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ABSTRACT

The alphaherpesvirus UL51 protein is a tegument component that interacts with the viral glycoprotein E and functions at multi-
ple steps in virus assembly and spread in epithelial cells. We show here that pUL51 forms a complex in infected cells with another
conserved tegument protein, pUL7. This complex can form in the absence of other viral proteins and is largely responsible for
recruitment of pUL7 to cytoplasmic membranes and into the virion tegument. Incomplete colocalization of pUL51 and pUL7 in
infected cells, however, suggests that a significant fraction of the population of each protein is not complexed with the other and
that they may accomplish independent functions.

IMPORTANCE

The ability of herpesviruses to spread from cell to cell in the face of an immune response is critical for disease and shedding fol-
lowing reactivation from latency. Cell-to-cell spread is a conserved ability of herpesviruses, and the identification of conserved
viral genes that mediate this process will aid in the design of attenuated vaccines and of novel therapeutics. The conserved UL51
gene of herpes simplex virus 1 plays important roles in cell-to-cell spread and in virus assembly in the cytoplasm, both of which
likely depend on specific interactions with other viral and cellular proteins. Here we identify one of those interactions with the
product of another conserved herpesvirus gene, UL7, and show that formation of this complex mediates recruitment of UL7 to
membranes and to the virion.

Human herpesviruses can reactivate from latency at internal
anatomical sites and be shed from epithelial surfaces long

after initial infection and establishment of an adaptive immune
response (1–8). This suggests that the ability to spread from cell to
cell in the presence of immune effectors is a conserved property of
herpesviruses. Within the alphaherpesviruses, where this phe-
nomenon has been the most extensively studied, the evidence sug-
gests that cell-to-cell spread (CCS) between epithelial cells in vitro
has two mechanistic components. The first of these is a virion
trafficking component in which virions are targeted from the site
of secondary envelopment to the junctional surfaces of cells,
where they have access to adjacent cells in a compartment that is
sterically protected from immune effectors in the medium (9–11).
The second component is a specialized entry process that may
involve gE binding to specific CCS receptors and that also may
involve different patterns of receptor usage by the virus entry ap-
paratus (12–15). In alphaherpesviruses, both mechanistic compo-
nents involve the complex between the envelope glycoproteins gE
and gI. However, since gE and gI are encoded only by alphaher-
pesvirus genomes, any mechanism for CCS that is conserved
among all herpesviruses is likely to involve other, more widely
conserved viral factors.

Virus genome-encoded proteins that are specifically required
for epithelial CCS fall into two categories: those required for virus
entry into cells regardless of the mode of virus egress and those
that are apparently required for trafficking of virus components or
virions to junctional surfaces of cells. The four viral glycoproteins
gB, gD, gH, and gL, which are required for virus entry, are in the
first category (16–19), while gE and gI are in the second category.
gE and gI form a heterodimeric complex that is required for effi-
cient CCS in the nervous system in vivo (20–24). It is also required
for CCS in cultured neuronal cells and in epithelial and fibroblast

cells that form well-defined cell junctions (20, 24–26). Trafficking
of gE to cell junctions and its function in CCS are regulated by
other viral proteins that are conserved among the herpesviruses. A
complex of pUL11, pUL16, and pUL21 must form on the gE cy-
toplasmic tail in order for it to localize to junctions and to function
properly in CCS (27–30), and in some cell types, gE localization is
also sensitive to mutations in the nuclear egress factor pUL34 (31).
Herpes simplex virus 1 (HSV-1) pUL51 also interacts with gE, and
expression of a dominant negative pUL51 fusion protein disrupts
gE localization (32). However, the effect of pUL51 or pUL34 mu-
tation on CCS in Vero cells is far more severe than that of gE
deletion, suggesting that additional interactions are involved.

Alphaherpesvirus pUL34, pUL11, and pUL51 are all mem-
brane-associated proteins, but none of them is displayed on the
exterior surface of the infected cell or on the virion (33–42), sug-
gesting that they function by interacting with viral and/or cellular
factors in the cytosol or on cytoplasmic membranes and are likely
to aid trafficking of virions and/or viral proteins, including gE, for
cell-to-cell spread. pUL34, pUL11, and pUL51 also are important
in virus assembly, and at least for pUL34 and pUL11, these func-
tions involve specific interactions with other viral proteins and
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their recruitment to virus assembly sites on the nuclear or internal
cytoplasmic membrane, respectively (27, 28, 34, 43–51). In addi-
tion, the human cytomegalovirus (HCMV) homolog of pUL51,
pUL71, aids in the organization of specialized regions of the cyto-
plasm where cytoplasmic envelopment occurs, further suggesting
a function in trafficking of viral or cellular proteins (52).

Alphaherpesvirus pUL51 and its cytomegalovirus homolog,
pUL71, are classified as tegument proteins but are associated with
membranes (40, 41, 53). At least for HSV-1, membrane associa-
tion is by way of a palmitoyl group added at a highly conserved
cysteine residue near the N terminus of the protein (42). The
involvement of pUL51 in both virus assembly and CCS suggested
that it, too, makes specific interactions with other viral proteins
for assembly and perhaps with other cellular trafficking factors for
CCS. In an effort to identify other interaction partners for pUL51,
we affinity purified pUL51 from infected cells and discovered a
novel interaction with another conserved herpesvirus gene prod-
uct, pUL7.

MATERIALS AND METHODS
Cells and viruses. HEp-2 and Vero cells and a UL51-complementing cell
line (described in reference 32) were maintained as previously described
(34). HaCaT cells (gift of David Johnson) were maintained in Dulbecco
modified Eagle medium (DMEM) with high glucose supplemented with
10% fetal bovine serum. The properties of HSV-1(F), HSV-1 with UL51
with a FLAG tag (UL51-FLAG), and HSV-1 with UL51 with a C-terminal
truncation of amino acids 73 to 244 (UL51�73-244) have been previously
described (34, 54).

Construction of recombinant mutant viruses. The recombinant vi-
rus with UL51 with a C-terminal truncation of amino acids 167 to 244
(UL51�167-244) was constructed using an HSV-1(F) bacterial artificial
chromosome (BAC) and the methods of Tischer et al. (55), as previously
described (31). The sequences of the primers used for virus construction
are available upon request. The proper structure of the recombinant BACs
was determined by sequencing of the UL51 gene region. The structures of
the altered UL51 genes are indicated in Fig. 1.

Recombinant virus was reconstituted by transfection of BAC DNA
into Vero cells. Virus containing deletions in the UL51 gene sequence
were amplified on UL51-complementing cells to minimize selection for
phenotypic revertants.

Plasmids and transfection. Plasmids that express UL51-FLAG, UL7,
and gE from the human cytomegalovirus major immediate early pro-
moter were constructed by PCR amplification of the desired coding se-
quence and ligation into pcDNA3. The gE-coding sequence was amplified
using the primers 5=-AGCTGAATTCCCATGGATCGCGGGGCGGT
G-3= and 5=-GATCCTCGAGTTACCAGAAGACGGACGAATCGGAG
G-3= and then cut with EcoRI and XhoI restriction enzymes and ligated
into the EcoRI and XhoI sites of pcDNA3. The UL7-coding sequence was
amplified using the primers 5=-GATCGAATTCATGGCCGCCGCGAC
G-3= and 5=-CTAGTCTAGATCAACAAAACTGATAAAACAGCGACG
ACGTCTG-3= and then cut with EcoRI and XbaI restriction enzymes and
ligated into the EcoRI and XbaI sites of pcDNA3. UL51-FLAG was ampli-
fied from the UL51-FLAG recombinant BAC using the primers 5=-AGCT
GAATTCCCATGGCTTCTCTTCTCGGGGCTATATG-3= and 5=-GATC
CTCGAGCTACTTATCGTCATCGTCTTTGTAGTCTTGACCC-3= and
then cut with EcoRI and XhoI and ligated into the EcoRI and XhoI sites of
pcDNA3. Plasmids were transfected into Vero cells using the Lipo-
fectamine reagent according to the manufacturer’s protocol.

Indirect immunofluorescence. Immunofluorescence for colocaliza-
tion was performed as previously described using either 1:500 anti-UL51
rabbit antiserum (a gift of Joel Baines), 1:500 anti-UL7 rabbit antiserum (a
gift of Yasushi Kawaguchi), 1:1,000 mouse monoclonal anti-gE (Virusys),
or 1:1,000 mouse monoclonal anti-FLAG M2 antibody (Sigma) (45, 56).
Quantitative colocalization analysis was performed using ImageJ soft-

ware. Ten randomly selected cells that showed clear concentrations of gE
staining were chosen from each condition. A line was drawn across each
cell that included the concentration(s) of gE, and a profile of pixel inten-
sities for both gE and pUL7 staining was obtained. Pixel intensity values
from each profile were entered as data sets for determination of a Pearson
correlation coefficient, as implemented at http://www.socscistatistics
.com/tests/pearson.

Immunopurification. pUL51-FLAG was purified from Vero or
HEp-2 cells that had been infected with 5 PFU/cell of wild-type or recom-
binant tagged HSV-1 for 16 h. Infected cell monolayers from 100-mm
cultures were washed with 5 ml of phosphate-buffered saline (PBS), and
then the cells were scraped into 3 ml of PBS and pelleted at 110 � g for 10
min. The cell pellets were resuspended in 1.5 ml coimmunoprecipitation
(co-IP) buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1%
Triton X-100, 1� Sigma protease inhibitor cocktail), transferred to mi-
crocentrifuge tubes, and incubated on ice for 3 min. Nuclei and other
cellular debris were pelleted by centrifugation at 10,000 rpm in a micro-
centrifuge for 10 min, and the supernatant was transferred to a fresh tube.
After removal of a fraction of the sample as a lysate control, 15 �l of an
anti-FLAG magnetic bead suspension (Sigma) was added to the remain-
der of each sample, and the tubes were placed in an end-over-end rotator
at 4°C overnight. The magnetic beads were separated from the lysate using
a magnetic separator, and the supernatant containing unbound proteins
was discarded. Magnetic beads were washed three times each with 1.5 ml
of co-IP buffer, and then bound proteins were eluted with three washes
with co-IP buffer containing 100 �g/ml competitor 3� FLAG peptide
(Sigma).

Immunoprecipitation. Proteins were immunoprecipitated from
HEp-2 cells that had been infected with 5 PFU/cell of wild-type HSV-1(F)
for 16 h. Infected cell monolayers from 100-mm cultures were washed
with 5 ml of PBS, and the cells were then scraped into 3 ml of PBS and
pelleted at 110 � g for 10 min. The cell pellets were resuspended in 0.75 ml
co-IP buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton
X-100, 1� Sigma protease inhibitor cocktail), transferred to microcentri-
fuge tubes, and incubated on ice for 3 min. Nuclei and other cellular debris
were pelleted by centrifugation at 10,000 rpm in a microcentrifuge for 10
min, and the supernatant was transferred to a fresh tube. After removal of
a fraction of the sample as a lysate control, 1 �l of nonimmune rabbit
serum, rabbit anti-UL51 antiserum, or anti-UL7 antiserum was added to
the remainder of each sample, and the tubes were incubated at 4°C over-
night. On the following day, 30 �l of a 50% suspension of protein G
agarose (Thermo/Pierce) was added and samples were incubated in an
end-over-end rotator for 6 h. The beads were separated from the lysate by
centrifugation in a microcentrifuge at 1,000 rpm for 1 min, and the su-
pernatant containing unbound proteins was discarded. The beads were
washed five times each with 0.5 ml of co-IP buffer, and then bound pro-
teins were eluted with two washes with 50 �l of 0.1 M glycine, pH 2.5.
Eluents were neutralized with 1 M Tris base.

Peptide sequencing. Proteins eluted following anti-FLAG purifica-
tion were separated on SDS-polyacrylamide gels under reducing and de-
naturing conditions. The gels were stained with Coomassie stain, and a
few bands of interest were excised for in-gel tryptic digestion. Following
the procedure described by Shevchenko et al. (57), the quality of the digest
supernatant was determined by matrix-assisted laser desorption ioniza-
tion–time of flight (TOF) analysis on an Autoflex III TOF/TOF apparatus
(Bruker) prior to lyophilization. Peptides from digested samples were
analyzed by nano-liquid chromatography-tandem mass spectrometry
(MS/MS) using a Dionex 3000 UHP nano-rapid separation liquid chro-
matography series high-pressure liquid chromatography system
(Thermo-Electron) and a linear ion-trap mass spectrometer (Thermo
LTQ/XL; Thermo Electron). MS/MS spectra were acquired in a data-
dependent acquisition mode that automatically selected and fragmented
the six most intense peaks from each MS spectrum.

Peptide RAW data sets were refined to a centroid list using the Distiller
(version 2.4) program (MatrixScience) and matched to protein sequences
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in the Swiss-Prot and TrEMBl databases of 23 July 2012 with the Spectrum
Mill Proteomics workbench (revision A.03.02.060; Agilent Technologies),
accepting carbamidomethyl cysteine as a fixed modification and methio-
nine oxidation as the single variable modification (58). Peptide and
MS/MS mass tolerances were set at 1.8 and 0.4 Th, respectively. Taxon-
omy files were restricted to Homo sapiens and human herpesvirus 1, with
common contaminants being included. A target/decoy search strategy
was used, with mass tolerances being set to 1.8 Th for peptide precursor
ions and 0.4 Th for fragment ion data (59). Search requirements were set
to a maximum local peptide false discovery rate cutoff score of 0.5%, at
least four y- or b-ion pairs, and at least two unique peptides. The resulting
peptide alignments were manually examined and accepted only if pep-
tides from the TREM-1sv standard protein with identical sequences re-
vealed a consistent fragmentation pattern.

Immunoblotting. Nitrocellulose sheets bearing proteins of interest
were blocked in 5% nonfat milk plus 0.2% Tween 20 for at least 2 h. The
membranes were probed with either a rabbit polyclonal anti-UL51 (1:
1,000), rabbit polyclonal anti-UL7, rabbit polyclonal anti-gE (a kind gift

of H. Friedman) (1:500), or mouse anti-FLAG M2 (1:1,000) (Sigma/Al-
drich) monoclonal antibody, followed by reaction with alkaline phospha-
tase-conjugated secondary antibody.

Virion purification. Cell-associated virions from wild-type and UL51
mutant HSV-1 were purified from infected HEp-2 cells by modification of
the method of Spear and Roizman (60) as previously described (61).
Briefly, cells from three confluent T150 flasks that had been infected with
5 PFU/cell of virus for 24 h were washed twice with PBS and then scraped
into 20 ml PBS. Cells were then pelleted at 800 � g for 10 min in a clinical
centrifuge, and the supernatant was discarded. The cell pellet was resus-
pended in 3.2 ml of 1 mM Na2HPO4-NaH2PO4, pH 7.0, buffer and al-
lowed to swell on ice for 15 min. Cells were lysed with five strokes in a
Dounce homogenizer with a tight pestle and then immediately adjusted to
50 mM sucrose. Large cell fragments, nuclei, and mitochondria were pel-
leted by centrifugation at 15,000 � g for 10 min in a Sorvall SS34 rotor.
The supernatant, containing smaller membrane structures, virions, and
soluble proteins, was then centrifuged at 30,000 rpm in a Beckman
SW60Ti rotor for 1 h to pellet virions and other membrane structures. The

FIG 1 Construction of recombinant viruses. (A) Schematic diagram of the HSV-1(F) genome (line 1) and of the recombinant viruses used in this study. TRL,
terminal repeat long region; UL, unique long region; IRL, internal repeat long region; IRS, internal repeat short region; US, unique short region; TRS, terminal
repeat short region. Line 2, structures of the wild-type sequences in the regions of UL51 and US8; line 3, the UL51�73-244 virus carries a stop codon and a
kanamycin resistance cassette in place of the sequences coding for amino acids 73 to 244 of pUL51; line 4, the UL51-FLAG virus carries a FLAG tag at the C
terminus of UL51 followed by a kanamycin resistance cassette; line 5, the UL51�167-244FLAG virus was constructed as described in Materials and Methods and
carries a FLAG-tagged truncated pUL51 that lacks approximately the last third of the protein. (B) UL51 sequence conservation. The plot shows the conservation
of the biochemical properties of amino acids using all available herpesvirus pUL51 homologous sequences aligned using the program MUSCLE (87). Each residue
position receives a conservation score, and scores were averaged over a sliding 5-amino-acid-residue window.
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supernatant was discarded, and the pellet was resuspended in 0.5 ml of 1
mM Na2HPO4-NaH2PO4, pH 7.0, buffer, sonicated for 5 s at power level
1 with a Fisher sonic Dismembrator 50, and then layered onto a 10-ml
linear 15 to 30% dextran T10 gradient and centrifuged at 20,000 rpm for
1 h in a Beckman Sw40Ti rotor to separate virions and less dense cellular
membrane structures. The gradient was fractionated by dripping from the
bottom of the tube. Equal aliquots of each fraction were separated by
SDS-PAGE, and proteins were detected by immunoblotting.

Culture supernatant (released) virions from wild-type and UL51 mu-
tant HSV-1 were purified from infected HaCaT cell cultures by modifica-
tion of the method of Lippé (62). Eight 150-mm cultures of confluent
HaCaT cells were infected with 5 PFU/cell of each virus for 24 h in me-
dium containing 1% heat-inactivated calf serum. Extracellular medium
was pooled and centrifuged at 300 � g for 10 min to pellet the large debris,
and the supernatant was filtered through a 0.45-�m-pore-size filter. Virus
was pelleted by centrifugation at 20,000 � g for 30 min. The pellet was
resuspended in 1.0 ml of DMEM, treated with 250 U DNase I for 30 min
at 4°C, sonicated for 10 s at power level 1, and then layered over a 5 to 15%
continuous Ficoll 400 gradient prepared in DMEM and centrifuged at
26,000 � g for 2 h in a Beckman Sw40Ti rotor as described by Szilagyi and
Cunningham (63). The gradient was fractionated by dripping from the
bottom of the tube. Equal aliquots of each fraction were titrated by plaque
assay. Aliquots of each fraction were separated by SDS-PAGE, and pro-
teins were detected by immunoblotting.

RESULTS
pUL7 copurifies with pUL51. HSV-1 pUL51 has documented
functions in nuclear egress, cytoplasmic envelopment, virus re-
lease, and epithelial CCS (32, 51). The protein has no known or
predicted enzymatic activity and so likely accomplishes its func-
tions by interaction with other viral or cellular factors. In order to
identify some of those factors, recombinant viruses in which full-
length or C-terminally truncated pUL51 was tagged at the C ter-
minus with a FLAG epitope were generated. The C-terminal trun-
cation (amino acids 167 to 244) was designed to correspond to a
region of very low sequence similarity between pUL51 homologs
from all herpesviruses (Fig. 1B), suggesting that the truncated pro-
tein might retain most or all conserved interactions of pUL51.
FLAG-tagged UL51 protein from HEp-2 cells infected with wild-
type (WT) virus (which carries no FLAG tag and so serves as a
background control) (UL51WT-FLAG) or FLAG-tagged UL51
with a C-terminal truncation of amino acids 167 to 244
(UL51�167-244-FLAG) was purified on anti-FLAG magnetic
beads, separated by SDS-PAGE, and stained with Coomassie bril-
liant blue (Fig. 2A). Both full-length pUL51 and truncated pUL51
were efficiently purified (white arrowheads). The most obvious
accompanying proteins were seen in purification of the truncated
pUL51 (small black arrowheads), but they were not obvious in
purification of full-length pUL51 because they partially comi-
grated with it. Excision of these bands and sequencing by tandem
mass spectrometry revealed a high representation of peptides
from the HSV-1 pUL7 protein.

In order to confirm copurification of pUL7 with pUL51, FLAG
affinity-purified proteins from infected Vero and HEp-2 cells were
separated by SDS-PAGE, blotted, and probed with rabbit antise-
rum directed against pUL7 (Fig. 2B). pUL7 is present in equivalent
amounts in lysates from cells infected with each of the three vi-
ruses but is purified only from cells infected with recombinant
viruses carrying FLAG-tagged pUL51. Copurification was ob-
served from both Vero and HEp-2 cells, indicating that the
pUL51/pUL7 interaction is most likely not cell specific.

In order to ensure that interaction with pUL7 is not an artifac-

FIG 2 Copurification and coimmunoprecipitation of pUL7 with pUL51. (A)
Coomassie brilliant blue-stained SDS-polyacrylamide gel containing proteins pu-
rified from infected HEp-2 cells using anti-FLAG magnetic beads. White arrow-
heads, FLAG-tagged pUL51 proteins; small black arrowheads, copurifying pro-
teins that partially comigrated with full-length pUL51. Numbers on the left are
molecular sizes (in kilodaltons). (B) Immunoblot of proteins from Vero or HEp-2
cells infected with the viruses indicated below each lane. (Top) pUL7 present in the
lysate from infected cells; (bottom) pUL7 present in eluents from anti-FLAG pu-
rification. (C) Immunoblot of proteins from HEp-2 cells infected with wild-type
virus. The leftmost lane contains proteins from cell lysates. The immunoprecipi-
tating (IP) antibody is indicated above each lane, and the antibody used for prob-
ing of the blot is indicated to the left of each panel.
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tual result of epitope tagging, wild-type, untagged protein was
immunoprecipitated from HEp-2 cells using antibodies to either
pUL51 or pUL7 (Fig. 2C). pUL51 was coimmunoprecipitated
with anti-pUL7 and vice versa. This interaction was specific, since
neither protein was precipitated by nonimmune rabbit serum and
since neither antibody coimmunoprecipitated VP16 (a highly
abundant viral protein that, like pUL51 and pUL7, is a component
of the virion tegument) or ICP27 (an abundant protein found in
both the cytoplasm and nucleus).

pUL51 is required for recruitment of pUL7 to cytoplasmic
membranes in both infected and transfected cells. The observa-
tion that pUL51 and pUL7 interact during copurification and co-
immunoprecipitation suggested that they form a complex in the
infected cell. This further suggested that the proteins should colo-

calize in infected cells. Immunofluorescence assay of Vero cells
infected with UL51WT-FLAG virus using antibodies directed
against FLAG, pUL7, and gE showed that all three proteins par-
tially colocalized (Fig. 3). As shown previously, pUL51 was largely
found on cytoplasmic membranes that also contained gE (Fig. 3A,
C, and D) (32). gE, however, was found on cytoplasmic mem-
branes that did not contain pUL51 and was also present on the
nuclear membrane, where pUL51 was absent. Some pUL7 was
found diffusely localized in both the nucleoplasm and cytoplasm,
but some of it was also concentrated on cytoplasmic membranes,
where it colocalized with pUL51 and gE (Fig. 3B and D). The
concentration of pUL7 on cytoplasmic membranes and colocal-
ization with gE depended on expression of pUL51, since neither
occurred in cells infected with HSV-1 UL51�73-244, which is

FIG 3 Localization of pUL51, pUL7, and gE in infected cells. Vero cells infected for 14 h with HSV-1 UL51WT-FLAG (A to D) or HSV-1 UL51�73-244 (E to G)
were fixed and probed with anti-FLAG antibody to detect pUL51 (A and D), anti-UL7 antiserum (B, D, E, and G), and mouse monoclonal antibody directed
against gE (C, D, F, and G). Confocal images of single z-sections taken near the center of the nucleus (i.e., where the nuclear cross-section is the largest) with a
60� oil objective are shown. Negative controls (not shown) were normal rabbit serum for anti-UL7 rabbit antiserum and uninfected cells for anti-gE and
anti-FLAG and showed no fluorescence at the laser and detector settings used to obtain these images. (H) Quantitation of gE and pUL7 colocalization. gE and
pUL7 fluorescent intensities were measured across the linear profiles of 10 randomly selected cells, as described in Materials and Methods. Representative profiles
from one cell infected with UL51-FLAG (top) and UL51�73-244 (bottom) are shown along with the profile plots and derived Pearson correlation coefficients.
Aggregate results from 10 profiles are shown at the right.
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missing most of the UL51 protein-coding sequence (Fig. 3E to G).
Quantitative analysis of colocalization of gE and pUL7 in 10 ran-
domly selected cells that showed concentrations of gE in the cyto-
plasm showed that gE and pUL7 localization was positively corre-
lated in all infected cells that also expressed pUL7 (mean R value,
0.7926). None of the cells analyzed gave R values of less than 0.5. In
contrast, pUL7 localization was not correlated with gE localization
in cells infected with UL51�73-244 virus (mean R value, 0.1467).
None of the cells analyzed gave an R value of greater than 0.5.

To determine whether pUL51, pUL7, and gE can interact in the
absence of other viral proteins, Vero cells were transfected with
plasmids carrying pUL51-FLAG, pUL7, and gE, and protein local-
izations were determined by immunofluorescence (Fig. 4). pUL51
expressed in the absence of any other viral gene was concentrated

on cytoplasmic membranes previously show to be Golgi apparatus
membranes (42), although some protein was also found diffusely
distributed in both the cytoplasm and the nucleoplasm (Fig. 4A).
pUL7 expressed alone was found diffusely distributed in the cyto-
plasm and nucleoplasm and showed no tendency to concentrate
on membranes (Fig. 4A). Coexpression of pUL51 and pUL7, how-
ever, resulted in recruitment of some pUL7 to sites of pUL51 con-
centration (Fig. 4B, arrowheads). pUL7 showed no tendency to
colocalize with gE when these two proteins were expressed alone
(Fig. 4C), suggesting that interaction with pUL51 is specifically
responsible for membrane recruitment of pUL7. pUL51 and gE
also colocalized when these two proteins were expressed in the
absence of pUL7 (Fig. 4D, arrowheads). Since both pUL51 and gE
can independently localize to the Golgi apparatus, however, this

FIG 4 Localization of pUL51, pUL7, and gE in transfected cells. Vero cells were transfected with plasmids for 24 h and then fixed and probed by indirect
immunofluorescence. Images of single z-sections taken near the center of the nucleus with a 60� oil objective are shown. Primary antibodies are indicated at the
tops of the panels, and the plasmids used for transfection are indicated to the left of each row. White arrowheads, areas of colocalization between pUL51
and pUL7.
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does not necessarily imply interaction during coexpression. Ex-
pression of all three proteins resulted in a localization pattern very
similar to that seen in infected cells, with partial colocalization of
all three proteins on cytoplasmic membranes. This colocalization
was observed in cells expressing low, moderate, and large amounts
of all three proteins, suggesting that colocalization was not an
artifact of overexpression, and the images shown were chosen, in
part, because the fluorescent staining intensities were similar to
those seen in infected cells.

Incorporation of pUL7 into virions depends upon pUL51.
pUL7 and pUL51 are both components of the virus tegument (40,
41, 53, 64–67). Their interaction suggested that one might be re-
sponsible for recruitment of the other to sites of virion assembly
on Golgi apparatus or endosomal membranes. The observation
that pUL7 recruitment to cytoplasmic membranes depended
upon expression of pUL51 (Fig. 3) suggested that pUL51 might
also be required for recruitment of pUL7 to the virion tegument.
Virions were purified from whole-cell membrane fractions and
from culture supernatants, as described in Materials and Methods
(Fig. 5). Cytoplasmic membranes from HEp-2 cells infected with
either HSV-1(F) or HSV-1 UL51�73-244 were fractionated on
dextran gradients, and fractions were assayed by immunoblotting
for VP5 (to identify virions) and for pUL51, pUL7, and gE (Fig.
5A). Virions were concentrated in fractions 5 and 6 of the gradi-
ent. About half of the pUL51 in the gradient peaked in the same
fractions as VP5, but a significant amount was also found in the
lighter fractions, consistent with pUL51 association with cytoplas-
mic membranes other than the virion envelope. As expected,
pUL51 was not detectable in fractions from cells infected with
UL51 deletion virus. In fractions from wild-type virus-infected
cells, pUL7 cosedimented with pUL51 and was abundant in the
virion fractions. In contrast, the amount of pUL7 in the entire
gradient and, specifically, in the virion fractions was greatly re-
duced in the UL51 deletion virus-infected cells. The near absence
of pUL7 in the gradient overall is consistent with the hypothesis
that pUL51 is required for the recruitment of pUL7 to cytoplasmic
membranes. The greatly diminished amount of pUL7 specifically
in virion fractions from UL51 deletion virus-infected cells indi-
cated that pUL51 expression was necessary for the efficient incor-
poration of pUL7 into the tegument. However, pUL7 was not
entirely absent from the virion fractions in the UL51 deletion virus
gradient, perhaps indicating that it can be recruited at a very low
efficiency by interaction with other viral factors. pUL51 also inter-
acts with gE, but in contrast to pUL7, incorporation of gE into the
virion envelope appeared to be unaffected by deletion of UL51. In
order to confirm these observations in mature virions that had
been released from infected cells, virions were purified from the
culture supernatants of infected HaCaT cells and probed for VP5,
pUL51, pUL7, and gE (Fig. 5B) or titers were determined by
plaque assay to determine infectivity (Fig. 5C). As expected, VP5,
pUL51, and gE all peaked in the same fractions as those with virion
infectivity in both wild-type and UL51 deletion virus infections.
pUL7 was greatly diminished (but, again, not completely absent)
in the virion fractions from cells infected with pUL51 deletion
virus.

DISCUSSION

The UL51 and UL7 genes are conserved in all herpesviruses, where
they accomplish at least roughly similar functions. Homologs of
both have been reported to participate in cytoplasmic envelop-

ment in the alpha- and betaherpesviruses (50–52, 64, 67–70).
pUL51 representatives from all three herpesvirus subfamilies
(pUL51 in HSV and pseudorabies virus [PrV], pUL71 in human
cytomegalovirus [HCMV], and BSRF1 in Epstein-Barr virus
[EBV]) have been reported to be virion tegument components
(40, 41, 64–67). pUL7 has also been identified to be a tegument
component in HSV, PrV, and HCMV (where the homolog is
UL103), but not in EBV (53, 65, 66).

Here, we show that pUL51 and pUL7 of HSV-1 form a complex
in infected cells that can be purified from infected cell lysates and
from which either protein can be coprecipitated with antibody
directed against the other. We also show that pUL51 and pUL7 are
partially colocalized in infected cells and that pUL51 is required
for recruitment of a portion of the infected cell pUL7 to cytoplas-
mic membranes. Furthermore, recruitment of pUL7 to mem-
branes by pUL51 occurs in cells that do not express other viral
proteins. Finally, pUL51 is largely responsible for recruitment of
pUL7 to the virion tegument.

We have previously shown that, in addition to its previously
described function in cytoplasmic envelopment, pUL51 has cell
type-specific functions in virus growth and CCS in epithelial cells
(32). Its importance in CCS may be due to a function in trafficking
virion components or perhaps virions themselves to the junc-
tional surfaces of cells (32). The growth phenotypes of HSV-1
isolates with UL51 and UL7 deletions are notably similar. In both
cases, single-step growth is inhibited 10- to 100-fold and the de-
letion viruses form minute plaques (32, 71), suggesting functions
in both assembly and CCS. Furthermore, like pUL51, pUL7 from
PrV and UL103 from HCMV are required for efficient cytoplas-
mic envelopment (64, 68). This suggests the possibility that the
two proteins perform their principal growth and spread functions
as a complex. pUL51 and pUL7 do not completely colocalize in
infected cells, however, showing that some fraction of the popu-
lation of each protein is not complexed with the other. This sug-
gests the possibility that the uncomplexed fraction of each popu-
lation may pursue independent functions.

HSV-1 pUL7 has previously been shown to interact with the
mitochondrial adenine nucleotide transporter 2 (ANT2) in pull-
down and coimmunoprecipitation assays (71). We did not ob-
serve colocalization between either pUL51 or pUL7 and mito-
chondrial markers in infected cells (not shown) at 16 h after
infection. Nonetheless, interactions between pUL7 and ANT2 at
earlier or later times might provide an avenue for pUL7 function
independent of pUL51.

Viral proteins are thought to be recruited to the tegument by
either direct or indirect interactions with the capsid or by direct or
indirect interactions with the cytoplasmic extensions of proteins
embedded in the virion envelope (reviewed in reference 72). In
fact, interaction chains that connect the exterior face of the capsid
to the exterior face of the membranes for secondary envelopment
may be important for mediating both secondary envelopment and
incorporation of tegument proteins into the virion. For example,
the large tegument protein VP1/2 (pUL36) binds to pUL25 and
pUL17 at the capsid penton vertices and recruits pUL37 (73–77).
Interaction between pUL37 and the virion envelope proteins gK
and pUL20 assists with secondary envelopment (78). pUL16 also
associates both with capsids and with pUL11, which is embedded
in membranes by way of its myristoyl group, and this association
may also assist with secondary envelopment (27, 48, 49, 77, 79–
83). Tegument proteins that are not necessary for envelopment
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FIG 5 Recruitment of pUL7 to virions by pUL51. (A) Immunoblots of virion gradient fractions from fractionation of cytoplasmic membranes of cells infected
with wild-type or UL51�73-244 virus are shown. (B) Immunoblots of virion gradient fractions from fractionation cell culture supernatants of cells infected with
wild-type or UL51�73-244 virus are shown. For panels A and B, the infecting virus is indicated to the left of each panel. The antibody used for immunoblot
probing is indicated to the right. (C) Plot of infectivity in the gradients shown in panel B.
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may be incorporated by direct or indirect interaction with pro-
teins that assist in assembly. pUL16, for example, is required for
recruitment of VP22, which is, in turn, required for recruitment of
ICP0 and ICP4 to the virion tegument (84, 85). Our results suggest
that the same paradigm governs incorporation of pUL7 into the
HSV virion.

HSV-1 pUL7 is a 296-amino-acid protein that lacks a putative
transmembrane sequence or motifs for fatty acylation. Its associ-
ation with membranes, therefore, is likely mediated by direct or
indirect interaction with a membrane-associated protein. Our re-
sults suggest that this protein is pUL51. Furthermore, HSV-1
pUL7 is salt extractable from detergent-treated virions, suggesting
that it is a peripheral tegument protein (66). This is consistent
with its recruitment to the virion by interaction with pUL51 pro-
tein that is associated with the interior of the viral envelope by way
of its palmitoyl group.

We also observed low-level incorporation into the virions dur-
ing infection with HSV-1 UL51�73-244, suggesting that pUL7 has
an alternative route for recruitment to the virion. Nozawa et al.
found that pUL7 was weakly associated with capsids purified from
wild-type virus-infected cells (86). Association with capsids may,
therefore, provide a redundant, albeit inefficient mechanism for
pUL7 virion incorporation and may account for the inefficient
incorporation of pUL7 into virions that was observed when
pUL51 was not expressed (Fig. 5). Bridging of the capsid and
membrane by way of a pUL7/pUL51 interaction might also pro-
vide a means for this complex to assist with cytoplasmic capsid
envelopment.
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