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Abstract

Podophyllotoxin (PPT), as well as its congeners and derivatives, exhibits pronounced biological 

activities, especially antineoplastic effects. Its strong inhibitory effect on tumor cell growth led to 

the development of three of the most highly prescribed anticancer drugs in the world, etoposide, 

teniposide, and the water-soluble prodrug etoposide phosphate. Their clinical success as well as 

intriguing mechanism of action stimulated great interest in further modification of PPT for better 

antitumor activity. The C-4 position has been a major target for structural derivatization aimed at 

either producing more potent compounds or overcoming drug resistance. Accordingly, numerous 

PPT derivatives have been prepared via hemisynthesis and important structure–activity 

relationship (SAR) correlations have been identified. Several resulting compounds, including 

GL-331, TOP-53, and NK611, reached clinical trials. Some excellent reviews on the distribution, 

sources, applications, synthesis, and SAR of PPT have been published. This review focuses on a 

second generation of new etoposide-related drugs and provides detailed coverage of the current 

status and recent development of C-4-modified PPT analogs as anticancer clinical trial candidates.
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1. INTRODUCTION

Podophyllotoxin (PPT, 1, Fig. 1), a naturally occurring aryltetralin lignan, holds a unique 

position among natural products having been known for approximately 1000 years from its 

first application in folk medicines to its most recent developments in PPT-derived antitumor 

agents.1–8 Interest in PPT was initiated by Kaplan,9 who demonstrated its curative effect 

against tumor growth (Condylomata acuminata), and subsequently by King and 

Sullivan,10,11 who found its antiproliferative effect to be similar to that of colchicine at the 

cellular level. However, the initially high expectation for clinical use of PPT declined 

rapidly due to its unacceptable side effects, including nausea, vomiting, and damage to 

normal tissues. Nevertheless, due to its remarkable biological activity and extensive use in 

traditional medicine, PPT has remained an important starting point in the development of 

new therapeutic agents.

During early chemical modification studies, stereotransformation of α to β 

(epipodophyllotoxin, EPPT, 2) at the C-4 position, together with 4′-O-demethylation, gave 

4′-demethylepipodophyllotoxin (DEPPT, 3). Investigation of semisynthetic glucoconjugates 

based on DEPPT led to two anticancer drugs, etoposide (ETO, 4) and teniposide (5), as well 

as etopophos (6), a water-soluble prodrug of ETO (Fig. 1).12–22 These compounds are 

currently used as drugs, alone or in combination with other agents, in clinical cancer 

chemotherapy against small cell lung cancer, acute leukemia, lymphoma, testicular 

carcinoma, and Kaposi’s sarcoma. Notably, the two structural modifications leading to 

DEPPT-type compounds also led to a different mechanism of action (MOA). While PPT 

acts as antimicrotubule agent, ETO and 5 function as topoisomerase II (topo II) 

inhibitors.23–25 Their clinical success and intriguing MOA stimulated great interest in 

further exploration of DEPPT derivatives with better antitumor activity. However, during 

the almost 50 years since clinical trials on ETO began in 1967, intense research efforts have 

resulted in both enthusiasm and setbacks. Studies showed that some nonsugar substituted 

analogs, particularly N-linked congeners, such as NK-611 (7), GL-331 (8), and NPF (9), as 

well as C-linked congeners, such as TOP-53 (10), exhibited superior pharmacological 

properties compared to ETO.26–32 These compounds were brought into clinical evaluations; 

however, they did not proceed further. Recently, tafluposide (F11782) (10), a novel catalytic 

inhibitor of topo I and II, has also been obtained (Fig. 1).33 Overall, these variants displayed 

improved water solubility and cytotoxic activity, as well as drug resistance and antitumor 

profiles, indicating that rational C-4 modifications can further optimize the activity of 

DEPPT. In in silico studies, both a composite pharmacophore model and comparative 

molecular field analysis34 further demonstrated that the C-4 molecular area could 

accommodate considerable structural diversity. These results suggested valuable directions 

for structural modification and hence, many researchers focused their studies on the design 

and synthesis of C-4 modified analogs.

Excellent reviews35–42 on PPT derivatives from a historical point of view and recent 

reviews43–49 on the distribution, sources, applications, total synthesis, and structure–activity 

relationship (SAR) correlations of PPT by us and other groups are available. However, an 

updated review focused on the important C-4 position is needed to facilitate the progress of 

future research for developing PPT-based new drugs. Herein, we describe PPT-related 
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analogs containing carbon-, sulfur-, selenium-, oxygen-, and nitrogen-linked substituents at 

the C-4 position, as well as analogs containing spin labels in the C-4 substituent and at other 

positions. Orientations at the C-4 position include both α (as in PPT) and β (as in EPPT, 

DEPPT, and ETO), and substitutions at C-4′ include both methoxy (as in PPT and EPPT) 

and hydroxyl (as in DEPPT and ETO).

2. BIOLOGICAL ACTIVITIES AND MEDICAL APPLICATIONS

PPT-containing extracts have been widely used as folk remedies in traditional oriental 

medicine. They were commonly used in China, Japan, and the Eastern world as purgatives 

and to treat snake bites, periodontitis, skin disorders, coughs, various intestinal worm 

diseases, venereal warts (C. acuminata), lymphadenopathy, and certain tumors.1,8,50 Today, 

PPT is still an effective and comparatively safe drug choice in the treatment of venereal 

warts. Besides antitumor effects, PPT analogs exhibit diverse activities, including reverse 

transcriptase (RT) inhibition and anti-HIV activity; immunomodulatory activity; effects on 

the cardiovascular system; antileishmaniasis properties; 5-lipoxygenase inhibition; 

insecticidal activity; phytogrowth inhibitory activity; ichthyotoxic activity; 

antimelanocortin-4 receptor (MC4R) activity; and antirheumatic, antipsoriatic, antimalarial, 

and antiasthmatic properties.40,42,51

Among the plethora of physiological activities and agricultural applications, the anti-

neoplastic and antiviral properties of PPT congeners are arguably the most eminent from a 

pharmacological perspective. An alcohol extract of podophyllin was first cited in 1942 as a 

topical treatment for venereal warts, an ailment caused by a papilloma virus.9 This study 

was one of the first to report the antiviral activity of podophyllin. In the early 1980s, both 

Bedows and Hatfield52 and Markkanen et al.53 found that PPT and related lignans showed 

antiviral activity against measles and herpes simplex type I. Other researchers54–58 surveyed 

the effects of PPT analogs against multiple viruses, including Sindbis virus (RNA virus), 

murine cytomegalovirus (herpes DNA virus), vesicular stomatitis virus, and HIV. The 

antiviral effects of PPT analogs appear due to their ability to bind tubulin, disrupt the 

cellular cytoskeleton, and interfere with viral replication. In addition to tubulin binding, 

synthetic PPT analogs also inhibit viral RT, which may be exploited to selectively combat 

RNA viruses, such as HIV.58 PPT is also effective in the treatment of anogenital warts in 

children and against Molluscum contagiosum, generally a self-limiting benign skin disease 

that affects mostly children, young adults, and HIV patients.59

Antitumor activity is probably the most well-known effect of PPT analogs. PPT-derived 

anticancer drugs are widely used in the treatment of Wilms’ tumor, various genital tumors, 

non-Hodgkin’s and other lymphomas, as well as lung cancers. Their powerful anticancer 

properties result from either inhibition of microtubule assembly or inhibition of DNA-topo 

II enzymatic activity. Combination therapies of ETO with other chemotherapeutic agents or 

techniques are currently being implemented.41,45,60

Studies on penetration of PPT into human bioengineered skin have demonstrated that PPT 

analogs induce acantholysis and cytolysis in this skin-equivalent model.61 We reported that 

PPT derivatives exhibit insecticidal activity against some economically important insects, 
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more promising and pronounced activity as compared with PPT.62–64 Additionally, 

antifeedant and phytogrowth inhibitory activities of PPT have been described, which have 

application to pesticides.65,66 Other biological activities of PPT analogs are receiving 

increased current interest, for example, antioxidative properties, prevention of carcinogen 

production from estrogens, and inhibition of aromatase enzymatic activity, which could 

contribute to the prevention of dependent cancers.67 A benzylidated PPT glycoside (CPH82) 

induced clinical improvement in patients with rheumatoid arthritis and interfered with the 

cell cycle in rapidly proliferating cells with accumulation of bone marrow cells in 

mitosis.1,68 In addition, PPT analogs possess immunosuppressive activity and are seen as 

candidates for use in organ transplantation.69–71

3. MECHANISM OF ACTION

Cytotoxic PPT derivatives can be divided into two main types, tubulin polymerization 

inhibitors for “PPT-like” compounds and topo II inhibitors for “ETO-like” compounds. In 

1976, Loike and Horwitz72 reported that “PPT-like” compounds exert cytotoxic activity by 

inhibiting tubulin polymerization that prevents microtubule formation and destabilizes 

microtubules, as well as arresting cell division in metaphase. More recent studies have 

further explored the MOA of PPT-derived cyclolignans. Gordaliza et al.73 proposed that 

PPT cyclolignans might work as alkylating agents at the C-2 methylene, rather than as 

acylating agents. Schönbrunn et al.74 cocrystallized PPT with a tubulin fragment in 1999 

and described the effects of microtubule damaging agents, such as PPT and colchicine,75 on 

DNA and the cell cycle.43,76 López-Pérez et al.77 further described the role of dipole 

moment in the activity of PPT-related cyclolignans.

In contrast to PPT, 4′-demethylation and introduction of a β-glycosidic moiety at the C-4 

position (“ETO-like” compounds) converts the resulting DEPPT derivatives into potent 

irreversible inhibitors of DNA topo II. Their action is based on formation of a nucleic acid–

drug–enzyme ternary complex that blocks DNA strand relegation, generates DNA breaks, 

and blocks cell cycle progression in late S and G2 phases.78–81 The cytotoxic effects of 

DEPPT analogs have also been strongly linked to metabolic activation of the 

dimethoxyphenol ring (E-ring), producing metabolites that form chemical adducts with and 

inactivate DNA.82–84 These investigations pointed out that an ETO ortho-quinone is 

relevant to the MOA. 3′,4′-Catechol derivatives of ETO formed in the presence of 

cytochrome P-450 were further oxidized to 3′,4′-ortho-quinones in the presence of oxygen 

or under the influence of horseradish peroxidase or prostaglandin E synthase. Both catechol 

and ortho-quinone bound strongly to purified calf thymus DNA through formation of free 

radicals or even through direct binding of the quinone to the DNA, which may contribute to 

ETO’s cytotoxic activity.82–84

During the period of 2001–2010, many investigators reported various effects of PPT and 

DEPPT derivatives on cellular proteins and their signaling pathways. Lin et al.85 showed 

that GL-331 decreased extracellular signal-regulated kinase (ERK) phosphorylation and 

subsequently inhibited cyclin D1 transcription. In studies by Tseng et al.,86 PPT induced c-

jun N-terminal kinase (JNK) phosphorylation at the molecular level, while ETO activated 

ERK, JNK, and p38 in selected tumor cell lines, as shown by Boldt et al.87 Qi et al. reported 
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that GP-7, a new spin-labeled derivative of PPT, activated the caspase signaling pathway by 

releasing cytochrome c.88,89 In tumor necrosis factor α (TNF-α) induced human aortic 

smooth muscle cells, deoxy-PPT strongly inhibited matrix metalloproteinases (MMP-9) 

expression and migration, as well as mRNA transcription of MMP-9 gene expression and 

phosphorylation of ERK 1, ERK 2, p38, and JNK, as reported by Suh et al.90 Furthermore, 

Yong et al. described the involvement of deoxy-PPT in inhibition of tubulin polymerization 

and dysregulation of cyclin A and cyclin B1 expression, resulting in mitotic cell cycle arrest 

and activation of caspase-3 and caspase-7 to promote apoptotic cell death.91 The same 

studies also demonstrated that deoxy-PPT caused cell cycle arrest of HeLa cells at the G2/M 

phase, followed by induction of apoptosis. Shin et al.92 found that deoxy-PPT-induced 

apoptosis could involve the activation of p53 and ataxia-telangiectasia mutated and 

checkpoint kinase 2, possibly through a mitochondria-mediated pathway. Lastly, PPT can 

induce cAMP response element-binding protein (CREB) activation and CRE-driven gene 

expression via protein kinase An activation by a cAMP-independent mechanism, as shown 

by Chen and Xie.93

4. HEMISYNTHESIS AND STRUCTURE–ACTIVITY RELATIONSHIPS

A. C-4-C Derivatives

In an attempt to obtain topo II inhibitors with higher potency and greater distribution in lung 

tissue, scientists at Taiho Pharmaceutical Co. Ltd. synthesized modified 4-deoxy-DEPPT 

derivatives with various C-4β alkyl (12–18), amidomethyl (19–25), and aminoethyl (26–38) 

groups (Fig. 2, Table I).31,94 The new compounds with carbon rather than oxygen at the C-4 

position were screened for cytotoxic activity against P388 mouse leukemia in vitro. 

Although the 4β-alkyl derivatives (12–18) did not inhibit topo II, their cytotoxicity was 

equal to that of ETO. Compounds 19–25 with various 4β-amidomethyl groups showed 

decreased inhibition of topo II, but did exhibit cytotoxic effects. Remarkably, 4β-aminoethyl 

derivatives TOP53, 34, 35, and 38 exhibited significant cytotoxic activity against P-388 cells 

with IC50 values ranging from 0.001 to 0.0043 μM. In addition, these compounds also 

displayed potent inhibitory effects on topo II with either improved or similar potency 

compared with ETO as illustrated in Table I. Among this series, TOP-53 was selected for 

further evaluation.95 Compared with ETO, TOP-53 displayed twofold greater topo II 

inhibitory activity and superior in vivo antitumor activity against several cancer types, 

especially metastatic lung tumors. In view of its high potency and good properties, TOP-53 

progressed to phase II clinical trials, but did not reach clinical use.

Roulland et al.96 used Takai olefination to introduce a methylene moiety at the C-4 position. 

The resulting compound 39 was hydrolyzed and further oxidized to give compounds 40–42 
(Table II). Among these four compounds, the greatest cytotoxicity was shown by 39 (IC50 

35 nM). The cell cycle perturbation induced by these compounds was studied in the same 

L1210 cell line. Compounds 40 and 41 induced partial accumulation of cells in the G2/M 

phase of the cell cycle (42–69% vs. 24% for untreated control cells) at relatively moderate 

concentrations.

4β-Cyano-4-deoxy-DEPPT was synthesized by reaction of DEPPT with trimethylsilyl 

cyanide in the presence of boron trifluoride etherate.97 Hydrolysis of this intermediate in 
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acetic acid gave 4β-carboxy-4-deoxy-DEPPT (43), from which a series of 4β-

alkoxylcarbonyl (43–68), thionylcarbonyl (69–82), and carbamoyl (83–96) derivatives (Fig. 

3) were synthesized and evaluated for inhibitory activity against L-1210 and KB cell lines in 

vitro.98,99 However, most of the compounds exhibited IC50 values ranging from 0.05 to 1 

μM and thus were less active than ETO. Compound 53 exhibited the highest potency.

Recently, pinacol PPT analogs 97–122 bearing different side chains and functional groups at 

C-4 were synthesized through reductive cross-coupling of PPT with different aldehydes and 

ketones (Table III).100 In general, these compounds were fairly cytotoxic, and some of them 

(e.g., 115, 117) displayed better activity than the reference EPPT. Among all compounds, 

4β-OH (epipodo) derivatives showed greater cytotoxicity than their corresponding 4α-OH 

(podo) analogs. Similarly, to PPT, the former compound series arrested the cellular cycle of 

A-549 cells at the G2/M phase, with differences only in potency. Significantly, 4-

isopropyl-4-deoxypodophyllotoxin (120) was identified as a promising lead compound for a 

novel type of tubulin polymerization inhibitor.

B. C-4-S Derivatives

Showalterk et al.101 reported compounds 123–126, which are thioglucose-derived analogs of 

ETO (Fig. 4). They expected that substitution of sulfur in various oxidation states for the 

glycosidic oxygen would not only alter lipophilicity, but also vary the geometric disposition 

of the sugar moiety on the aglycone. Although this change should affect the biological 

activity remarkably, no biological data were reported.

Moreover, Wang et al.102–104 developed two efficient methods employing the 

BF3·Et2O/H2S and CH3COSH/NH3 reagent system to synthesize 4-sulfanyl-DEPPT. This 

compound then served as a valuable building block for the preparation of versatile 4S-

substituted-DEPPT analogs, including various alkylthio (127–135) and 4-(2-aminoethylthio) 

(136–154) derivatives (Fig. 5). Most of the compounds showed comparable or better activity 

than ETO against L1210 and KB cells in vitro. A large activity range for 127–154 indicated 

that the substituents on 4S-derivatives can markedly affect the activity profiles of this 

compound class.

Many triazoles exhibit a wide range of biological activities, such as antifungal, antiviral, 

antiphlogistic, antitumor, and other effects. Therefore, Lu et al.105 prepared seven DEPPT 

analogs linked through the sulfur of various 4-amino-5-alkyl-4H-1,2,4-triazole-3-thiol 

compounds. When screened in vitro against HL-60 and K562 cells, compounds 155–161 
were more potent against the latter cell line (Table IV).

C. C-4-Se Derivatives

Se-derived PPT analogs have received very little attention, even though such molecules 

could be potential new pharmaceutical agents, as Se compounds are promising molecules in 

cancer prevention and have potential in cancer treatment.106 Accordingly, Wang et al.107 

synthesized six 4-alkylselenyl-DEPPTs (162–167, Fig. 6) from 4-bromo-DEPPT and 

selenourea in the presence of Et3N. All six compounds showed potent cytotoxic activity 

against L-1210 and KB cells. Miao et al.108 found that 4-phenylselenyl-DEPPT (168, Fig. 6) 
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suppressed the proliferation of human hepatoma SMMC-7721 cells in a dose- and time-

dependent manner and induced SMMC-7721 cell apoptosis by translocation of Bax, 

activating the mitochondrial pathway of apoptosis through release of proapoptotic factors, 

such as cytochrome c. Four related 4-selenyl-DEPPT derivatives (169–171, Fig. 6) 

synthesized by Zhang and Cao109 showed cytotoxicity against HO-8910 cells.

D. C-4-O Derivatives

While ETO and 5 are O-glycosides of DEPPT, other nonglycosidic ether substituents have 

been incorporated into DEPPT in order to lower toxicity, while maintaining or enhancing 

activity. Terada et al.110 synthesized various DEPPT ethers (172–186, Fig. 7) by reaction of 

protected 4′-O-benzyloxycarbonyl-DEPPT with alcohols in the presence of boron trifluoride 

etherate,followed by deprotection. The introduction of an aminoalkoxy group at the C-4 

position increased both DNA topo II inhibitory and cytotoxic activities.110

Ma and co-workers111,112 also reported a series of 4β-ether-DEPPT (187–199) and five 4,4′-

O-bis(2-hydroxy-3-substituted-amino)-propyl-DEPPT (200–204) analogs that were screened 

for cytotoxic activity against L-1210 and KB cells (Fig. 8). Most compounds showed 

equivalent or greater potency compared to ETO, in particular, certain compounds with side 

chains containing a hydroxyl or an amino group.111,112 Recently, Bathini et al.113 

synthesized 4β-O-propenylethers (205–209, Fig. 8) from 4-chloro-4-deoxy-PPT and allylic 

alcohols in the presence of barium carbonate. The cytotoxicity of these compounds against 

KB cells was comparable to that of ETO.

Because an ester group can be important to the cytotoxicity and antileukemic activity of 

compounds in certain classes, Lee and co-workers 114 prepared a series of PPT esters (210–
221, Fig. 9) and examined their in vivo antileukemic activity against P-388 lymphocytic 

leukemia cell growth in mice. The biological data indicated that the introduction of an ester 

moiety into PPT did not enhance antileukemic activity, but instead generally caused a loss of 

activity.

In order to determine whether the presence of a glucosidic moiety on the C-4 position is 

essential, Gupta and Chenchaiah115 synthesized different C-4 ester DEPPT analogs (222–
235, Fig. 10) through the same general procedure described by Lee and co-workers114 In 

biological studies, these analogs possessed similar biological activity to PPT, and none acted 

in the same manner as ETO. Treatment of CHO cells with these esters caused a large 

increase in the mitotic index of cells, and the SAR on these esters provided information 

regarding the role of substituents at the C-4 position on PPT-like activity.

More recently, López-Pérez et al.116 synthesized various hydrophobic esters of PPT, 

including norbornene-carboxylate esters prepared through Diels-Alder cycloaddition by 

treating dienophilic acrylates of cyclolignans with cyclopentadiene. Compounds 236–241 
(Fig. 11) were tested for in vitro cytotoxicity against four neoplastic cell lines (P-388, 

A-549, HT-29, MEL-28). The results showed that the introduction of a linear or aromatic 

C-4 acyl moiety in PPT analogs induced either loss or no effect on the cytotoxicity of the 

parent hydroxy derivatives, while C-4α-PPT norbornene-carboxylates 241a,b showed 

improved potency compared with PPT. The introduction of one additional methylene unit 
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between the bicyclic system and the carboxyl group (240) generated more hydrophobic 

esters, but led to diminished activity. These results indicated that the cytotoxic activity is not 

primarily due to a lipophilic factor and the precise spatial arrangement of a bulky moiety 

may contribute to additional nonpolar interactions that can enhance binding to the target site.

Because TOP-53 showed promising potential in the treatment of several types of cancer 

compared with ETO, Duca et al.117 introduced a carbamate substituted with a N-alkylamino 

or N-alkylazido group in the C-4β-position of DEPPT to give DEPPT-4-amino/

azidoalkylcarbamates (242–247, Table V). In particular, compound 247 with an N-methyl-

N-azidopropylcarbamate group displayed potent cytotoxicity against the L-1210 cellline 

(IC50, 0.038 μM compared with 0.83 μM for ETO) and proved to be a more potent topo II 

poison than ETO.

Recently, a series of new 4β-carbamoyl-PPT analogs were prepared by Kamal et al.118 

(248–257, Table VI) and evaluated for cytotoxic activity against 11 cancer cell lines. As 

shown, most of the compounds exhibited better growth-inhibition activity than ETO against 

the tested cell lines. Compounds 254 and 256 were also evaluated for DNA topo II 

inhibitory activity and showed significant inhibition comparable to that of ETO.

In view of the significance of long-chain fatty acid (FA) in the treatment of cancer, Mustafa 

et al.119 prepared a series of FA analogs of PPT (258–267, Table VII) by coupling unusual 

C-10 to C-20 FAs with the 4α-hydroxyl of PPT. These compounds were investigated for in 

vitro cytotoxic activity against a panel of human cancer cell lines, including SK-MEL, KB, 

BT-549, SK-OV-3, and HL-60 cells. All of the compounds showed significant cytotoxicity 

against all tumor cells tested. With IC50 values ranging from 0.07 μM for HL-60 cells to 0.4 

μM for KB cells, compounds 258 and 263 were the most active analogs. Interestingly, they 

did not affect the growth of noncancerous mammalian cells (VERO cells) up to the highest 

concentration (15 μM) used in the assay, demonstrating promising selectivity toward tumor 

cells.

Based on these preliminary results, the same group further synthesized additional PPT-FA 

adducts (268–277, Table VIII).120 These compounds were assayed in vitro against four 

human solid tumors (SK-MEL, KB, BT-549, SK-OV-3, and HL-60) and noncancerous 

VERO cell lines. The SAR indicated that a “12-hydroxy-Z-ene” system was probably 

important for activity against the human neoplastic cell line panel. The FA thioether analogs 

276 and 277, derived from 275, showed promising activity against all five cancer cell lines, 

with one exemption; 277 was not active against ovary carcinoma (SK-OV-3) cells. Unlike 

PPT, none of these compounds were toxic toward normal mammalian cells, demonstrating 

selectivity for cancer cells over normal cells.

Recently, we reported121 the synthesis of novel sulfonylamidine PPT derivatives (278–285, 

Table IX) via a Cu-catalyzed reaction along with their in vitro evaluation against a panel of 

human cancer cell lines, including K562, SGC, Hela, and HepG.121 MOA studies were also 

investigated. Compound 282 displayed significant antiproliferative activity against all four 

cell lines and strong tubulin polymerization inhibitory effects. The results indicated that 

these compounds effectively interfered with tubulin dynamics and prevented mitosis in 
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cancer cells, thus leading to cell cycle arrest and, eventually, dose-dependent apoptosis. In 

addition, docking analysis and molecular dynamics showed that the binding of 282 to 

tubulin was mainly stabilized by hydrophobic interactions, together with hydrogen-bonding 

interactions with β-tubulin’s Cys241 residue.

To overcome multidrug resistance (MDR) and lower the toxicity of PPT derivatives, Yu et 

al.122 synthesized 4-O- and 4-N-indol-3-yl-glyoxyl-substituted derivatives of PPT and tested 

them against a panel of four human cancer cell lines, including HeLa (cervix), SKOV3 

(ovary), K562 (leukemia), and K562ADR (adriamycin-resistant leukemia) in vitro. 

Generally, the O-linked derivatives (esters) of PPT showed greater potency than the 

corresponding N-linked congeners (amides). Compound 286 (L1EPO, Fig. 12) down-

regulated the mdr-1 gene, reduced the expression of P-gp, and displayed dose-dependent 

cytotoxicity. Moreover, it was less cytotoxic against normal human cell lines (fibroblast, 

VEC, GI50 > 10 μM) than cancer cell lines. L1EPO has the potential to overcome P-

glycoprotein-mediated MDR in the K562/A02 cell line.123

As shown in Figure 13, Gupta et al.124 prepared three DEPPT–lexitropsin conjugates (287–
289) with the aim of conferring higher affinity for DNA and improving cellular uptake and 

metabolic stability. Investigation of the biological effects of these bifunctional hybrids 

demonstrated that conjugation with minor groove-binding moieties could alter or increase 

the number of topo II–induced cleavable sites.

Since nucleosides are biologically active moieties, Derry et al.125 synthesized two novel 

derivatives of DEPPT and EPPT (290 and 291, respectively, Fig. 13), in which the 

nucleoside thymidine was conjugated with the parent compounds at the C-4 position using 

boron trifluoride etherate. The observed cross-resistance patterns of the thymidine 

derivatives suggested that these compounds display PPT-like activity without ETO-like 

activity. The two thymidine derivatives exhibited much lower activity in comparison with 

PPT and DEPPT, suggesting that the thymidine moiety interferes with the compounds’ 

interaction with the receptor site on the tubulin molecule.

In order to improve the therapeutic efficacy of PPT, a novel PPT conjugate, 3,6-endo-

methylene-1,2,3,6-tetrahydrophthalimido-acetamidoglycinylglycine PPT ester (ETPA-gly-

gly-PPT, 292, Fig. 14), as well as its homo- and copolymer with acrylic acid were prepared 

by photopolymerization using 2,2-dimethoxy-2-phenylacetophenone as a photoinitiator.126 

Compared with PPT (IC50 1.4–4.0 ng/mL), compound 292 showed decreased cytotoxicity 

(IC50 13–100 ng/mL) against A375, KM12, PC3P, and CEM cancer cell lines.

Pharmacomodulation of biologically active compounds via conjugation approaches has 

become an appealing research area in different fields of medicinal chemistry. Also, the 

concept of a bivalent molecule is now accepted as an effective strategy for designing 

ligands, inhibitors, and drugs that influence biological systems. Thus, Passarella’s 

group127–130 recently reported a series of novel PPT-based hybrids. Some of these 

compounds exerted significant antiproliferative activity, having a marked ability to inhibit 

tubulin polymerization in vitro and to disrupt the microtubule network in vivo. Among the 

synthesized disulfide dimers of PPT, increased spacer length resulted in progressive 
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reduction of antiproliferative activity against the NCI-H460 human nonsmall cell lung 

carcinoma cell line. For example, the IC50 values of compounds 293 and 294 were 0.03 and 

0.3 μg/mL, respectively, compared with 0.005 μg/mL for PPT.130 Simultaneously, our 

group131 also described disulfide dimers of PPT (293–297; Fig. 15), in which two PPT 

moieties were linked with different dithiodicarboxylic acid spacers.

E. C-4-N Derivatives

Allevi et al.132 condensed 4-bromo-4-deoxy-DEPPT with 4,6-O-ethylidene-2,3-di-O-

trimethylsilyl-β-D-glucopyranosylamine in the presence of Hg(CN)2 to produce a 4-

aminoglucose analog (298, Fig. 16) of ETO. However, no biological data were reported.

In recent years, C-4-N-substituted analogs have occupied a significant position in the 

development of DEPPT-derived antitumor agents. Lee and co-workers performed 

pioneering work in this field and have studied C4-N-substituted congeners of DEPPT for 

many years.133–141 The various projects below illustrate several aspects of the development 

process. First, C-4α and C-4β–aliphatic amino derivatives (299–306, Fig. 17) were 

synthesized by direct nucleophilic substitution of 4-bromo-4-desoxy-DEPPT with 

appropriate alkylamines. Replacement of the glycosidic moiety of ETO with a 2″-

hydroxyethylamino or 2″-methoxyethylamino moiety at the C-4β position resulted in potent 

inhibition of human DNA topo II, as well as strong ability to cause cellular protein-linked 

DNA strand breakage (compounds 299, 303, and 305).133 The C-4β isomers were more 

potent than the C-4α isomers, which indicated that the C-4 stereochemistry is quite 

important in determining the inhibitory potency.

In subsequent studies,134 numerous substituted-4β-anilino side chains were introduced into 

the DEPPT structure by nucleophilic substitution reaction of 4β-bromo-4′-demethyl-4-

desoxyPPT with various substituted arylamines (Table X). The modification resulted in 

substantially increased activity. Most of the 4β-arylamino-DEPPTs were as or more potent 

than ETO in topo II inhibition and/or cellular protein–DNA complex formation assays. In 

most cases, para substitution in the phenyl ring resulted in the greatest activity.29,30,134 

Compared with ETO, compounds 308, 312, and 324 were tenfold more active in inhibiting 

DNA topo II and caused two to three times more protein–DNA complex formation. As a 

highlight, GL331 (329) was selected as the optimal drug candidate. GL-331 functions as a 

highly potent topo II inhibitor, causing DNA double-strand breakage and G2 phase arrest. It 

could also induce cell death by stimulating protein tyrosine phosphatase activity and 

apoptotic DNA formation. GL-331 was also shown to be active in many MDR cancer cell 

lines. Because of its good stability and biocompatability, as well as favorable 

pharmacokinetic profiles, GL331 successfully reached clinical trials against several forms of 

cancers, especially ETO-resistant malignancies, but has not reached clinical status.

The synthesis and biological evaluation of a series of 4β-benzylamino (330–343) and 4β-

benzoylamino (344–355) derivatives were then reported by the same group (Fig. 18).135,136 

These compounds were less potent than the 4β-arylamino derivatives, but most were as 

active or more active than ETO. In topo II inhibition and protein–DNA assays, the activity 

was observed in the order of 4β-arylamino > 4β-benzylamino > 4β-benzoylamino.
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Subsequently, Lee and co-workers137 synthesized another series of 4β-amino derivatives of 

DEPPT (Table XI) that could form water-soluble salts. Most compounds showed excellent 

activity in KB cell cytotoxicity and protein–DNA complex formation assays. In general, the 

salts showed comparable or greater activity than their parent-free bases. Compared with 

ETO, compounds 357 and 359–365 showed comparable or greater inhibition of human DNA 

topo II. In a dose–response study of protein–DNA complex formation, compound 359 was 

20 times more active than ETO. Furthermore, both compound 359 and its free base 358 were 

highly active against ETO-resistant KB cell lines.

To further address poor water solubility, a problem associated with ETO, Lee and 

coworkers138 introduced protected α-amino acids into a 4β-[(p-benzamido)-amino] side 

chain of new DEPPT derivatives (Table XII). Compounds 369 and 370 exhibited better 

preclinical activity profiles, including cell growth inhibition, cell killing, and in vitro topo II 

inhibition, as compared to the prototype molecule ETO, while retaining the superior drug-

resistance profile of GL-331. This observation indicated that introduction of bulky 

substituents at the para position of an anilino moiety would enhance topo II inhibition and 

still maintain superior cell growth inhibition and drug-resistance profiles. Other members in 

this series of 4β-[(p-benzamido)-amino]-DEPPT derivatives were also reported in detail by 

Lee and co-workers,139 revealing important SAR information. The large activity range of 

compounds 369–381 (Table XII) indicated that the substituents on the α-carbon of the 

amino acids markedly affected the activity profiles of this compound class. The impressive 

ability of compounds 372, 374, and 376 to induce intracellular protein-linked DNA breaks 

suggested that a hydrophobic interaction might exist between the enzyme/DNA complex and 

this molecular area of the compounds. Inclusion of moieties containing nitrogen or oxygen 

atoms in the amino acid side chains (e.g., compounds 369, 370, 375, 377, and 380) 

decreased protein-linked DNA breakage. Adding hydroxy groups on the phenyl ring sharply 

decreased the activity (e.g., compounds 369, 376, and 377). Many factors could possibly 

contribute to this decrease. First, hydrogen bonding between the nitrogen or oxygen atom 

and the enzyme/DNA complex might cause the activity loss, presumably by preventing the 

molecules from assuming an optimal conformation. Second, it is also possible that relatively 

polar (e.g., hydroxyl in compounds 369 and 377, imidazole in compound 375) and sterically 

bulky (e.g., indolyl in compounds 370 and 380) moieties might impede an important 

hydrophobic interaction between the molecules and enzyme/DNA complex. The orientation 

of the amino acid also showed a stereo preference (compare 372 vs. 373; 381 vs. 370). 

Hydrolysis of the methyl ester in 370 to give the free acid in 380 resulted in a dramatic 

reduction in cellular protein–DNA complex formation and cell growth inhibition. 

Interestingly, changing the amino acid to an alkylamine (i.e., deletion of the COOMe) 

significantly increased the inhibitory potency against KB cell growth; however, it also led to 

unfavorable drug-resistance profiles (compounds 378 vs. 369; 379 vs. 376). The unique 

activity profiles of compounds 378 and 379 implied that their action mode or cellular uptake 

mechanisms might be different from those of their amino acid congeners.139

Lee and co-workers also employed a conjugation strategy to overcome drug resistance or 

enhance cytotoxic activity.140,141 They linked 4β-amino-DEPPT derivatives with 

camptothecin (a topo I inhibitor) or taxol derivatives (microtubule assembly promoters) 
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through aromatic bridges (Fig. 19). Surprisingly, the DEPPT-camptothecin hybrids 382 and 

383 did not show cross-resistance in ETO-resistant cells. The two compounds inhibited topo 

I in a concentration-dependent manner, but only 383 was active against topo II. In a nude 

mouse model with human prostate DU-145 tumor cells, compound 383 showed better 

antitumor activity than ETO, camptothecin, and 382. The cytotoxic potencies of the taxoid 

conjugates 384 and 385 were between those of ETO and the parent taxoid. Taxoid conjugate 

386, which has an additional DEPPT moiety at the taxoid 7-hydroxyl, was least active, 

suggesting that the 7-hydroxyl was important to the cytotoxic activity. Against paclitaxel-

resistant cells, conjugates 384 and 385 showed enhanced activity. In contrast to the cytotoxic 

results, compound 386 was a better topo II inhibitor than 384 and 385. The authors 

postulated a role for the 7-hydroxy group in drug transport.

The increased activity incurred by replacing the glycosidic moiety of ETO with 4-amino 

groups also led to the synthesis and testing of numerous 4-anilino-, 4-amido-, 4-arylamino-, 

4-sulfonylamino-, and 4-alkylamino-DEPPT derivatives by other groups.142–148 For 

example, Kamal et al.149 synthesized 4β-amido or 4β-sulfonamido derivatives of DEPPT. 

All five 4β-amido-2-substituted benzophenone analogs (387–391) showed moderate 

cytotoxicity against the tested cell lines. Among the 4β-benzenesulfonamido derivatives, 4′-

methylated analog 396 was highly cytotoxic, but the corresponding 4′-demethylated analog 

(398) was about 100-fold less potent. A methyl substituent on the phenyl ring at the para-

position (399) further decreased activity by tenfold. Two (392, 394) of the four 4β-

nicotinylamido substituted analogs (392–395) showed high cytotoxicity. Overall, 4′-

methylated derivatives were more cytotoxic than corresponding demethylated compounds 

(397 vs. 399 and 392 vs. 393; Fig. 20).149

As shown in Figure 21, Kamal et al.150 also synthesized 4β-N-heteroaryl analogs (400–404) 

that exhibited better in vitro cytotoxic activity than ETO. Compound 402 with a fluoro 

substituent on the phenyl ring showed significant activity with GI50 values less than 0.010 

μM against all six tested cancer cell lines, while the GI50 values of 401 without a fluoro 

group were 0.31, 0.02, 0.06, 0.03, 0.09, and 0.11 μM against DU145, HT29, MCF7, 

MCF7ADR, NCIH460, and U251 human cancer cell lines, respectively.

Current interest in dimeric analogs of lipophilic, neutral, DNA mono-intercalating agents as 

potential antitumor drugs prompted Kamal et al.151 to prepare bis-4β-amino-PPT dimers by 

linking the amino groups through various aryl spacers (405–418; Fig. 22). Most of the 

analogs exhibited promising in vitro cytotoxic activity against different human tumor cell 

lines. Interestingly, compared with ETO, 4′-methylated analogs showed superior topo II 

poisoning activity. Dimer 409 linked through a biphenyl spacer was the most active tested 

compound with GI50 values of 0.2, 0.2, and 0.6 μM against DU145, HT29, and MCF7, 

respectively.

More recently, six series of 4-N-substituted PPT derivatives were synthesized by Kamal et 

al.152–157 and evaluated for cytotoxicity against selected human cancer cell lines or for DNA 

topo II inhibitory activity. The first new compounds were a series of 4β-N-polyarylamino 

congeners (Table XIII) reported in 2010.152 Cytotoxic activity was evaluated against several 

tumor cell lines (502713, HCT-15, HEP-2, IMR-32, A-549, DU-145, and PC-3). As shown 
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in Table XIII, most of the new compounds exhibited significant cytotoxic activity compared 

with ETO. Selected compounds 423, 425, and 426 also caused similar inhibition of DNA 

topo II catalytic activity compared with ETO. Cell cycle studies with 425 revealed that these 

compounds exert apoptosis-inducing activity.

In 2011, the same group designed and synthesized a series of benzothiazolo-4β-anilino-PPT 

derivatives through a one-pot iodination methodology.153 These compounds exhibited 

significant cytotoxic activity against Colo205, HT1080, and DWD cell lines, and moderate 

activity against Hop-62 (Table XIV). In particular, compound 432 [IC50 2.7 μM (Colo205), 

2.3 μM (DWD)] was more potent than PPT (5.1 and 5.0 μM). All 16 compounds exhibited 

similar in vitro inhibition of topo II catalytic activity compared with m-AMSA.

As depicted in Table XV, Kamal et al.154 obtained a series of new 4β-acrylamido-PPT 

derivatives (447–461) synthesized by coupling substituted stilbene moieties with 4β-amino-

PPT. These compounds showed significant cytotoxic activity with GI50 values ranging from 

<0.1 to 0.29 μM. Compounds 456–458 caused G2/M cell cycle arrest, with 457 being 

slightly more effective. Interestingly, compound 457 also caused both single-strand (30%) 

and double-strand (70%) DNA damage, eventually leading to cancer cell death. The study 

results suggested that these compounds exhibit dual topo I and topo II inhibitory activities.

As outlined in Table XVI, a series of 4β-alkylamidochalcone as well as 4β-cinnamido linked 

PPTs were also synthesized by Kamal et al.155 and evaluated for cytotoxic activity against 

five human cancer cell lines (A-549, A375, MCF-7, HT-29, and ACHN). From the 

screening results, chalcone–PPT conjugates 462–477 showed moderate activity against 

different cancer cell lines (IC50 5.3–26.7 μM). The activity did not change with different 

lengths of the alkane chain spacer between the chalcone and PPT moieties. Comparatively, 

quinolino–chalcone linked PPTs 487–490 showed promising activity with IC50 values 

ranging from 2.2 to 15.4 μM. Finally, the cinnamido–PPT conjugates 478–486 exhibited 

IC50 values ranging from 2.1 to 9.5 μM against the A-549 cancer cell line, but generally 

were less active against the other tested cell lines. However, compounds 478 and 483 
showed significant activity against A-549 (IC50 2.7 and 2.1 μM), as well as HT-29 (IC50 

2.36 and 0.37 μM) and ACHN (IC50 3.91 and 2.18 μM) cancer cell lines. The IC50 values of 

ETO in the respective cell lines were 2.34, 1.81, and 7.61 μM. Flow cytometric analysis 

showed that compounds 478 and 483 arrested the cell cycle in the G2/M phase leading to 

caspase-3 dependent apoptotic cell death. Furthermore, Hoechst 33258 staining and DNA 

fragmentation also suggested that 478 and 483 induced cell death by apoptosis.

A series of new 4β-sulfonamido and 4β-[(4′-sulfonamido)benzamide] derivatives of PPT 

(491–500 and 501–507) were synthesized and evaluated for cytotoxic activity against six 

human cancer cell lines (Table XVII).156 All compounds exhibited significant cytotoxic 

activity with GI50 values ranging from 0.04 to 2.90 μM. Compounds 492, 494, and 495 
showed more potent cytotoxic activity against Colo-205 cells than ETO. Flow cytometric 

analysis showed that the three compounds caused G2/M cell cycle arrest, and especially 494 
caused both single- and double-strand DNA breaks. Compound 494 inhibited topo IIα as 

observed from Western blot analysis, as well as activated caspase-3, p21, p16, and NF-kB, 
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and down-regulated Bcl-2 protein. These findings suggested that 494 can induce apoptotic 

cell death, apart from acting as a topo IIα inhibitor.

More recently, Kamal et al.157 synthesized three series of heteroaromatic linked 4β-

carboxamido-PPT derivatives (508–516, 517–525, and 526–529, Table XVIII) and 

evaluated their cytotoxicity against five human cancer cell lines (A-549, HeLa, MCF-7, 

HT-29,and ACHN). Among all compounds, analog 523 with a (3,4-dichlorophenyl)-1H-

pyrazolecarboxamide exhibited significant activity against A549 (IC50 2.1 μM) and good 

activity against other cell lines, including HT-29 (7.1 μM), B-16 (9.3 μM) and HeLa (9.5 

μM), whereas most of the other derivatives showed moderate to weak activity against the 

tested cancer cell lines. Flow cytometric analysis of 523-treated cells showed cell cycle 

arrest in the G2/M phase. Hoechst 33258 staining and DNA fragmentation assays revealed 

that 523 induced cell death by apoptosis. Further, activation of caspase-3 also suggested that 

523 produced apoptotic cell death.

During the period of 2002–2009, Tian and co-worker’s laboratory158–160 reported the 

synthesis and biological evaluation of many 4β-N-substituted-5-fluorouracil-DEPPT 

derivatives. Most of these analogs showed more significant cytotoxic activity against certain 

tumor cell lines compared with ETO and 5-fluorouracil (5-FU). Also, compounds 530–536 
derived from DEPPT were evaluated as inhibitors of stromelysin-1 as well as collagenase-1 

(Fig. 23). Among them, compounds 530 and 531 demonstrated superior inhibitory activity 

against stromelysin-1 compared with ETO and 5-FU.

Furthermore, 12 novel conjugates were synthesized by coupling DEPPT with 5-FU-N1-alkyl 

amino acid esters (537–548).161 When evaluated against four tumor cell lines (HL-60, 

K562, AGS, and A-549), most of the compounds showed more potent inhibition than ETO 

(Table XIX). Also, the new analogs showed superior water solubility, with lower logP 

values than ETO (Table XIX). In addition, the DNA conformation changed from B- to C-

form in the presence of 548, likely due to interaction of the compound with calf thymus 

DNA. Compound 548 was also relatively resistant to metabolism by human plasma.

Guianvarch et al.162 synthesized a series of novel 4α-sulfonamide derivatives of DEPPT as 

depicted in Table XX. Their effects on human topo II and, in some cases, tubulin 

polymerization were evaluated. The alkyl side chain on the 4β-sulfonamide substituent had 

an important effect on the topo II inhibitory activity. Methyl sulfonamide analog 549 with 

the shortest side chain showed the strongest inhibitory activity that decreased sharply for 

butyl sulfonamide analog 550 with an increased chain length. Derivatives bearing an 

aromatic ring on the 4β-sulfonamide substituent displayed low topo II inhibition but 

comparable or slightly better cytotoxic potency (except 557 and 561) than ETO. Substitution 

of the 4β-sulfonamide group with six different amino (562–567) rather than alkyl or aryl 

substituents preserved high topo II inhibition and cytotoxic activity (except for 564). With 

T/C of 235 and 229% against P388 leukemia in vivo, the most active compounds contained 

morpholine (566) and piperazine (567) sulfonamides. However, these two compounds did 

not induce long-term survivors (LTS). Comparatively, ETO exhibited a T/C equal to 233%, 

with 6 of 42 LTS. Against an A-549 orthotopic model of lung carcinoma in vivo, 566 and 

567 (T/C 155 and 159%, respectively) were more efficient than ETO (T/C 122–131%). The 
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activity correlated with the inhibitory activity against topo II and marked accumulation of 

cells in the G2/M phase.

Guo et al.163 synthesized seven novel PPT and DEPPT derivatives (568–574, Table XXI) 

with 2-(1H-indol-2-yl)-2-oxoacetamides at the C-4β position and tested their cytotoxic 

activity against five human cancer cell lines, HeLa, KB, KBV, K562, and K562/AO2. Most 

of the compounds demonstrated improved in vitro antitumor activity and, most importantly, 

improvedanti-MDR activity compared with ETO. As shown in Table XXI, compounds 568, 

571, and 572 exhibited stronger cytotoxic activity than ETO against HeLa cells, while 

derivatives 569–571, 573, and 574 were more effective than ETO against K562 and 

K562/AO2 cells.

Shang et al.164 synthesized ten new 4β-imidazolyl PPT and DEPPT analogs (575–584, Fig. 

24). All compounds were evaluated for cytotoxicity against three human cancer cell lines. 

Compound 580 exhibited the highest cytotoxicity with IC50 values of 8.12 ± 1.03, 7.43 ± 

0.62, and 4.16 ± 0.54 μM. The latter activity against the K562/ADM drug resistant cell line 

was particularly notable. In comparison, the IC50 values of ETO were 2.99 ± 0.87, 6.0 ± 

1.84, and 76.55 ± 8.36 μM, respectively.

As outlined in Table XXII, Wang et al.165 synthesized three series of new 4β-anilino-

DEPPT derivatives (585–613) for cytotoxicity evaluation against four human cancer cell 

lines, KB, KB/VCR, A549, and 95D. The IC50 values of 585–597 indicated that the 

alkylamino group attached to the 4β-anilino group was important to the in vitro cytotoxic 

activity. The ethyl pyrrolidine analog 585 exhibited the highest potency with IC50 values 

ranging from 0.036 to 1.57 μM against the tested cancer cell lines. Among compounds 598–
601 with a hydrophilic alkoxy group on the end of the 4β-side chain, compound 598 with the 

shortest chain length showed the most potent cytotoxic activity. As the number of atoms 

between the benzene ring and the terminal hydroxy group increased (599–601), activity 

decreased (except for 599 against 95D cell line). Compared with ETO, compounds 602–613, 

which have amide moieties on the para-position of the anilino ring, displayed comparable or 

slightly weaker cell growth inhibition against KB and A549 cell lines, but superior cytotoxic 

potency against KB/VCR and 95D cell lines (except 612 and 613).

As depicted in Table XXIII, seven 4β-benzylamino PPT derivatives (614–620) were also 

synthesized by Wang et al.166 The seven compounds displayed strong cytotoxic activity 

against A549, HCT-116, and HepG2 cancer cell lines. Among them, compound 615 
possessed the highest cytotoxicity with an average IC50 value of 3.8 μM. The new 

compounds were generally more potent than ETO against the three tested cancer cell lines, 

indicating that PPT derivatives with a benzylamino structural modification possess potent 

cytotoxic activity.

Ren et al.167 introduced 2-amino-1,3,4-oxadiazole moieties into the C-4 position to give 

nine novel 4β-N-substituted PPT derivatives (621–629) and evaluated their cytotoxicity 

against DU-145, SGC-7901, A549, SH-SY5Y, HepG2, and HeLa cell lines (Table XXIV). 

These derivatives displayed much lower cytotoxicity toward the tested normal cell lines 

(L929 and Vero) than PPT. Among them, compound 622 exhibited the highest potency 
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against HepG2 and HeLa with IC50 values of 1.29 and 2.68 μM, respectively. It also showed 

much better selectivity between the tumor and normal cells than ETO and PPT. Moreover, 

in MOA studies, 622 inhibited gene and protein expressions of DNA topo IIb, suspended the 

cell cycle at S-phase, and eventually caused apoptosis of the tumor cells.

Zhao et al.168 reported 12 new aroylthiourea derivatives (630–641, Fig. 25) of 4β-amino-

DEPPT. Compound 641 was the most potent (IC50 4.4, 5.0, and 9.5 μM), although most of 

the derivatives displayed significant cytotoxic activity against HepG2, A549, and HCT-116 

cancer cell lines. MOA studies indicated inhibition of the catalytic activity of DNA topo II, 

which caused HCT-116 cell cycle arrest at the G2/M phase.

A 1,2,3-triazole ring is widely present in various drugs and has also been incorporated by 

several research groups into PPT analogs. In 1999, Tao et al.169 reported two novel 4β-[(5-

substituted)-1,2,3-triazol-1-yl]-DEPPT derivatives (642 and 643, Fig. 26). In cytotoxicity 

testing against L1210 cells, compound 642 (ID50 0.13 μM, 5-methyl) and ETO (ID50 0.15 

μM) exhibited almost equivalent activity, while compound 643 (ID50 0.0030 μM, 5-phenyl) 

was 50-fold more active. Subsequently, Cao et al.170 also reported a brief synthesis of 4-

(1,2,3-triazol-1-yl)-PPT derivatives as a new class of antitumor compounds.

In 2008, Reddy’s group171,172 synthesized a library of 4β-[(4-substituted)-1,2,3-triazol-1-

yl]-PPTs and DEPPTs using click chemistry protocols. The library focused on aniline-based 

(644–653, Table XXV), phenol-based (654–667, Table XXVI)-, and thiophenol-based (668–
673, Table XXVI) 1,2,3-triazole derivatives. Many compounds showed promising antitumor 

activity, and certain analogs with aromatic substituents on the triazole moiety displayed 

excellent cytotoxicity. PPT analog 648 with a 3-nitroaniline moiety showed significant 

cytotoxicity against DU-145, PC-3, SF-295, HCT-15, and 502713 cell lines with highest 

potency against the HCT-15 cell line (IC50 0.04 μM). PPT analogs 658 and 659 with 2-

chloro- and 4-chlorophenoxy groups also showed significant cytotoxicity against the seven 

tested cancer cell lines with highest potency against HT-29 (IC50 0.34 μM) and HCT-15 

(IC50 0.31 μM) cell lines, respectively.

In the same year, Reddy and co-workers173 also generated a series of carbohydrate-based 

1,2,3-triazole derivatives by condensing 1-O-propargyl monosaccharides with 4β-azido-PPT 

and 4β-azido-4′-O-demethyl-PPT (Table XXVII). The new compounds were screened for 

cytotoxicity against six human cancer cell lines, DU-145 (prostate), PC-3 (prostate), A-549 

(lung), HOP-62 (lung), HCT-15 (colon), and SF-295 (CNS), but these generally were not as 

potent as ETO. Compound 675, in which the sugar moiety was per-acylated, was less potent 

than the corresponding free glycoside (674). The presence of a hydroxy moiety on ring E 

was essential to the activity; for example, compounds containing dimethoxy substitution 

(679–682) were more active than those having trimethoxy substitution (674–678). Thus, 

compound 679, which contained dimethoxy rather than trimethoxy substitution on ring E 

and a glucose moiety on the triazolyl ring, exhibited the best activity among the nine tested 

compounds.

Information on docking studies prompted Reddy et al.174 to synthesize additional 4β-[(4-

alkyl)-1,2,3-triazol-1-yl] derivatives of PPT and DEPPT using click chemistry (Table 
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XXVIII). Most of the derivatives exhibited better cytotoxicity than ETO. In particular, three 

compounds, 683, 691, and 692, showed notable potency against PC-3 (IC50 0.03, 0.06, 0.06 

μM, respectively) and HEP-2 (IC50 0.06, 0.06, 0.05 μM, respectively) cell lines. Compounds 

691 and 692 also displayed excellent IC50 values (0.01 and 0.04 μM, respectively) against 

MCF-7. The cytotoxic activity generally decreased as the alkyl chain length increased, so 

that analogs with ethyl (683, 692) or hydroxymethyl (691) groups on the triazole moiety 

were the most potent. Moreover, DNA fragmentation and flow cytometric results revealed 

that these derivatives induced dose-dependent apoptosis. Docking experiments showed a 

good correlation between their calculated interaction energies with observed IC50 values and 

topo II inhibitory effects of all compounds.

In addition, Chen’s group175 synthesized and evaluated nine different 4β-[(4-

substituted)-1,2,3-triazol-1-yl]-PPT derivatives (701–709, Fig. 27) for cytotoxicity against 

human cancer cell lines (HeLa, K562, K562/A02). Most of the compounds demonstrated 

significant cytotoxic activity. Some derivatives exhibited high cytotoxicity toward the drug 

resistant K562/A02 leukemic cell line, whereas ETO was not active. Among them, 

compound 707 showed excellent potency, with IC50 values of 0.082, 0.053, and 0.059 μM 

against HeLa, K562, and K562/A02, respectively, more than 40 times more cytotoxic than 

ETO.

The same synthetic route was also used by Chen et al.176 to prepare several additional series 

of 4β-[(4-substituted)-1,2,3-triazol-1-yl]-PPT congeners (710–734, Table XXIX). When 

evaluated against four tumor cell lines (HepG2, MKN-45, NCI-H1993, and B16), seven 

compounds (717–721, 728, and 730) were notably more potent compared with ETO. Among 

phenyoxymethyl and phenylthiomethyl substituted compounds (710–723), analogs with an 

electron-donating group (e.g., 712, 714, 717, 719, and 720) at the meta or para position of 

the aromatic ring tended to be more active than those with an electron-withdrawing group 

(e.g., 710, 711, 715, and 716). Methoxy groups at both meta and para positions of the 

phenyl ring were also tolerated, for example, compound 720 displayed significant activity 

with an average IC50 value of 1.58 μM. The two methyl benzamide substituted compounds 

724 and 725 were less active. Significantly, the presence of a fluorine atom on the phenyl 

moiety (e.g., 730) was optimal for chalcone-containing analogs (726–734).

5. PPT DERIVATIVES SPIN-LABELED AT C-4 POSITION

Our prior review on PPT46 included rationale for introduction of a stable nitroxide radical 

into PPT derivatives. Free radical compounds of this type have also been introduced into 

many antitumor drugs, such as thiotepa, 5-fluorouracil, nitrosourea, rubomycin and 6-

mercaptopurine,177 camptothecin,178 rotenone,179 and glycyrrhetinic acid.180 The resulting 

new compounds often showed superior pharmacological properties compared with the 

parent compounds. Nitroxyl radicals can serve as transporter vehicles through cell 

membranes, regulate levels of oxidized cytochrome P-450 that have been brought down by 

lethal doses of cytostatic agents, and generally improve antitumor and antioxidant properties 

of drugs.
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In view of the above advantages, our laboratory introduced stable radicals as spin labels at 

different positions of the PPT skeleton, particularly the C- or D-ring, over the past 27 

years.181–194 Such analogs frequently exhibited significant antitumor activity against several 

mouse transplantable tumors together with remarkably decreased toxicity.

Both antitumor and antioxidant activities of D-ring spin-labeled PPT derivative GP–1 (735) 

and two congeners GP-1-OH (736) and GP-1-H (737) were determined (Fig. 28).187 The 

former testing used mice with transplanted S180 and HepA tumors. The rank order of 

potency was GP-1 > GP-OH > GP-1-H, which was attributed to the influence of partition 

coefficients and ionization constants on the compounds’ properties. Moreover, the related 

GP-11 (738, Fig. 28) was reported as a low immunosuppressive antitumor agent;188 it 

increased the mitotic index and arrested cells at the G2/M rather than S phase. In addition, 

the 4β-amino DEPPT-modified compound, GP-7 (739, Fig. 28), which is spin-labeled on the 

C-ring, showed lower toxicity but equivalent activity both in vivo (mouse solid tumors S180 

and HePA) and in vitro (mouse leukemia L1210 and human stomach carcinoma SGC-7901) 

in comparison with ETO.189 Additional spin-labeled PPT derivatives included 4β-amido190 

and 4β-ester191 compounds. These modifications resulted in substantially increased activity 

relative to ETO, as exemplified in three spin-labeled 4β-amido derivatives (740–742, Fig. 

28).190 Compounds 740 and 741 were as or more potent than ETO against human 

nasopharyngeal carcinoma KB, lung cancer A-549, stomach carcinoma SGC-7901, and 

mouse leukemia L1210 and P388 cells.191

Most spin-labeled PPT esters (743–754, Table XXX) displayed greater cytotoxicity than 

ETO against P-388 and A-549 cell lines.191 Compound 750 showed the highest potency 

with IC50 values less than 0.01 μM against P-388 and 0.13 μM against A-549. The cytotoxic 

and antioxidative activities of 4α-substituted compounds (747–754) generally were superior 

to those of 4α-substituted compounds (743–746).191 The studies also found a correlation 

between cytotoxicity against tumor cells and antioxidant activity, suggesting that these 

compounds may act on tumor cells through an antioxidative mechanism. No distinct 

correlation was found between cytotoxic activity and the size or degree of saturation of the 

ring system in the nitroxide moiety.

Because of their good water solubility, L-amino acids are often used as carriers for drugs. 

Therefore, we linked N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyloxycarbonyl)-amino acids 

with PPT to give five novel spin-labeled amino acid-linked PPT derivatives (755–759, Table 

XXXI).192,193 All five compounds showed significant activity against K562, L-1210, and 

HL-60 cell lines, with compounds 757–759 exhibiting the highest cytotoxicity against 

HL-60 cells (IC50 0.108, 0.552, and 0.171 μM, respectively).

As outlined in Table XXXII, we subsequently prepared similar spin-labeled derivatives 

linked through a 4β-amide rather than 4α-ester bond by reaction of 4β-amino-DEPPT with 

N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyloxycarbonyl)-amino acids.194 Compounds 760–
766 were tested for in vitro cytotoxicity against three tumor cell lines as well as for 

antioxidative activity in tissues of SD rats. Most of the new compounds showed superior or 

comparable activity to ETO against A-549, HL-60, and RPMI-8226. Notably, compounds 

762–764 and 766 exhibited excellent inhibitory activity against RPMI-8226 with IC50 
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values ranging from 0.06 to 0.09 μM. Furthermore, all target compounds displayed three- to 

sixfold more potent antioxidative activity (IC50 5.89–9.63 μM) in homogenate tissues of rat 

liver, heart, and kidney compared with ETO. Thus, introduction of L-amino acids with a 

stable nitroxyl radical into PPT could lead to improved biological activity.

Overall, novel spin-labeled PPTs provide a promising direction in antitumor chemotherapy, 

not only because they exhibit superior activity, but also because they can be monitored by 

electron spin resonance in pharmacological experiments.46 As a whole, the introduction of a 

stable nitroxyl radical into the PPT molecule led to potentiated antitumor and antioxidative 

effects, proving that the design and synthesis of these compounds should be beneficial.

6. CONCLUSION

In summary, the successful history of PPT and related lignans confirms the importance of 

natural products as a major source of lead compounds for drug research. Since PPT’s 

isolation in 1880 but unsuccessful clinical usage, the dynamics of PPT research has 

remained very high, resulting in hundreds of publications every year. The tremendous 

efforts in PPT research have mainly focused on the semisynthetic construction of novel PPT 

derivatives, prodrugs, and new forms of administration. These efforts have resulted in PPT-

derived drugs, including approval for clinical use of ETO and teniposide, as well as many 

other drug candidates, such as NK611, TOP53, and GL-331, with C-4 modifications. 

However, the development of safe, economical, and site-specific anticancer drugs still faces 

challenges. Undoubtedly, continued studies on PPT analogs and their interaction with topo 

II will expand our understanding of the detailed MOA, which in turn will suggest new 

synthetic directions toward more effective anticancer drugs. The expectations and value of 

PPT as a lead compound go beyond the development of anticancer agents, based on the 

numerous biological activities continually being discovered for it and its derivatives. In 

conclusion, although the conversion of PPT-derived compounds to clinically effective drugs 

has been slow and unpredictable, the application of rational drug design technologies should 

promote the process at a faster pace.
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Figure 1. 
Structures of podophyllotoxin (1, PPT), epipodophyllotoxin (2, EPPT), 4′-

demethylepipodophyllotoxin (3, DEPPT), etoposide (4, ETO), teniposide (5), etopophos (6), 

NK-611(7), GL-331(8), NPF (9), TOP-53 (10), and tafluposide (11).
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Figure 2. 
Structures of alkyl and amidomethyl analogs 12–25.

Liu et al. Page 33

Med Res Rev. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
Structures of compounds 43–96.
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Figure 4. 
Structures of thioglucose ETO analogs 123–126.
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Figure 5. 
Structures of thioether analogs 127–154.
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Figure 6. 
Structures of Se-linked analogs 162–171.
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Figure 7. 
Structures of ether analogs 172–186.
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Figure 8. 
Structures of ether analogs 187–209.
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Figure 9. 
Structures of ester analogs 210–221.
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Figure 10. 
Structures of ester analogs 222–235.
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Figure 11. 
Structures of ester analogs 236–241.
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Figure 12. 
Structure of L1EPO (286).
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Figure 13. 
Structures of compounds 287–291.
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Figure 14. 
Structure of compound 292.
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Figure 15. 
Structures of novel bis-ester-linked analogs 293–297.
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Figure 16. 
Structure of 4-aminoglucose ETO analog 298.
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Figure 17. 
Structures of alkylamino analogs 299–306.
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Figure 18. 
Structures of benzyl- and benzoyl-amino analogs 330–355.
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Figure 19. 
Structures of amino conjugates (382–386) with camptothecin or taxoids.
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Figure 20. 
Structures of compounds 387–399.
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Figure 21. 
Structures of heteroarylamino analogs 400–404.
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Figure 22. 
Structures of bis-N-linked dimers 405–418.
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Figure 23. 
Structures of 5-FU–DEPPT analogs 530–536.
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Figure 24. 
Structures of imidazolyl analogs 575–584.
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Figure 25. 
Structures of aroylthiourea-amino analogs 630–641.
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Figure 26. 
Structures of triazole analogs 642–643.
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Figure 27. 
Structures of compounds 701–709.
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Figure 28. 
Structures of spin-labeled compounds 735–742.
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Table I

Biological Data for Aminoethyl Analogs TOP53 and 26–38

Compound Cytotoxicity P388 (IC50, μM) Topo II (IC50, μM)

ETO 0.01 59.2 (1.0)a

26 0.07 17.2 (0.29)

27 0.66 25.1 (0.42)

28 0.019 61.4 (1.03)

29 0.15 97.3 (1.64)

30 0.02 58.3 (0.98)

31 1.0 NTb

TOP53 0.001 32.5 (0.54)

32 0.055 26.9 (0.45)

33 0.037 30.0 (0.50)

34 0.0033 29.8 (0.53)

35 0.0030 33.6 (0.56)

36 0.26 115.7 (1.95)

37 0.10 31.3 (0.52)

38 0.0043 32.3 (0.54)

a
The value in parentheses is the ratio of IC50 of compound/IC50 of ETO.

b
NT, not tested.
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Table II

Biological Data for New Compounds 39–42

Cell cyclea Inhibition of
microtubule assemblyb

(IC50, μM)Compound
L1210
(IC50, μM)

Percent
of G2/M

Percent
of 8N

Concentration
(μM)

39 0.035 60 27 0.1 2.3

40 0.24 42 44 0.25 NTc

41 0.10 69 15 0.5 7.3

42 1.30 69 20 5 8.3

a
Untreated control cells: 24% G2/M, 1% 8N.

b
4-Deoxypodophyllotoxin IC50 = 1.1 μM.

c
NT, not tested.
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Table III

Cytotoxicity Data for Pinacol, Alkylidene, and Alkyl Analogs 97–122

GI50 ± SD (nM)a

Compound A-549 HT-29 SK-BR3

EPPT 60 60 NT

97 6220 ± 562 5230 ± 443 5870 ± 126

98 6020 ± 526 6560 ± 456 6140 ± 786

99 279 ± 12 404 ± 75 288 ± 8

100 2030 ± 15 2510 ± 413 2430 ± 9

101 1480 ± 564 659 ± 43 511 ± 65

102 577 ± 61 598 ± 83 457 ± 24

103 254 ± 6 204 ± 2 181 ± 7

104 1150 ± 27 1730 ± 87 1030 ± 70

105 2620 ± 65 4750 ± 126 4990 ± 345

106 139 ± 5 159 ± 16 148 ± 15

107 874 ± 68 528 ± 20 524 ± 36

108 376 ± 25 281 ± 32 313 ± 57

109 191 ± 18 198 ± 18 219 ± 40

110 1690 ± 356 2720 ± 315 2420 ± 154

111 444 ± 12 451 ± 8 439 ± 29

112 547 ± 71 859 ± 13 610 ± 24

113 90.8 ± 1.3 97.5 ± 4.6 64.9 ± 2.8

114 5680 ± 6 6420 ± 85 6720 ± 41
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GI50 ± SD (nM)a

Compound A-549 HT-29 SK-BR3

115 6.39 ± 0.15 5.14 ± 0.50 7.39 ± 0.6

116 8920 ± 317 15440 ± 491 8010 ± 140

117 29.0 ± 1.1 26.8 ± 0.3 25.9 ± 0.4

118 3320 ± 213 2620 ± 53 1780 ± 187

119 6440 ± 477 8280 ± 386 3780 ± 82

120 79.5 ± 9.0 83.1 ± 1.4 84.1 ± 3.0

121 7700 ± 137 10200 ± 221 4530 ± 141

122 6210 ± 326 11400 ± 582 14300 ± 589

a
Cytotoxicity results are expressed as GI50 values, the compound concentration producing a 50% cell growth inhibition and represent the mean ± 

SD of three independent experiments. Values under 100 nM are highlighted for easier comparison.
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Table IV

Biological Data for S-Linked Analogs 155–161

Inhibition rate (%)a

Compound Concentration (mol/L) HL-60 K562

155 10−6 37.9 68.76

10−5 48.2 77.24

10−4 58.6 80.24

10−6 48.2 76.15

156 10−5 55.1 83.10

10−4 58.6 86.83

10−6 24.1 68.32

157 10−5 55.1 73.95

10−4 55.1 86.32

10−6 10.3 52.30

158 10−5 55.1 62.61

10−4 62.0 80.90

10−6 22.3 60.71

159 10−5 49.6 72.86

10−4 58.6 79.07

10−6 40.0 NT

160 10−5 65.0 NT

10−4 67.5 NT

10−6 20.6 NT

161 10−5 58.6 NT

10−4 62.0 66.86

a
Results obtained after 72 hr.

Med Res Rev. Author manuscript; available in PMC 2016 January 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Liu et al. Page 65

Table V

Biological Data for Carbamoyl Analogs 242–247

Compound
Topo IIα inhibition

(% linear DNA)a
Cytotoxicity
IC50 (μM)b Cell cycle effectc

ETO 50 0.83 76% (2.5 μM)

242 56 0.038 67% (0.1 μM)

243 27 1.7 77% (2.5 μM)

244 58 0.34 72% (1 μM)

245 17 0.96 NTd

246 38 1.3 NT

247 8 0.24 NT

a
Average value of at least three independent experiments at 20 μM of drug.

b
IC50, concentration of drug required to cause 50% reduction in L1210 cell growth.

c
Percentage of L1210 cells in the G2/M phase at the specified drug concentration.

d
NT, not tested.
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Table VII

Cytotoxicity Data for Ester Analogs 258–267

IC50 (μM) Kidney fibroblast
VERO cellsCompound SK-MEL KB BT-549 SK-OV-3 HL-60

PPT 0.22 0.24 0.36 0.19 0.01 0.55

258 0.21 0.31 0.22 0.26 0.07 NA

259 0.41 1.19 0.29 0.44 0.19 NA

260 0.89 NA 1.19 0.76 0.24 NA

261 0.90 2.39 0.85 0.81 0.18 NA

262 4.0 4.30 2.59 3.75 0.47 NA

263 0.34 0.40 0.27 0.27 0.07 NA

264 1.17 1.35 1.08 1.08 0.24 NA

265 1.42 1.42 0.89 0.79 0.85 NA

266 NA NA NA NA NA NA

267 NA NA NA NA NA NA
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Table VIII

Cytotoxicity Data for Ester Analogs 268–277

IC50 (μM)

Compound SK-MEL KB BT-549 SK-OV-3 HL-60 VERO

PPT 0.22 0.24 0.36 0.19 0.01 0.55

268 0.45 1.26 4.76 0.17 0.66 NA

269 8.12 NA 7.50 10.64 0.22 NA

270 NA NA NA NA 0.73 NA

271 NA NA NA NA NA NA

272 NA NA NA NA NA NA

273 0.72 2.4 1.2 0.84 0.58 NA

274 1.87 2.2 2.53 0.77 0.55 NA

275 NA 0.93 1.33 NA 0.08 NA

276 0.30 0.45 0.30 0.30 0.10 NA

277 2.9 0.35 0.81 NA 0.07 NA
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Table IX

Cytotoxicity Data for Analogs 278–285

IC50 (μM)a

Compound K562 SGC-7901 HeLa HepG2

Colchicine 0.55 ± 0.02 0.05 ± 0.02 0.10 ± 0.02 0.02 ± 0.03

PPT 4.51 ± 0.03 0.34 ± 0.02 0.14 ± 0.04 0.51 ± 0.02

278 2.96 ± 0.03 2.87 ± 0.03 2.63 ± 0.03 2.14 ± 0.04

279 12.07 ± 0.04 19.16 ± 0.02 11.23 ± 0.02 17.88 ± 0.02

280 9.01 ± 0.03 18.20 ± 0.03 10.37 ± 0.02 57.14 ± 0.01

281 8.34 ± 0.02 11.21 ± 0.04 5.99 ± 0.03 20.79 ± 0.02

282 1.01 ± 0.02 1.36 ± 0.01 0.75 ± 0.03 0.79 ± 0.01

283 2.61 ± 0.02 3.21 ± 0.02 4.33 ± 0.01 1.95 ± 0.02

284 3.48 ± 0.03 4.31 ± 0.01 3.75 ± 0.02 2.87 ± 0.03

285 5.18 ± 0.02 3.71 ± 0.03 2.58 ± 0.02 4.17 ± 0.02

a
Cytotoxicity results are expressed as IC50 values, the compound concentration producing a 50% cell growth inhibition and represent the mean ± 

SD of three independent experiments.
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Table X

Biological Data for Arylamino Analogs 307–329

Compound Cytotoxicitya
ID50 KB (μM)

Inhibition of DNA
topo II activity ID50,b μM

Cellular protein–DNA
complex formation % (10 μM)

ETO 0.2 50 100

307 4.54 25 151

308 0.45 5 290

309 2.26 25 211

310 0.25 – 121

311 0.23 50 158

312 0.24 10 213

313 1.08 50 115

314 2.34 – 32

315 2.29 – 51

316 0.22 50 99

317 2.36 – 62

318 0.22 100 179

319 0.34 – 64

320 0.69 25 137

321 0.64 10 211

322 1.0 >100 4

323 2.7 50 249

324 0.84 5 207

325 <1.0 50 164

326 0.68 10 279

327 1.0 25 97

328 0.66 10 140

329 0.49 10 323

a
ID50, concentration of drug that afforded 50% reduction in cell number after a 3-day incubation.

b
Each compound was examined at 25, 50, and 100 μM. The ID50 value was established on the basis of the degree of inhibition at these three 

concentrations.
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Table XI

Biological Data for Amino Analogs 356–368

Compound Cytotoxicitya
ID50 KB, μM

Inhibition of DNA topo II
activity ID50,b μM

Cellular protein–DNA
complex formation % (20 μM)

ETO 0.20 50 100

356 1.4 25 190

357 1.6 50 183

358 0.027 100 83

359 0.021 50 172

360 2.0 >100 77

361 4.0 50 140

362 0.4 25 203

363 – 25 183

364 0.74 25 17

365 1.13 25 138

366 >4.0 >100 1.9

367 >4.0 >100 6.9

368 <0.4 100 83

a
ID50, concentration of drug that afforded 50% reduction in cell number after a 3-day incubation.

b
Each compound was examined at 25, 50, and 100 μM. The ID50 was established on the basis of the degree of inhibition at these three 

concentrations.
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Table XII

Biological Data for 4″-Benzamido-Amino Analogs 369–381

Compound
Percent PLDB

formationa
KB ED50

b

(μg/mL)
KB-7d ED50

b

(μg/mL)
Relative resistancec

(fold)

ETO 100 (100) 0.5 >10 >20

369 76 1.9 5 2.6

370 58 0.5 2.5 5

371 178 0.5 0.3 0.6

372 210 0.5 0.25 0.5

373 133 0.1 0.25 2.5

374 295 0.8 2.4 3

375 122 0.23 2.2 9.6

376 226 0.55 1.0 1.8

377 33 1 5.5 5.5

378 368 (275) 0.025 0.8 32

379 (227) 0.035 0.5 14

380 7 4 8 2

381 121 0.065 0.4 6.2

a
Percent protein-linked DNA breaks (PLDB) formation was determined by the SDS/potassium precipitation method. Percentage values are levels 

of protein-linked DNA breaks induced by drug treatment relative to the ETO control set arbitrarily at 100%. Values in parentheses reflect effects at 
a concentration of 5 μg/mL. Other values reflect effects at a concentration of 10 μg/mL.

b
ED50 is the concentration of drug that afforded 50% reduction in cell number after a 3-day incubation.

c
Relative resistance (fold) values are the ED50 values against KB-7d over those against KB cells.
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Table XIII

Cytotoxicity Data for Polyaromatic Amino Analogs 419–430

IC50 (μM)

Compound Colo502713 HCT-15 HEP-2 IMR-32 A549 DU145 PC-3

ETO 0.1 0.9 0.9 6.3 3.08 3.7 2.6

419 9.4 6.3 6.7 6.7 8.8 21 7.9

420 – 8.2 8.6 2.3 8.3 18 –

421 5.5 0.09 3 5.5 7.1 6.6 4.3

422 0.001 0.0001 1 10 1 2.7 0.5

423 0.002 0.0001 – – 0.0009 – 0.0001

424 0.002 0.0001 0.0002 0.2 1.7 2.2 –

425 0.1 0.002 0.002 0.003 0.04 2.2 0.1

426 0.1 0.1 0.01 0.001 0.0003 0.0003 0.0003

427 4.1 6.2 7.1 19 17 – 6.7

428 1.4 0.08 1.3 1.3 0.2 0.3 6.0

429 0.1 0.9 0.9 6.3 3.08 3.7 2.6

430 NTa NT NT NT NT NT NT

a
NT, not tested.
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Table XIV

Cytotoxicity Data for Arylamino Analogs 431–446

IC50 (μM)

Compound Colo 205 Hop62 HT1080 DWD

PPT 5.0 13.1 8.1 6.1

431 8.1 >80 8.2 22

432 2.7 30.1 9.7 2.3

434 8.3 8.6 >80 6.5

437 7.0 15.2 9.5 5.2

441 7.1 60.3 9.1 7.3

442 8.3 10.1 >80 9.1
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Table XV

Cytotoxicity Data for Acrylamido Analogs 447–461

GI50 (μM)

Compound Zr-75–1 MCF7 Gurav DWD Colo 205 A549 Hop62 A2780

ETO 0.2 2.1 0.5 0.6 0.13 3.08 0.8 1.3

447 2.2 – 2.4 – – −2 2.5 –

448 – 2.7 – – 2.4 – – –

449 2.7 – 2.5 – – – – –

450 2.5 2.4 0.18 0.19 – 2.1 0.17 2.7

451 2.2 – 2.6 2.9 2.7 – 2.3 2.5

452 0.18 2.7 0.19 <0.1 2.0 – 0.19 2.2

453 2.2 – 2.1 2.4 2.1 – 2.7 2.6

454 – 2.7 2.1 <0.1 – 2.4 0.17 2.5

455 2.9 2.9 2.2 2.3 0.17 – – 2.5

456 0.18 <0.1 2.1 2.2 – 2.7 0.18 <0.1

457 2.1 <0.1 2.1 2.3 – 2.7 2.0 2.3

458 2.2 <0.1 2.2 2.3 – 2.8 2.1 2.2

459 2.9 – – – – 2.4 2.5 –

460 – – – – – 2.9 2.9 –

461 2.7 – 2.7 2.7 – 2.3 2.6 –
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Table XVI

Cytotoxicity Data for Alkylamido Chalcone and Cinnamido Analogs 462–490

GI50 (μM)

Compound A549 A375 MCF-7 HT-29 ACHN

ETO 2.34 1.39 0.68 1.81 7.61

PPT 3.75 2.62 1.18 0.78 2.12

462 2.15 18.4 24.8 15.3 16.5

463 14.4 20.1 17.5 11.9 13.7

464 19 13 12 16 10

465 10.7 10.8 18.1 8.75 11.9

466 13.6 9.8 10.2 12.1 19.5

467 5.9 11.4 15.8 11.7 9.3

468 14.7 11.5 8.3 21.1 20.8

469 16.7 10.3 12.6 6.47 13.4

470 19.1 25.8 24.2 12.4 10.18

471 9.1 13.8 21.8 8.1 13.8

472 8.3 9.3 16.2 16.9 16.1

473 9 5.3 6.7 8.41 13.2

474 10.7 7.8 14.9 9.54 8.51

475 26.4 12.2 19.1 21.6 26.7

476 16.8 18.2 24.4 15.6 9.1

477 11.7 11.5 15.4 5.98 11.1

478 2.7 13.4 19.7 2.36 391

479 6.8 9.5 14.6 7.1 18.6

480 8.8 5.7 13.7 11.4 7.54

481 9.5 17.8 11.2 19.2 14.3
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GI50 (μM)

Compound A549 A375 MCF-7 HT-29 ACHN

482 7.7 19.1 15.7 17.6 17.8

483 2.1 18 19.2 0.37 2.18

484 8.2 14.5 10.1 18.1 12.8

485 8.4 13.2 20.1 21 17.7

486 7.9 14 17.7 8.34 13.1

487 15.4 14.5 13.8 12.3 10.8

488 13.4 7.7 11.2 7.75 15.7

489 10.6 10.3 8.6 11.8 10.7

490 7.7 6.8 2.2 8.9 9.46
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Table XVII

Cytotoxicity Data for Sulfonamido Analogs 491–507

GI50 (μM)a

Compound Zr-75–1 MCF7 KB DWD Colo 205 A549 Hop62 A2780

ETO 0.20 2.11 0.31 0.62 0.13 3.08 0.80 1.31

491 2.10 0.09 2.30 2.00 2.10 0.16 2.40 1.91

492 0.08 0.12 0.06 0.17 0.04 0.04 0.06 0.08

493 2.50 0.11 2.10 0.15 0.15 0.14 2.00 0.16

494 0.18 0.13 0.04 0.05 0.04 0.12 0.04 0.06

495 0.06 0.18 0.04 0.04 0.04 0.15 0.04 0.05

496 0.17 0.15 0.17 0.14 0.11 0.12 0.16 0.15

497 2.30 2.61 NTb 2.21 2.71 2.00 2.01 2.11

498 2.31 2.21 2.31 2.91 NT 2.11 NT 2.40

499 2.11 0.14 2.11 2.61 NT NT NT 2.30

500 2.51 2.21 NT NT NT 2.71 2.21 2.311

501 2.90 2.71 NT 2.50 NT NT 2.01 2.11

502 2.23 0.17 NT 2.80 NT NT 2.91 2.11
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GI50 (μM)a

Compound Zr-75–1 MCF7 KB DWD Colo 205 A549 Hop62 A2780

503 2.81 2.32 2.00 NT 2.12 2.60 2.22 2.00

504 NT 2.90 NT 0.14 2.31 2.51 2.61 2.42

505 2.11 2.30 2.50 2.88 2.80 NT NT 2.51

506 2.90 NT 2.01 2.10 NT 2.70 2.00 NT

507 2.12 0.16 – 2.02 2.51 – 2.71 –

a
50% Growth inhibition; values are means of three determinations.

b
NT, not tested.
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Table XVIII

Cytotoxicity Data for Compounds 508–529

IC50 (μM)

Compound A549 HT-29 ACHN B-16 HELA

ETO 2.8 1.81 7.61 1.39 1.52

PPT 3.6 1.02 2.3 2.5 2.8

508 13.6 19.5 17.5 16.3 5.9

509 17.9 22.6 26.4 16.8 7.5

510 24.7 27.9 28.5 20.3 5.26

511 38.1 32.1 30.3 22.5 11.2

512 23.1 38.4 23.1 12.7 13.3

513 19.8 25.1 34.2 23.4 18.4

514 31.07 11.2 16.8 22.7 12.6

515 12.7 14.1 16.4 27.5 21.2

516 20.6 19.9 15.6 23.5 16.6

517 28.9 26.5 30.2 16.3 7.5

518 19.4 20.6 23.5 NA 14.6

519 22.3 26.5 25.8 16.6 16.9

520 5.3 8.4 11.6 9.5 9.4

521 39.5 36.3 31.6 45.3 25.1

522 15.2 16.8 27.1 18.3 11.5

523 2.1 7.1 15.9 9.5 9.3

524 15.8 10.8 32.5 25.6 14.9

525 21.2 26.3 18.3 26.1 15.2

526 10.6 10.9 17.7 18.4 12.1

527 11.2 5.7 17.3 18.3 8.9

528 17.3 14.5 19.3 10.7 14.4

529 9.5 9.2 13.8 12.7 13.7
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Table XIX

Biological Data for 5-FU–DEPPT Conjugates 537–548

Cytotoxic activity (IC50, μM)a

Compound K562b AGSc HL-60b A-549c log P

ETO >100 50.8 2.75 7.38 0.69

5-FU >100 >100 65.3 50.5 –

537 19.5 40.4 22.3 2.59 −0.07

538 13.5 62.5 5.80 1.92 0.34

539 30.8 140.8 23.2 6.95 −0.12

540 9.5 59.2 0.13 0.01 0.33

541 5.1 56.2 0.24 0.18 0.59

542 8.8 24.8 0.99 0.29 0.23

543 5.8 23.6 0.31 0.48 0.65

544 28.6 114.7 26.6 21.7 0.07

545 5.3 34.5 0.73 <0.01 0.35

546 9.2 23.7 0.42 0.30 0.43

547 6.0 23.5 0.31 0.53 0.51

548 13.2 38.8 0.04 <0.01 0.29

a
Average of triplicate experiments.

b
The microculture [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay method, 48 hr drug exposure.

c
the sulforhodamine B (SRB) colorimetric assay method, 72 hr drug exposure.
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Table XX

Biological Data for Sulfonamide Analogs 549–567

Compound Topo IIa (% linear DNA) IC50 (μM)b Cell cycle effectc

ETO 50 0.83 80% (2.5 μM)

549 50 0.07 77% (0.5 μM)

550 10 0.033 75 (0.2 μM)

551 35 0.25 76 (1 μM)

552 0 5.5 73 (25 μM)

553 14 0.045 66 (0.25 μM)

554 32 0.035 65 (0.25 μM)

555 45 2.5 75 (50 μM)

556 10 0.55 75 (2.5 μM)

557 0 1 52 (5 μM)

558 9 0.21 69 (0.5 μM)

559 0 0.34 75 (0.2 μM)

560 9 0.17 71 (0.5 μM)

561 7 3.6 68 (10 μM)

562 44 0.037 66 (0.25 μM)

563 24 0.083 86 (0.25 μM)

564 0 0.51 60 (2.5 μM)

565 34 0.12 77 (0.5 μM)

566 31 0.1 76 (0.25 μM)

567 45 0.048 84 (0.1 μM)

a
Average of three independent experiments in the presence of drug at 50 μM.

b
IC50 is the concentration of drug required to reduce L1210 cell growth by 50%.

c
Percent of L1210 cells in the G2 + M phases at the indicated concentration.
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Table XXI

Cytotoxicity Data for Indole-Substituted Analogs 568–574

IC50 (μM)

Compound HeLa K562 K562/AO2 KB KBV

ETO 2.11 ± 1.17 0.9 ± 0.08 7.05 ± 5.08 3.36 ± 1.05 55.47 ± 4.36

568 1.05 0.99 ± 0.60 4.04 ± 0.97 3.99 ± 1.28 6.28 ± 2.05

569 5.237 0.29 ± 0.19 0.12 ± 00.6 2.49 ± 0.94 3.49 ± 1.05

570 3.805 0.23 ± 0.16 0.70 ± 0.02 0.88 ± 0.23 3.62 ± 2.17

571 0.15 0.40 ± 0.14 0.29 ± 0.26 1.00 ± 0.78 3.16 ± 1.46

572 0.73 1.22 ± 0.35 0.62 ± 0.28 4.99 ± 1.36 5.46 ± 3.65

573 10.67 0.31 ± 0.18 0.22 ± 0.20 1.03 ± 0.38 2.59 ± 0.28

574 11.11 0.46 ± 0.37 0.10 ± 0.01 1.62 ± 1.25 2.30 ± 2.17

a
Cytotoxicity against HeLa, KB, and KBV cell lines and against K562 and K562/AO2 cell lines measured by standard MTT and SRB assay 

methods, respectively.

b
Each value represents mean ± SD of three independent experiments.
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Table XXII

Cytotoxicity Data for Anilino Analogs 585–613

IC50 (μM)

Compound KB KB/VCR A549 95D RFa

ETO 4.61 83.4 2.56 20.2 18.09
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IC50 (μM)

Compound KB KB/VCR A549 95D RFa

585 0.21 1.57 0.24 0.036 7.84

586 0.78 1.27 1.94 11.5 1.63

587 0.45 1.53 0.40 9.84 3.4

588 4.21 19.1 13.4 17.2 4.54
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IC50 (μM)

Compound KB KB/VCR A549 95D RFa

589 2.42 3.95 19.0 17.1 1.63

590 0.44 2.20 0.49 10.0 5

591 0.39 1.85 3.91 1.17 4.74

592 0.48 2.09 5.10 14.8 4.35
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IC50 (μM)

Compound KB KB/VCR A549 95D RFa

593 0.77 3.87 7.49 14.6 5.03

594 0.43 1.78 2.75 7.40 4.14

595 1.52 2.20 15.9 >50 1.45

596 0.40 2.33 5.20 25.8 5.83
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IC50 (μM)

Compound KB KB/VCR A549 95D RFa

597 0.42 27.2 4.78 >50 64.76

598 2.88 6.51 4.54 4.13 2.26

599 3.12 7.39 5.11 0.55 2.37

600 6.00 5.08 7.45 12.04 0.85
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IC50 (μM)

Compound KB KB/VCR A549 95D RFa

601 6.60 9.55 8.5 20.30 1.45

602 6.76 9.28 3.41 0.44 1.37

603 2.91 5.31 1.56 1.08 1.82

604 1.91 8.48 2.68 0.42 4.44
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IC50 (μM)

Compound KB KB/VCR A549 95D RFa

605 >50 13.7 11.0 3.41 <0.27

606 6.88 3.70 3.31 1.15 0.54

607 6.69 5.30 8.43 0.41 0.79

608 6.53 2.80 >50 1.25 0.43
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IC50 (μM)

Compound KB KB/VCR A549 95D RFa

609 >50 3.08 >50 1.23 <0.06

610 8.75 5.72 18.9 1.66 0.65

611 22.1 13.06 19.5 6.56 0.59
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IC50 (μM)

Compound KB KB/VCR A549 95D RFa

612 >50 >50 >50 15.7 NTb

613 >50 14.21 >50 19.6 <0.28

a
Resistance factor calculated as ratio of IC50 against MDR cells and IC50 against corresponding drug-sensitive parental cells.
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b
NT, not tested.
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Table XXIII

Cytotoxicity Data for Benzylamino Analogs 614–620

IC50 (μM)

Compound A549 HCT-116 HepG2 Average

ETO 21.4 13.5 4.9 13.3

614 4.9 6.3 5.8 5.7

615 2.9 5.6 3.0 3.8

616 4.0 5.1 5.0 4.7

617 5.5 6.4 6.3 6.1

618 3.2 5.2 5.8 4.7

619 9.5 8.7 8.1 8.8

620 4.8 6.1 5.1 5.3
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Table XXIV

Cytotoxicity Data for Oxadiazole-Amino Analogs 621–629

IC50 (μM)

Compound DU-145 SGC-7901 A549 SH-SY5Y HepG2 HeLa L929 Vero

ETO 64.26 12.09 10.12 5.37 5.48 96.26 1.00 31.14

PPT >100 2.95 13.62 2.54 2.27 7.58 1.37 1.78

621 11.34 >100 >100 25.81 11.85 >100 43.29 15.37

622 >100 38.11 >100 14.66 1.51 2.68 19.62 5.49

623 >100 >100 NTa 26.88 74.20 85.34 >100 >100

624 76.12 >100 53.66 7.39 27.95 17.66 18.15 7.43

625 >100 >100 NT 16.58 >100 >100 >100 NT

626 >100 56.58 >100 20.02 38.82 42.53 70.85 >100

627 35.42 NT 69.22 29.48 38.81 58.85 >100 >100

628 >100 >100 >100 22.47 72.77 >100 54.56 >100

629 >100 >100 >100 41.53 96.56 >100 20.47 >100

a
NT, not tested.
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Table XXV

Cytotoxicity Data for Triazole Analogs 644–653

IC50 (μM)

Prostate CNS
SF-295

Colon Liver
HEP-2

Lung
A-549Compound DU-145 PC-3 HCT-15 502713

PPT 2.97 18.9 5.69 1.00 3.88 1.42 7.63

ETO 3.85 17.4 13.3 1.48 2.42 2.15 5.62

644 1.06 1.09 1.94 0.36 0.78 9.14 7.88

645 1.19 1.53 0.96 0.14 0.62 1.50 5.17

646 0.93 1.18 0.84 0.34 0.71 1.37 4.99

647 4.16 1.37 3.11 4.22 0.98 1.22 8.63

648 0.65 0.74 0.68 0.04 0.56 3.65 5.78

649 4.37 6.63 4.20 1.55 1.19 4.10 7.43

650 1.12 0.88 0.78 0.14 0.61 4.64 6.10

651 1.09 1.03 0.70 0.40 0.68 2.96 7.46

652 3.57 3.45 1.00 1.43 1.88 1.26 9.24

653 2.75 4.49 6.03 1.69 1.34 3.27 7.41
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Table XXVI

Cytotoxicity Data for Triazole Analogs 654–673

IC50 (μM)

Compound HT-29 HCT-15 502713 HOP-62 A549 MCF-7 SF-295

ETO 5.31 7.07 3.88 4.80 7.63 2.51 5.69

654 9.65 1.91 0.96 NTa 1.0 0.90 0.93

655 0.34 0.53 0.32 0.50 1.42 1.60 3.79

656 0.53 1.46 0.72 4.18 1.67 1.84 8.86

657 8.25 5.11 20.8 NT 8.11 4.84 3.65

658 0.34 0.62 0.41 0.69 0.64 0.79 1.0

659 0.35 0.31 0.43 0.57 0.56 1.6 1.67

660 21.8 23.4 44.2 50.0 48.1 NT 50.6

661 1.46 3.22 4.07 4.32 4.12 3.68 1.21

662 4.72 4.33 NT NT 5.06 4.22 9.15

663 3.37 3.31 7.56 6.5 4.26 4.74 16.6

664 2.86 4.83 22.0 7.87 6.22 4.79 1.22

665 2.88 3.53 4.69 10.7 5.3 4.74 4.64

666 8.87 4.79 41.6 NT 19.8 4.29 2.92

667 9.23 6.67 5.17 28.6 29.6 5.18 1.45

668 0.37 0.65 0.46 0.81 0.7 1.91 5.44

669 22.7 21.8 28.5 32.9 29.2 23.1 49.5

670 24.4 27.5 37.0 50.0 32.2 17.5 30.2

671 2.08 3.31 4.76 4.84 5.06 4.95 9.56

672 1.38 3.68 4.37 5.0 6.22 4.64 3.89

673 1.51 3.39 3.74 5.0 4.59 3.7 NT
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a
NT, not tested.
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Table XXVII

Cytotoxicity Data for Triazole Analogs 674–682

IC50 (μM)

Compound DU-145 PC-3 A549 HCT-15 HOP-62 SF-295

ETO 2.97 100 7.63 1 4.8 5.69

674 25.8 127 125 15 NTa 26.8

675 42 221 556 NT 142 35.1

676 237 316 59.9 16 178 14.5

677 18.6 94.9 51.8 237 121 53.4

678 26.5 268 114 NT NT 88

679 3.11 34.6 3 0.93 8.55 2.01

680 4.95 24.3 6.88 1 5.27 16.1

681 2.73 8.62 7.33 3.57 5.96 2.51

682 5.04 20.8 7.04 2.14 16.2 8.29

a
NT, not tested.
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Table XXVIII

Cytotoxicity Data for Alkyltriazole Analogs 683–700

IC50 (μM)

Compound SF-295 A549 PC-3 Hep-2 HCT-15 MCF-7

ETO 13.5 5.62 17.5 2.15 7.15 19

683 1.8 35 0.03 0.06 0.4 0.4

684 3.6 39 5.1 1.6 0.03 1.4

685 8.1 82 6.6 9.6 11 9.8

686 24 39 8.4 7.7 11 9.5

687 10 35 6.4 10 27 8.6

688 25 36 23 9.8 45 6.4

689 14 >100 17 18 >100 9.3

690 6.2 >100 5.5 5.8 29 5.7

691 2.1 >100 0.06 0.06 15 0.01

692 4.8 17 0.06 0.05 1.9 0.04

693 2.3 27 0.2 2.9 0.8 5.7

694 21 35 12 17 34 20

695 4.3 26 4.7 21 2.1 14

696 18 26 8.7 >100 11 19

697 10 45 5.8 6 15 13

698 5.7 >100 5.1 3.8 13 11

699 13 30 19 19 15 11

700 15 18 8.2 6.7 18 0.6
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Table XXIX

Cytotoxicity Data for Triazole Analogs 710–734

IC50 at 48 hr (μM)a

Compound HepG2 MKN-45 NCI-H1993 B16

ETO >10.00 6.34 ± 0.89 7.93 ± 0.77 >10.00

710 3.87 ± 0.23 6.10 ± 0.98 59.60 ± 2.34 30.00 ± 1.87

711 1.05 ± 0.04 0.99 ± 0.01 54.50 ± 4.78 10.00 ± 1.89

712 0.98 ± 0.04 1.05 ± 0.06 10.70 ± 1.26 2.85 ± 0.67

713 19.00 ± 1.89 7.62 ± 0.87 64.00 ± 4.76 66.60 ± 4.56
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IC50 at 48 hr (μM)a

Compound HepG2 MKN-45 NCI-H1993 B16

714 4.18 ± 0.56 4.26 ± 0.65 8.25 ± 0.89 >80.00

715 3.80 ± 0.19 3.11 ± 0.22 4.13 ± 0.34 4.53 ± 0.55

716 7.78 ± 0.77 1.45 ± 0.13 6.92 ± 0.55 4.35 ± 0.65

717 0.25 ± 0.01 0.93 ± 0.04 0.85 ± 0.05 2.93 ± 0.32

718 0.15 ± 0.01 0.22 ± 0.01 0.24 ± 0.03 0.54 ± 0.09

719 0.26 ± 0.02 0.13 ± 0.02 0.49 ± 0.05 2.52 ± 0.33

720 0.31 ± 0.08 0.44 ± 0.04 1.45 ± 0.12 0.90 ± 0.35

721 0.18 ± 0.01 0.31 ± 0.02 0.29 ± 0.05 0.57 ± 0.01
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IC50 at 48 hr (μM)a

Compound HepG2 MKN-45 NCI-H1993 B16

722 1.72 ± 0.09 1.72 ± 0.09 3.00 ± 0.14 2.50 ± 0.34

723 3.14 ± 0.19 3.14 ± 0.78 2.04 ± 0.43 3.35 ± 0.12

724 8.55 ± 0.98 4.20 ± 0.98 7.25 ± 0.98 8.25 ± 0.65

725 4.85 ± 0.56 3.10 ± 0.81 3.90 ± 0.56 4.10 ± 0.45

726 2.80 ± 0.09 1.05 ± 0.05 1.63 ± 0.07 2.48 ± 0.32

727 >80.00 >10.00 >10.00 >80.00

728 1.61 ± 0.23 1.01 ± 0.05 2.14 ± 0.07 1.56 ± 0.09

729 9.65 ± 0.98 6.80 ± 0.66 >10.00 >20.00
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IC50 at 48 hr (μM)a

Compound HepG2 MKN-45 NCI-H1993 B16

730 0.81 ± 0.04 0.69 ± 0.04 0.85 ± 0.11 0.53 ± 0.01

731 2.39 ± 0.11 2.34 ± 0.22 8.20 ± 0.99 3.45 ± 0.45

732 2.20 ± 0.15 2.33 ± 0.19 4.37 ± 0.76 2.18 ± 0.88

733 11.95 ± 1.01 >10.00 >10.00 >10.00

734 2.26 ± 0.44 0.91 ± 0.04 2.04 ± 0.17 2.93 ± 0.22

a
Cytotoxicity results are expressed as IC50 values, the compound concentration producing a 50% cell growth inhibition and represent the mean ± 

SD of three independent experiments.
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Table XXX

Biological Data for Spin-Labeled Compounds743–754

Cytotoxic activity (IC50, μM) Antioxidative activity

Compound P388 A549 Liver Kidney Heart

ETO 1.18 7.14 46.38 64.63 82.73

743 0.82 0.85 7.92 8.80 8.76

744 0.18 8.42 13.55 10.35 10.47

745 0.01 6.43 15.41 15.42 13.39

746 <0.01 6.86 10.59 10.96 10.88

747 0.02 0.30 8.98 7.82 3.8

748 0.09 0.46 4.19 5.10 4.84

749 0.07 0.90 5.50 5.54 9.07

750 <0.01 0.13 5.26 4.96 5.54

751 0.34 >10 4.26 3.04 5.50

752 0.03 0.28 2.93 5.47 2.93

753 0.24 8.19 5.54 5.41 6.20

754 0.04 0.42 7.32 7.64 7.56
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Table XXXI

Cytotoxicity Data for Spin-Labeled Compounds 755–759

IC50 (μM)a

Compound K562 HL-60 SPCA-1 Lewis L-1210

ETO 3.29 × 10−2 4.44 × 10−2 3.2 × 10−2 7.2 × 10−2 3.49 × 10−2

755 1.08 × 10−3 1.96 × 10−3 0.248 0.190 1.57 × 10−2

756 1.52 × 10−2 1.52 × 10−2 5.7 × 10−2 0.155 8.64 × 10−3

757 9.64 × 10−3 1.08 × 10−4 9.7 × 10−2 6.6 × 10−2 5.37 × 10−3

758 1.67 × 10−2 5.52 × 10−4 0.127 9.3 × 10−2 1.50 × 10−2

759 1.48 × 10−2 1.71 × 10−4 7.6 × 10−2 7.3 × 10−2 1.63 × 10−4

a
IC50, concentration of drug that affords 50% reduction in cell number using the MTT method with drug exposure for 48 hr.
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Table XXXII

Biological Data for Spin-Labeled Compounds 760–766

Cytotoxic activity (IC50, μM) Antioxidative activity

Compound A-549 HL-60 RPMI-8226 Liver Kidney Heart

ETO 0.29 0.42 0.14 43.89 23.77 40.67

760 0.21 0.32 0.33 7.47 8.9 7.19

761 0.12 0.22 0.26 7.64 7.68 6.39

762 0.15 0.24 0.061 8.69 8.88 8.04

763 0.19 0.16 0.089 8.85 8.47 –

764 0.21 0.21 0.078 7.12 7.45 8.79

765 0.42 0.67 0.48 6.85 7.55 5.89

766 0.21 0.21 0.090 6.55 9.63 7.39

Med Res Rev. Author manuscript; available in PMC 2016 January 01.


