 5

.4
9

-
-

-

9.
 A

o 
IX

4.
3

9.
55

 →
 9

.0
7

5.
49

 →
 5

.5
7

-
-

-

10
. A

o 
X

4.
3

9.
07

 →
 8

.6
5.

57
 →

 5
.6

6
-

-
-

11
. B

ra
ch

io
ce

ph
al

ic
3.

4
6.

35
 →

 6
.3

5
6.

20
 →

 6
.2

0
5.

19
18

10
.6

08
0

8.
69

74

12
. L

 c
om

. c
ar

ot
id

3.
4

3.
6 

→
 3

.6
7.

36
 →

 7
.3

6
19

.1
51

5
52

.2
12

9
1.

76
70

13
. L

 s
ub

cl
av

ia
n

3.
4

4.
8 

→
 4

.8
6.

75
 →

 6
.7

5
9.

88
20

13
.0

18
3

7.
08

71

14
. C

el
ia

c
3.

2
4.

45
 →

 4
.4

5
6.

90
 →

 6
.9

0
11

.7
61

7
7.

57
26

12
.1

83
6

15
. S

up
. m

es
en

te
ri

c
6

3.
75

 →
 3

.7
5

7.
27

 →
 7

.2
7

17
.4

35
2

5.
50

97
16

.7
45

3

16
. R

 r
en

al
3.

2
2.

8 
→

 2
.8

7.
93

 →
 7

.9
3

34
.1

37
8

5.
39

49
17

.1
01

7

17
. L

 r
en

al
3.

2
2.

8 
→

 2
.8

7.
93

 →
 7

.9
3

34
.1

37
8

5.
39

49
17

.1
01

7

18
. I

nf
. m

es
en

te
ri

c
5

2.
0 

→
 2

.0
8.

77
 →

 8
.7

7
74

.0
16

7
46

.2
25

2
1.

99
59

19
. R

 c
om

. i
lia

c
8.

5
6.

0 
→

 6
.0

6.
31

 →
 6

.3
1

5.
91

49
10

.1
73

7
9.

06
86

20
. L

 c
om

. i
lia

c
8.

5
6.

0 
→

 6
.0

6.
31

 →
 6

.3
1

5.
91

49
10

.1
73

7
9.

06
86

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2015 February 23.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Xiao et al. Page 43

Table V

Distribution of the cardiac output among each terminal vessel in the full aorta model.

Terminal vessel % cardiac output

11. Brachiocephalic 10.41

12. L com. carotid 2.14

13. L subclavian 8.27

14. Celiac 13.24

15. Sup. mesenteric 15.97

16. R renal 13.15

17. L renal 13.15

18. Inf. mesenteric 2.16

19. R com. iliac 10.76

20. L com. iliac 10.76
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