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Summary

The distal gut harbours ∼1013 bacteria, representing the most densely popu-
lated ecosystem known. The functional diversity expressed by these commu-
nities is enormous and relatively unexplored. The past decade of research has
unveiled the profound influence that the resident microbial populations
bestow to host immunity and metabolism. The evolution of these communi-
ties from birth generates a highly adapted and highly personalized
microbiota that is stable in healthy individuals. Immune homeostasis is
achieved and maintained due in part to the extensive interplay between the
gut microbiota and host mucosal immune system. Imbalances of gut
microbiota may lead to a number of pathologies such as obesity, type I
and type II diabetes, inflammatory bowel disease (IBD), colorectal cancer
(CRC) and inflammaging/immunosenscence in the elderly. In-depth under-
standing of the underlying mechanisms that control homeostasis
and dysbiosis of the gut microbiota represents an important step in our
ability to reliably modulate the gut microbiota with positive clinical out-
comes. The potential of microbiome-based therapeutics to treat epidemic
human disease is of great interest. New therapeutic paradigms, including
second-generation personalized probiotics, prebiotics, narrow spectrum
antibiotic treatment and faecal microbiome transplantation, may provide
safer and natural alternatives to traditional clinical interventions for chronic
diseases. This review discusses host–microbiota homeostasis, consequences
of its perturbation and the associated challenges in therapeutic develop-
ments that lie ahead.
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Introduction

The human gut harbours several hundred species of bacte-
ria featuring a small number of phyla, including
Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria
and Fusobacteria, highlighting the selectivity of the gut
microenvironment [1]. The bacterial, archeal, fungal and
viral intestinal communities are referred to as the gut
microbiota and their collective genomes are referred to as
the gut microbiome. Eons of co-evolution have selected
those species that bring no harm (commensals) or confer
benefit to their host (mutualists) [2–4]. These communi-
ties feature metabolic specialization, complementarity and

co-operation, which results in complex networks of
microbe–microbe and microbe–host relationships [5–7].
An individual’s gut microbiome may encode ∼150 times
more genes than our own genomes [8], thus justifying ref-
erences to the gut microenvironment as a complex
bioreactor replete with diverse biochemical activities. The
relative balance of specific metabolic activities in the gut
and their interaction with the human host may promote
both health and disease. The composition and functional
capacity of the gut microbiota may modulate risk posi-
tively or negatively to a wide variety of health and disease
phenotypes. The human gut microbiota displays high
interpersonal variation [9,10] but is stable over time,
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displaying resilience in the face of perturbing influences
[11] such as dietary flux [12–15] and exposure to antibiot-
ics [16]. Chronic or acute perturbations drive microbiota
dysbioses, which has been observed in a number of impor-
tant human diseases.

Generation of gut microbiota homeostasis

Many studies have identified gut microbiota dysbiosis in
association with a large variety of human disease; however,
in most cases causality has yet to be established. The study
of the gut microbiota over the human lifespan provides
important new insights and is crucial to our ability to
restore homeostasis through therapeutic interventions
intended to correct disease-associated dysbioses (Fig. 1).
Studies examining microbial succession communities in
early life provide a powerful framework to address how
homeostasis and stability are acquired in infants and subse-
quently lost in elderly people [17]. The developing gut
microbiota increases in diversity and stability over time.
Conversely, gut microbiota of elderly people display com-
munities of reduced diversity and increased interpersonal

variability. Human subjects of advanced age represent an
opportunity to identify the factors involved in maintaining
homeostasis and the relationship to aspects of
inflammaging and immunosenescence in elderly people
[18–23].

Successional communities drive the formation of
functional networks

Until recently, humans were thought to be born sterile.
Accumulating evidence suggests that microbes are detected
in amniotic fluid, placenta, meconium and umbilical cord
[24,25]. The role of these microbes is unclear, but has been
suggested to play a role in tolerance to commensal bacteria
[26]. The microbiota acquired at birth is of low diversity
and unstable, evolving in the first years of life, and culmi-
nating in a stable configuration with expanded representa-
tion of niche-adapted phylotypes. The primary inoculum
for vaginally delivered babies is from the mother’s vaginal
and faecal microbiome, dominated by Lactobacillus spp.,
Prevotella spp. and Sneathia spp. In caesarean section
(C-section) births, the skin of individuals handling the
newborns is the primary source of the initial microbiota
and features Staphylococcus spp., Corynebacterium spp.
and Propionibacterium spp. [27,28]. The diversity of adult
gut microbiota is higher in vaginally compared to
C-section-delivered infants [29–31]. Despite the distinct
taxonomic representation of the initial microbial
inoculums, the evolving communities display increased
relatedness over time [30,32,33], suggesting that evolving
communities possess a ‘trajectory’ that tends towards stable
fitness optima (Fig. 2).

Microbial succession is iterative, and driven at least in
part by the metabolic activities of the initial pioneer com-
munity that necessarily alter the virgin ecosystem, provid-
ing novel opportunities for subsequent community
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Fig. 1. The gut microbiota during the human lifespan. Over the first

2–3 years of life, the gut microbiota undergoes dynamic changes

wherein highly adapted communities are established resulting in a

healthy microbiome in a state of homeostasis. Environmental factors

such as sustained intake of a high-fat, high-carbohydrate diet may

drive the gut microbiota into a state of dysbiosis that may influence

human diseases such as obesity, diabetes and colorectal cancer.

Similarly, the elderly gut microbiota may degenerate into a state of

dysbiosis resulting in chronic inflammation (inflammaging) and

reduced immune function (immunosenescence).
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Fig. 2. Vaginal versus caesarean-section delivery. The pioneer

microbial colonizers acquired vertically from first contact are distinct

but microbial succession converges to become more similar over the

first years of life. This illustrates that gut microbiota evolves over time

to establish a state of homeostasis wherein resident species are highly

adapted for survival in the highly competitive gut microenvironment.
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succession that broadens the functional complementarity
of resident species. The initial colonizers of the gut include
many facultative anaerobes owing to the elevated oxygen
tension in the newborn gut. The activities of the pioneer
colonizers reduce the oxygen tension, aiding succession
favouring strict anaerobes. The pH and redox potential
along the length of the gut is not uniform and dictates the
fitness of individual bacterial species occupying various
subdomains. Analysis of gut succession communities in
early life bear resemblance to ecological models of punctu-
ated equilibrium, wherein brief periods of transient stabil-
ity are followed by bursts of change [34–36]. In this
regard, gut microbiota development also has the property
of velocity, wherein rapid change may reflect a maladapted
microbiota, e.g. when babies transition from breast milk to
a solid food diet.

Microbial succession proceeds with a trend towards
increased numbers and interconnectivity of microbe–
microbe and host–microbe functional networks [37,38].
Many aspects of bacterial metabolism are carried out by
co-ordinated and co-operative consortia. These consortia
are indirectly discernable by the analysis of metagenomic
DNA sequence data to identify broadly co-occurring and
co-excluded species [37]. The generation of short chain
fatty acids (SCFAs) reflects the activities of a network of
species that co-operatively degrade resistant starch. The
contribution of SCFAs to gut enterocytes is thought to be
a significant driving force in host/microbiota interactions
[39]. The collective fermentative activities of the numeri-
cally dominant phyla generate inhibitory quantities of
hydrogen (H2). The fermentative consortia are linked func-
tionally to biochemical activities of sulphate-reducing bac-
teria and methanogens in the community that consume
H2. This example illustrates the driving forces of stable and
widespread microbial interdependencies. The number and
interconnectivity of these networks and the robustness
of species representing network hubs may influence the
property of community resilience (the resistance to change
of community structure in response to perturbation) and
elasticity (the rate that communities restore equilibrium
following perturbation) (Fig. 3). These traits may be
highly personalized and define an individual’s stability
landscape [11,40]. Ecological models suggest that some
community topologies or phylotypes will be highly
resistant to change, whereas others may be prone to larger
change following perturbation (Fig. 4). A major challenge
inherent in gut microbiota modulation to correct
dysbioses lies in our ability to reliably alter the composi-
tion of bacterial communities to achieve desired clinical
outcomes while avoiding unintended or poorly perceived
negative consequences. An improved understanding of the
selective features controlling stable ‘health-promoting’
network formation may define novel therapeutic
approaches to achieve restoration of microbiota equilibria
and immune homeostasis.

Simple network Interconnected network
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Fig. 3. Functional networks link the function of microbes and

support community stability and resilience. Functional networks in

the gut are extensive and imply that targeted modulation of the gut

microbiota may have unexpected impact on the viability of off-target

species. Left: low interconnectivity may render gut communities

prone to change as the result of relatively small perturbation. Right:

highly interconnected networks may be more robust and resistant

to change.
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Fig. 4. Microbial stability landscape. A theoretical depiction of gut

species and their response to perturbation. In some instances, a small

perturbation may lead to a large change in the fitness of that species

with low resilience, whereas other species may be equally impacted by

a similar perturbation but display high resilience.
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Gut homeostasis

Interplay of the host immune system and
gut microbiota

We are making strong inroads in our understanding of the
complex interactions between the gut microbiota and the
mucosal immune system of the gastrointestinal (GI) tract.
The close physical proximity of dense microbial popula-
tions with underlying host tissue facilitates numerous meta-
bolic and immunological opportunities for host benefit
while simultaneously posing a constant and proximal threat
to human health. The human immune system must estab-
lish an appropriate balance between tolerance to the gut
commensal microbiota and vigilance to guard against infec-
tious agents and opportunistic pathogens. Gut homeostasis
is maintained as an inflammatory tone, allowing a rapid
and self-limiting response appropriate to a stress or infec-
tious agent. The cross-talk between the gut microbiota and
host is extensive, and involves both innate and adaptive
immunity.

Immune surveillance of the gut commensal community
involves the recognition of a diversity of pathogen-
associated molecular patterns (PAMPs) such as
lipopolysaccharide (LPS) and bacterial peptidoglycan cell
wall components through Toll-like receptors (TLRs) and
nucleotide binding oligomerization domain proteins
(NODs). Endogenous and exogenous signals in the gut are
recognized by a repertoire of innate immune cell pattern
recognition receptors (PRRs) mediating the interaction
between bacterial ligands and the host [41,42]. TLRs and
NODs act in distinct cellular compartments and cell-type
specific combinations. Ligand engagement of these recep-
tors on the apical surface (lumen exposed) epithelium pro-
motes tolerance and healthy inflammatory tone; however,
the activation of these receptors on the basolateral surface
of colonocytes leads to strong proinflammatory responses
[41]. A variety of microbial ligands stimulate activation of
nuclear factor kappa B (NF-κB) and downstream
proinflammatory cytokines such as tumour necrosis factor
(TNF)-α and interleukin (IL)-1 [43].

Bacterial populations are segregated from the gut epithe-
lium by a thick mucin layer produced by goblet cells that is
embedded with a number of anti-microbial factors such as
immunoglobulin (Ig)A, α and β defensins [44]. Despite this
segregation, it is evident that components of the gut
microbiota play essential roles in immune development,
homeostasis and tolerance. Commensal colonization of the
gut results in Paneth cell expression of the anti-microbial
peptide, regenerating islet-derived 3 gamma (Reg III-γ)
[45], whereas NOD2 signalling is required for α-defensin
production [46] (Fig. 5). The gut microbiota is involved in
maintaining a balance of T-effector cell function. In germ-
free mice, natural killer (NK) T cells residing in non-
mucosal lymphoid organs could not be primed effectively

to mount anti-viral responses, as both macrophages and
dendritic cells (DCs) failed to produce type 1 interferon
(IFN) [47]. The commensal microbiota also contributes to
tolerance via TLRs sequestered in the crypts and regulatory
T cells (Treg) cells that down-regulate proinflammatory sig-
nalling through the production of IL-10 and transforming
growth factor (TGF)-β [48]. Thymic Treg cells confer toler-
ance to antigens produced by resident microbiota [49].
Additional studies have highlighted additional microbe–
host interactions that serve to modulate immune homeo-
stasis. Non-pathogenic Salmonella block the ubiquitination
of IκBα, thereby maintaining NF-κB in an inactive state
[50]. Bacteroides thetaiotamicron, an abundant member of
the gut microbiota, increases the nuclear export of the RelA
subunit of NF-κB, thereby reducing its activity [51].
Lactobacillus casei down-regulates components of the
proteasome complex, thereby decreasing the turnover of
IκBα [52]. B. fragilis increases the production of the anti-
inflammatory cytokine IL-10 in gut-associated immune
cells [53]. Many Clostridium spp. increase TGF-β expression
and Treg cell titres [54]. Commensally produced ATP is
known to stimulate differentiation of Th17 cells [55]. Seg-
mented filamentous bacteria (SFB) drive this induction
[56]. Polysaccharide A (PSA) derived from B. fragilis sys-
temically increases CD4+ T cell numbers in germ-free mice
[53] and forkhead box protein 3 (FoxP3) Treg production of
IL-10 in mice [57]. Taken together, these results make
evident that the gut microbiota/host immune interactions

Healthy gut environment Unhealthy gut environment

Bacteria
lgA

Macrophage
Dendritic cell

RegIIIγ
α-defensins

Fig. 5. Stratification of the gut epithelium. In a healthy gut

environment (left panel), goblet cells secrete mucin to establish a

physical barrier excluding direct contact of the gut microbiota from

the underlying epithelium. Paneth cells produce a number of

anti-microbial defensins that are embedded in the mucin layer.

Dendritic cells extend into the lumen to sample the commensal

communities potentially as a means of determining self. During

pathological conditions (right panel), mucin barrier is compromised

which facilitates microbial invasion through the epithelium and leads

to inflammation.
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are extensive and co-operative. Homeostasis is maintained
through what is likely to be a large number of microbial-
produced signals that facilitate robust immune surveillance
and tolerance.

Antibiotic treatment reveals gut microbiota
immune interactions

Antibiotic treatment modulates the gut microbiota compo-
sition (Table 1) along with their immune modulatory
ligands, and therefore represents an approach to deepen our
knowledge of the interactions between the gut microbiota
and host immune function. Antibiotic exposure impacts
both innate and adaptive immunity. In mice, antibiotic
treatment results in reduction of Paneth cells, goblet cells
and enterocytes and production of anti-microbial peptides,
including defensins, C-type lectins and cathelicidins [68].
Antibiotics that target Gram-negative bacteria impact sig-
nalling through TLR-4 and NOD1, whereas those targeting
Gram-positive species alter signalling through TLR-2
and NOD2 pathways [69,70]. Treatment of mice with
amoxicillin and clavulanic acid (broad-spectrum) resulted
in reduced serum IgG levels [71]. Mice treated with
amoxicillin results in the loss of Lactobacillus spp. and an
accompanying reduction in α- defensins, matrilysin and
phospholipase A2 production. Transcript abundance of
major histocompatibility complex (MHC) class II and class
Ib genes were also reduced [72]. Mice treated with Gram-
positive-specific antibiotics (vancomycin or ampicillin) but
not Gram-negative-specific treatments (metronidazole and
neomycin) resulted in depletion of Th17 cells in the intes-
tine [73] and the identification of SFB as the signal respon-
sible for the Th17 cell collapse [56]. The continued presence
of the gut microbiota appears to be important for maintain-
ing effector T cell populations in the gut, as treatment of
mice with an antibiotic cocktail resulted in the reduced
abundance of CD4+ T cells expressing IFN-γ or IL-17A [74].
As we begin to improve our understanding of the specific
ligands and immune pathways mediating gut homeostasis
we will increase our ability to recognize the aberrations
associated with microbial dysbioses and how those commu-
nities might be altered to restore homeostasis.

Gut microbiota dysbiosis

Dysbioses of the gut microbiota have been noted for a large
spectrum of human diseases (Table 2). Evaluating the
microbiota as a potential causal agent of disease is of great
interest. One anticipated challenge in ‘diagnosing’ dysbioses
is that signatures of dysbiosis are probably disease-specific
and multiple. It will be important to be able to distinguish
the disease-associated alterations in microbiota composi-
tion that may drive or contribute to disease onset from
those that reflect altered selective pressures generated by the
disease microenvironment, e.g. chronic or acute inflamma-

tion. Systematic characterization of microbial dysbioses that
promote disease initiation and the specific host pathways
impacted will be critical to improving our understanding of
the mechanistic aspects of microbiota as a driver of human
disease.

The gut microbiota of elderly people

As humans age, a variety of T cells display age-dependent
decline [96] that mirror the involution of the thymus which
is essentially complete in human subjects >60 years of age
[97]. In older subjects, CD3+, helper CD4+ and suppressor/
cytotoxic CD8+ cell numbers are reduced. These changes are
accompanied by an increase in the production of type 1
cytokines: IL-2, IFN-γ, TNF-α and type 2 cytokines, IL-4,
IL-6 and IL-10 [98]. These changes are associated with
elevated inflammation in elderly people, a phenomenon
known as inflammaging [99]. The gut microbiota of elderly
people displays decreased diversity and increased interper-
sonal variability [22,23]. The abundance of anti-
inflammatory taxa, Bifidobacterium spp., F. prausnitzii and
members of Clostridium cluster XIVa are reduced in elderly
populations [19]. The level of Bifidobacterium is anti-
correlated with serum levels of TNF-α and IL-1 [19]. Strep-
tococcus spp., Staphylococcus spp., Enterococcus spp. and
Enterobacteria spp., genera containing pathogenic and
inflammatory species are increased. Unique stool
microbiota profiles were evident between healthy
‘community-dwelling’ and ‘long-term residential care’ sub-
jects [18]. These differences may be due to disparate con-
sumption of fruits and vegetables in the two groups.
Alterations in the gut microbiota diversity and richness in
elderly people may increase susceptibility to infectious
agents by favouring the colonization of pathobionts. The
elevated inflammatory status and concomitant reduced
mucin production in the aged colon increases the potential
for bacteria to adhere to the colonic mucosa. An important
unanswered question is whether age-related gut microbiota
changes account for the observed increased susceptibility to
infection, immunosenescence and inflammaging in elderly
people.

Host inflammation in inflammatory bowel
disease (IBD)

Among the significant changes associated with IBD is the
reduction in epithelial barrier function resulting from
increased expression of claudin 2 and the down-regulation
and spatial redistribution of claudins 5 and 8, proteins
mediating tight junctions between epithelial cells. Pores and
discontinuities in epithelial tight junctions increase the like-
lihood of bacterial breach [100,101]. Additional hallmarks
of IBD include defective mucin organization and expres-
sion, induction of endoplasmic reticulum (ER) stress,
autophagy and inflammation [102,103]. In human subjects

Gut microbiota and immune homeostasis
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with Crohn’s disease (CD), dysregulation of α- and
β-defensin is thought to account partially for observed
alterations of the gut microbiota composition [104]. A
study using T-bet (transcription factor)-deficient mice
demonstrated that they are colitogenic and fail to develop
Th1 cells. These mice harbour an altered gut microbiota.
Interestingly, the gut microbiota derived from T-bet-
deficient mice conferred colitis to recipient wild-type mice,
indicating that the dysbiotic microbiota is sufficient to
cause disease [105]. Human subjects with IBD display a
reduction in community complexity coupled with an
overall loss of several prominent commensal species.
Among the anti-inflammatory species, F. prausnitzii dis-
plays decreased abundance in subjects with IBD
[75,106,107]. Pathobionts appear to exploit the void and
may contribute further to host inflammation. Specific
organisms and phyla with either increased mucolytic and/or
adherence properties have been identified in subjects with
IBD, including Ruminococcus gnavus and R. torques
[75,108,109], as well as members of the γ-proteobacteria
featuring Escherichia coli strains [106,110,111]. Subjects
with IBD displayed a significant increase in mucus pen-
etrant bacteria compared to healthy subjects [111]. Recent
studies have implicated the increased abundance of
adherent-invasive E. coli (AIEC) as a potentially significant
causal agent in the initiation and/or potentiation of CD
[112,113]. Defects in autophagy genes NOD2, ATG16L1 and
IRGM result in increased prevalence of AIEC [114,115].
Another host factor that promotes AIEC colonization is the
abnormal expression of CEACAM6, a receptor for AIEC in
patients with ileal CD [116]. Additional dysbioses have been
noted, including the increased abundance of Listeria
monocytogenes, Campylobacter spp., Salmonella spp.,
Yersinia enterolitica and Y. pseudotuberculosis in subjects
with CD; however, these associations are not observed uni-
formly in other studies, suggesting that ‘inflammatory’
species may be considered interchangeable with respect to
their ability to drive disease.

Human subjects with IBD are at elevated risk for devel-
oping colorectal cancer (CRC). The gut microbiota of
colitis-susceptible Il10–/– mice display reduced richness and
increased abundance of Verrucomicrobia, Bacteroidetes,
Proteobacteria and ∼100-fold increase in E. coli [117].
Gnotobiotic azoxymethane (AOM)-treated Il10–/– mice
mono-associated with either polyketide synthase (pks+)
E. coli (NC101) expressing the colibactin toxin or E. faecalis
develop colitis. While both mono-associations induced
inflammation, only the E. coli-associated mice develop inva-
sive carcinomas. These results indicate that elevated inflam-
mation was not sufficient for tumour formation and that
genotoxic gut bacteria provide additional signals required
for tumorigenesis [117]. This study also showed that pks+

E. coli was present in ∼67% of subjects with CRC compared
to ∼21% in non-IBD/CRC subjects. Mice deficient for com-
ponents of the NOD-like receptor (NLR) family, pyrin

domain containing 6 (NLRP6) inflammasome in a model of
IBD-associated inflammation-induced CRC displayed
increased inflammation, dysbiotic microbiota composition
and increased tumour burden [118]. Remarkably, the
co-housing of the NLRP6-deficient mice with wild-type
mice conferred the colon tumour phenotype to wild-type
mice, indicating that dysbiotic microbiota represent a previ-
ously unrecognized trigger of CRC initiation and progres-
sion. Multiple inflammatory and stress-induced responses
are expressed aberrantly in subjects with IBD. Each of these
pathways has the potential to alter microbiota composition.
Deciphering the role(s) of the microbiota in relation to
inflammatory, ER stress and autophagy functions in IBD is
likely to be complex and highly challenging.

Modulation of the gut microbiota

Diet as a modulator of the gut microbiota

One of the major advances in our understanding of the gut
microbiota is the recognition that it is a metabolically
adaptable ‘organ’. Among the numerous factors that modu-
late the microbial composition of the gut, diet is perhaps
the most influential. It has been proposed that the gut
microbiota can be grouped into three enterotypes,
Bacteroides, Prevotella and Ruminococcus, based upon the
relative abundance of the dominant phyla [119]. Dietary
profiles have been associated with specific enterotypes.
Bacteroides is associated with a high-fat diet and Prevotella
is associated with a high carbohydrate diet [120]. A typical
Western diet (high-fat, high-sugar), results in an overall
reduction of Bacteroidetes and an increase in Firmicutes
[12,121]. The microbial communities present in faecal
samples derived from vegetarian and vegan controls were
distinct from omnivorous control subjects that displayed a
reduced abundance of Bacteroides spp., Bifidobacterium
spp., E. coli and Enterobactericieae [122,123]. Recently, it has
been shown that the gut microbiota undergoes rapid
change as the result of dietary shifts from an animal-based
to plant-based diet [124]. These alterations were larger than
the interpersonal differences distinguishing gut microbiota,
indicating the strong modulating potential of diet. Animal-
based diet increased the abundance of bile-tolerant genera
including Alistipes, Bilophila and Bacteroides and a reduc-
tion of Firmicutes. The shift in microbiota resulted in shifts
in the functional composition of the microbiome that fea-
tured either amino acid or polysaccharide metabolism.
These observations emphasize the potential of dietary inter-
vention to increase human health through modulation of
the gut microbiota. The health benefits of fruits and vegeta-
bles and the anti-cancer properties of a number of plant-
based nutrients are well documented [125,126]. However,
far less is known regarding how these metabolites are pro-
duced and their modes of action. Human intervention
studies have been conducted on a number of dietary
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nutrients. These studies have highlighted something unex-
pected; that human subjects display variability in their
ability to metabolize specific substrates or secondary
metabolites, suggesting that the derived health benefits
associated with these nutrients may be personalized.

Breast cancer is the most common malignancy and
second leading cause of cancer-related death in women
worldwide [127]. Epidemiological studies have shown a sig-
nificant disparity in breast cancer incidence when compar-
ing US and Japanese populations [128,129]. The elevated
consumption of phytoestrogens found in soy-based foods
was identified as a potential contributory factor [130].
Phytoestrogens, including isoflavones, coumestans, lignans
and steroidal phytosterols, possess oestrogenic effects in
animals via oestrogen receptor signalling [131]. Soy is rich
in the compounds genistein and daidzein. While genistein is
absorbed readily in the small intestine without further
metabolism, daidzein is metabolized in the gut leading to
the production of equol and O-desmethylangolensin
(O-DMA); however, only 30 and 80% of subjects from the
United States are able to convert daidzein to the bioactive
compounds, equol and O-DMA, respectively [132–134].
Conventional but not germ-free mice produce equol and
O-DMA [135,136]. Furthermore, incubation of daidzein
with faecal microbiota from some individuals but not
others results in the production of equol and O-DMA
[137], demonstrating that members of the gut microbiota
mediate equol and O-DMA production and represent a per-
sonal trait [137–140].

The widespread identification of bacterial species/strains
capable of carrying out metabolic bioconversions of health-
promoting compounds may allow an individual’s metabolic
phenotype to be defined. This, in turn, may dictate the
composition of personalized probiotic formulations as a
means of expanding the benefits of a healthy diet. Detailed
knowledge of the genes encoding these metabolic enzymes
would provide opportunities for the development of diag-
nostics, synthetic or genetically engineered microorganisms
to specifically complement any individual’s set of metabolic
deficiencies.

Faecal microbiome transplantation

Faecal microbiome transplantation (FMT), generally con-
ducted by colonic enema or by endoscopy, introduces distal
gut flora from a healthy donor into an unhealthy recipient,
often a family member. This seemingly radical procedure
has been performed with remarkable success to treat sub-
jects with recurrent, refractory C. difficile infections. The
high level of success of this therapeutic option now
reported on more than 200 human subjects with a ∼90%
success rate [141] has led to intensified interest to examine
whether this approach could be effective in reversing the
effects of IBD, IBS, CRC, obesity and other diseases. Further
studies will need to be performed to understand more

clearly the dynamics of donor and recipient microbiota, fol-
lowing FMT. It will be of interest to determine whether
certain bacterial clades or networks are displaced more
easily than others. Is there significant variation in the effi-
cacy of FMT across individuals? Are the post-FMT
microbiota or therapeutic components stable over time? An
analysis of gut communities before and after FMT indicates
that successful clinical outcomes are associated with restora-
tion of community diversity that has been reduced as the
result of the infection and/or antibiotic treatment [142].
The effectiveness of FMT in treating C. difficile infection is
consistent with a function of the gut microbiota known as
pathogen exclusion, wherein a healthy and diverse com-
mensal flora efficiently colonizes the gut lumen and
mucosa, preventing pathogenic organisms to compete or
co-exist. The degraded state of the gut microbiota in cases
of refractory C. difficile infection may be ideal for efficient
‘regime change’ afforded by FMT. The application to FMT
to treat IBD represents an important avenue for future
evaluation. It may be predicted that FMT will be an effective
treatment option for those diseases involving dysbiotic
microbiota.

Probiotics

The use of probiotics has increased sharply in recent years,
representing a multi-billion-dollar industry annually. Safety
and regulatory concerns have slowed progress in this area in
the United States. As a result, there is a growing interest in
the development of probiotics that seek to mimic the clini-
cal outcomes observed for FMT. The strong potential of
FMT to reverse and cure chronic disease highlights the
potential therapeutic direction that seeks to mimic the
therapeutic virtues of FMT in a defined probiotic formula-
tion. Probiotics are live microorganisms ingested either
through diet, e.g. yogurt or in the form of a probiotic sup-
plement. It has been demonstrated that probiotics contain-
ing Bifidobacterium or treatment with inulin reduces the
frequency of translocating Enterobacteriaceae in DSS-colitis
induced rats and similarly probiotic-treated mice showed
decreased mortality following infection with either
L. monocytogenes and S. typhimurium [143,144]. A recent
study revealed the mechanism by which a probiotic strain,
E. coli Nissle, confers an anti-infective effect [145]. E. coli
Nissle competes effectively with pathogenic S. typhimurium
for binding of essential and limiting iron in the gut. It
remains unclear whether this or another mechanism
accounts for the reduced susceptibility to infection observed
with other probiotics. An analysis of a human twin pair
consuming a probiotic formulation consisting of five
probiotic species indicated that the gut microbiota compo-
sition was not altered, but that changes in the community
gene expression patterns were evident. Nearly 40 metabo-
lites derived from the five probiotic species were noted
[146]. Reduction in a number of carbohydrates and
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increased pyrogallol and polyphenols were observed, mir-
roring the carbohydrate utilization and metabolic capacity
of the probiotic species. The transcriptional and metabolic
impact was transient and subsided upon cessation of
probiotic intake. As researchers begin to characterize the
properties of individual gut microbes with potent
immunomodulatory potential, it is likely that second-
generation probiotic formulations may feature a new
species. Future probiotics may target specific human disease
states, including effective prophylactics that reduce the inci-
dence of infectious disease in at risk populations, suscepti-
bility to weight gain and alleviation of inflammation and
tissue damage associated with IBD. Probiotics may increas-
ingly be prescribed to patients being treated with antibiotics
and other chemotherapeutics.

Outlook and conclusions

The rapid progress in our understanding of the complexity
of the human microbiome has been remarkable. It has
become clear that a wide variety of human diseases and
conditions are associated with dysbiosis of the gut
microbiota. Investigations of the gut microbiota in the
coming years will attempt to evaluate the impact of
dysbiosis as a causal or contributing factor in these diseases.
This possibility has fuelled heightened interest in identify-
ing strategies to modulate the gut microbiota in order to
correct dysbioses and restore immune homeostasis. It
appears inevitable that our view of human health and
disease will increasingly consider the microbiome as an
important component. We are improving our knowledge of
beneficial taxa such as Bifidobacterium spp. and
Lactobacillus spp., but a complete definition of healthy
microbiota is incomplete. Similarly, we need to improve our
ability to recognize dysbiotic microbiota in human subject
cohorts that are highly variable and understand how spe-
cific microbes of groups of microbes influence health and
disease. The very large number of species and gene func-
tions present in microbiomes will make this very challeng-
ing indeed. The rate that we can apply DNA sequence
characterization of the human microbiome will continue to
increase. However, new complementary, high-throughput
technology platforms are needed to improve our ability to
cultivate gut microbes and evaluate their interaction with
the human host.
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