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Abstract

Objectives—Cancer registries are increasingly mapping residences of patients at time of 

diagnosis, however, an accepted protocol for spatial analysis of these data is lacking. We 

undertook a public health practice–research partnership to develop a strategy for detecting spatial 

clusters of early stage breast cancer using registry data.

Methods—Spatial patterns of early stage breast cancer throughout Michigan were analyzed 

comparing several scales of spatial support, and different clustering algorithms.

Results—Analyses relying on point data identified spatial clusters not detected using data 

aggregated into census block groups, census tracts, or legislative districts. Further, using point 

data, Cuzick-Edwards’ nearest neighbor test identified clusters not detected by the SaTScan spatial 

scan statistic. Regression and simulation analyses lent credibility to these findings.

Conclusions—In these cluster analyses of early stage breast cancer in Michigan, spatial 

analyses of point data are more sensitive than analyses relying on data aggregated into polygons, 

and the Cuzick-Edwards’ test is more sensitive than the SaTScan spatial scan statistic, with 

acceptable Type I error. Cuzick-Edwards’ test also enables presentation of results in a manner 

easily communicated to public health practitioners. The approach outlined here should help cancer 

registries conduct and communicate results of geographic analyses.
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Introduction

Advances in spatial technology enable epidemiologists to create detailed maps and employ 

spatial cluster statistics to garner insights about patterns of disease [1, 2]. Many of the early 

disease clustering studies focused on cancer and attempted to shed light on spatially varying 

risk factors [3–5]. In recent years, however, etiologic cancer cluster studies have been 

criticized for failing to consider the extended latency between exposure and disease, often 

embodied in a neglect of residential, occupational, and other forms of mobility [6–9].

In light of the challenges associated with the etiologic mapping of cancer, spatial 

epidemiologists have begun to map and analyze stages of cancer incidence to reveal factors 

about health care availability and demography that influence stage of diagnosis. In 

demonstrating the utility of this approach, clusters have been detected using data aggregated 

into (a) zip codes in a study of breast cancer in situ in Wisconsin [10], (b) census tracts in 

studies of prostate cancer in New Jersey [11] and colorectal cancer in Massachusetts [12], 

and (c) census block groups in studies of breast cancer in Florida [13] and prostate cancer in 

Maryland [14]. In addition, clusters were detected using geocodes (without aggregation) in 

studies of colorectal cancer in California [15] and Iowa [16]. In majority of these studies, 

factors associated with clusters were revealed, including age, race, ethnicity, socio-economic 

status, urbanicity, proximity to screening facilities, and average rate of screening facility 

usage. These studies have helped to support a relationship between living in close proximity 

to mammography screening centers and early stage breast cancer diagnosis [10, 13].

Despite the progress in analyzing spatial clusters of cancer using stage of diagnosis, 

different scales of spatial support and distinct analytical approaches are often adopted, 

making it difficult to compare results across studies. Cancer registries are a valuable 

resource for investigating influence of spatial support and analytic methodology seeing that 

geocoding is becoming common practice at cancer registries around the country. This article 

presents a protocol for spatial cluster analysis of residence at time of cancer diagnosis using 

cancer registry data, and grew out of a cross-disciplinary collaboration between health 

geographers, spatial statisticians, epidemiologists, and the Michigan Cancer Surveillance 

Program (which includes the state cancer registry). Given the challenges in making etiologic 

inferences in spatial analyses based on residence at time of diagnosis [6–9], we chose to 

focus on early stage breast cancer as our endpoint because of the influence of more 

temporally proximate factors such as access to health care and screening facilities. The 

overall goal is to determine an acceptable protocol for identifying regions with statistically 

elevated rates of early stage breast cancer. There was special interest from cancer registry 

staff to identify a reliable method for identifying clusters in small geographic areas, and for 

determining an approach that could be implemented in a straightforward fashion by public 

health and cancer control professionals.
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Geographers have long known that results and inferences may vary due to change of scale in 

spatial units, and this is referred to as the modifiable area unit problem (or MAUP, for short) 

[17]. These inconsistencies arise as a result of the aggregation of point data into 

administrative boundaries; points near one another may be split into separate groupings, and 

similarly points somewhat far apart may be grouped together. A consequence of MAUP is 

the tendency for different statistical results to be obtained from the same set of data when 

the information is grouped at different levels of spatial resolution [17]. Therefore, one 

cannot claim that results of spatial studies are independent of the units selected. Although 

this phenomenon is widely known in the geography literature, it has not been well explored 

in the epidemiologic literature. One set of detailed simulation studies found that, when used 

in cluster studies, point data do not necessarily have greater statistical power than 

aggregated data [18]. This is attributable to the nature of the clustering methods themselves 

(e.g., a point-based method with poor statistical power will not out-perform a good area-

based method), and whether the assumptions of the methods are valid in different applied 

settings. More recent studies have suggested that analyses of point data are more valid than 

those performed on aggregated data [19, 20]; however another analysis found choice of 

spatial unit not to influence the results [21]. No study has examined whether clustering of 

cancer cases by stage is consistent when using point data versus aggregated data (e.g., 

census block groups, census tracts, zip codes, legislative districts, etc.). The first objective of 

this article is to examine whether spatial clusters of early stage breast cancer persist when 

using different spatial units of analysis.

In addition, while several studies have examined the performance of local spatial clustering 

methods on aggregated data (for example, see [22–25]), only a handful of studies have 

compared the performance of local clustering approaches using point data [26–29], and not 

one of these studies concluded that one method was better than another. The second 

objective of this article is to compare local clustering of geocoded points of early stage 

breast cancer residences using two popular easy-to-use local clustering algorithms: 

SaTScan’s spatial scan statistic [30] and Cuzick-Edwards’ nearest neighbor local clustering 

test [31].

Methods

The Michigan Cancer Surveillance Program (MCSP) compiles cancer records for the State. 

External estimates designate a completeness percentage of 95% or higher on the population-

based data collected for the state of Michigan since 1985. MCSP is funded in part by the 

National Program of Cancer Registries within the Centers for Disease Control and is 

nationally certified by the North American Association of Central Cancer Registries at its 

highest level. From 1994 to 2002, 67,136 women were diagnosed with breast cancer in 

Michigan. Cancer cases were defined as early stage (67%), late stage (22%), or unknown 

(10%) as derived from the SEER General Summary Stage classification [32, 33]. Early stage 

consisted of local and in situ cases; late stage consisted of regional and distant metastatic 

cancer.

Approximately 92% of breast cancer cases were successfully geocoded at residence at time 

of diagnosis under the oversight of the Michigan Cancer Surveillance Program. The 
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geocoded dataset for analysis contained 42,670 early stage cases and 14,150 late stage cases. 

The percentage of addresses successfully geocoded did not differ by stage or year of 

diagnosis.

In the first cluster analysis, data were considered at different spatial scales, including 

individual geocode (n = 56,820), and aggregated into census block groups (n = 8,409), 

census tracts (n = 1,748), and state legislative districts (n = 110) across all of Michigan. A 

range of spatial scales was selected to compare results from the precise (individual geocode) 

to the coarse (state legislative districts). SaTScan spatial scan statistic v7.0.3, a popular 

freeware often adopted in epidemiologic studies [11–15], was used to identify spatial 

clusters of early stage cancer cases. This spatial scan statistic can be applied to polygons to 

identify clusters in rates of disease (e.g., areas with high rates of early stage cancer) or to 

point data to compare ratios of early stage and late stage cancers. Using geocoded point data, 

the Bernoulli model is recommended, and was used to examine the ratio of early-to-late 

stage breast cancer in Michigan. With polygon data the Poisson model is available, and the 

numerator was specified to represent early stage cancers while the denominator was defined 

as early plus late stage cancers. The Poisson model was run on data aggregated into census 

block groups, census tracts, and state legislative districts.

SaTScan constructs numerous circular areas over each map and determines whether the 

probability distribution of early stage breast cancer inside each circular area differs from that 

of the State as a whole. The size of these search windows varies from 0% to a specified 

maximum. For all models, a maximum circular search window equivalent to 4% of the 

population size was selected. This maximum size was selected because cancer registry staff 

were interested in identifying clusters within small geographic areas. This maximum 

window size is more than twice as large as the most populated state legislative district, more 

than eight times as large as the most populated census tract, and more than twenty times as 

large as the most populated census block group; therefore, the cluster algorithm would be 

able to detect a cluster in any of the scales of analysis, should one exist. A purely spatial 

analysis was run 999 times for each spatial scale; the Bernoulli model took nearly 10 h to 

examine clustering in the geocoded dataset. Significance of results was tested within the 

software using Monte Carlo simulation. We chose to display overlapping circular clusters so 

long as no pairs of centers are both in each other’s cluster, which results in amoeba-like 

clusters that are more plausible than isolated circular clusters. Results were visually 

presented using Space Time Intelligence System (STIS v1.5; Terraseer, Inc., Ann Arbor, 

MI).

Different algorithms for identifying local clusters using point data were also compared. 

Given the 10-h processing time required for SaTScan on the 1994–2002 geocoded data, 

these analyses were limited to only three years of data: 2000–2002 (n = 14,728 early stage 

breast cancer cases and 4,750 late stage cases). As described above, SaTScan’s Bernoulli 

model was used to scan the geocoded data for clusters. As a second method, Cuzick-

Edwards’ k nearest neighbor local clustering algorithm was selected (STIS). To implement 

this nearest neighbor algorithm, the user specifies a number of k nearest neighbors, and the 

method then calculates the proportion of early stage cases surrounding each early stage case 

using the specified k locations nearest to each case. Similar to SaTScan, this method 
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determines whether the probability distribution of early stage breast cancer inside each k 

nearest neighbor search window differs from that of the State as a whole. Given interest by 

Cancer Registry staff of finding clusters within small geographic areas, we elected to use k = 

200 nearest neighbors, yielding a search window of ~1% of the total population; similar 

results were observed for k = 100 and k = 300 nearest neighbors. Cuzick-Edwards’ test took 

4 min to run in STIS, compared with more than 2 h for SaTScan.

Given that we were using real data with an unknown spatial pattern, it was important to 

assess whether or not the clusters were believed to be credible. The plausibility of the 

clusters was assessed using (1) known factors associated with early stage breast cancer and 

(2) simulations using results from the original data. First, logistic regression analyses were 

conducted in STIS, investigating the relationship between early stage breast cancer clusters 

(dependent variable: member of cluster or not) and distance from mammography clinics 

(2006 locations), race (black or white), and percent of population in poverty in 2000 Census 

Tracts (socioeconomic measure recommended by Krieger [34]). Second, simulation studies 

that were founded on the observed data and geography were used.

The problem often arises in disease clustering of determining the type I and type II error, 

and statistical power of a disease clustering method. This is accomplished to compare 

methods and also to evaluate, for a given disease in a specific instance, the performance of a 

method or set of methods. Two approaches are commonly used to address this problem. 

First, the analyst might take one instance of a disease (say breast cancer at stage of diagnosis 

in Michigan) and analyze this single map using several different methods in order to 

evaluate their performance. This is the first approach described above, but has the drawback 

in that the analyst has no idea what the true underlying disease risk actually might be. Any 

observed differences in the behaviors of the methods thus may be due to vagaries of the 

approaches themselves, or could be due to correct detection of true (but unobservable) 

differences in underlying risk. The second approach relies on designed simulations to 

evaluate statistical performance of clustering techniques for simulated disease patterns for 

which the underlying true risk has been created by the analyst. Here the underlying “truth” is 

known, but the scope of inference regarding statistical behavior of the methods analyzed is 

limited to the simulation experiment. We have modified this second approach using 

observed data, as now described.

We are interested in determining whether Cuzick-Edwards’ test correctly detects “true” 

members of clusters characterized by a given level of relative risk (RR). The objective of the 

simulation is to evaluate type I and type II errors, using the observed population at risk and a 

given disease pattern. The following framework was adopted in the present article:

1. Evaluate clustering on the observed map of geocoded data (i.e., breast cancer stage 

at diagnosis in Michigan) using the method M of interest, Cuzick-Edwards.

2. For the same dataset, assign to each geocoded location a local rate computed as the 

proportion of breast cancer cases at an early stage of diagnosis within the k-

neighbors (e.g., k = 200). The resulting map R will be considered as the true risk 

map for the quantification of false positives and false negatives.
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3. Evaluate the sensitivity and specificity of method M using the Receiver Operating 

Characteristic (ROC) curve for a given level of elevated risk. See Goovaerts [35] 

for details on calculation of ROC curves, as now summarized. First, specify a given 

RR, e.g., 1.2, and compute the RR for each location by dividing the local rate by 

the area-wide rate. Identify all locations on map R with a RR ≥ 1.2; these are 

defined to be “true” members of clusters. The ROC curve plots the probability of 

false positive versus the probability of detection. The y-axis represents the 

proportion of correctly detected clusters (in our example the number of locations 

with a local RR ≥ 1.2 that have been classified as a cluster member by the method 

M), while the x-axis represents the proportion of true clusters that have been 

wrongly declared significant. This is repeated for different significance levels 

(identified with the p-values of the tests) to generate an ROC curve.

The approach assumes that the observed geographic distribution of cases at the different 

stages of diagnosis is a reasonable estimate of the “true”, underlying risk of stage at 

diagnosis. It gives us some idea of the statistical performance of the method being 

considered given the method’s parameters (e.g., k), the actual disease geography (e.g., 

Michigan), the observed spatial distribution of cases (e.g., the geocoded locations), and the 

observed heterogeneity in local disease risk. By applying this approach using different levels 

of RR, we are able to statistically evaluate the ability of the method (e.g., tradeoff between 

detection and type 1 error) to detect true clusters defined by a given RR for that specific 

disease geography under consideration.

Results

From 1994 to 2002, the percentage of early stage breast cancer cases in Michigan increased 

from 72% to 77%, with an average equal to 75% over the entire time period. Across census 

block groups and census tracts, the percentage ranged from 0% to 100% early stage, 

reflecting a wide range of values across the State (Table 1). In State House legislative 

districts, however, there was less variation with proportions of early stage breast cancer 

ranging from 64% to 80%.

Using breast cancer cases from 1994–2002, SaTScan identified spatial clusters of early stage 

breast cancer using individual geocodes, but not with any of the sets of aggregated data 

(census block groups, census tracts, and State House legislative districts). Significant 

clusters were located in southeastern Michigan, and included the areas surrounding Detroit, 

Jackson, and Lansing, as well as the city of Ann Arbor (Fig. 1).

In light of significant findings using geocoded points, another popular local clustering 

algorithm for point data was adopted: Cuzick-Edwards’ test. The performances of SaTScan 

and Cuzick-Edwards’ test were compared using geocoded breast cancer cases in Michigan 

from 2000–2002. Using only three years of data, SaTScan no longer identified any 

significant clusters; however Cuzick-Edwards’ test found significant clusters in several parts 

of the State (Fig. 2), including the southeastern section identified by SaTScan using the data 

from 1994–2002 (Fig. 1).
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The Cuzick-Edwards’ results were examined for plausibility, first by investigating whether 

parameters usually associated with early stage breast cancer were associated with the 

clusters. In a fully adjusted logistic regression model, clusters of early stage breast cancer 

were negatively associated with distance from mammography clinics (using 5 km 

increments: OR = 0.93; CI: 0.90, 0.95), black race (compared to white: OR = 0.47; CI: 0.39, 

0.56), and percent of population in poverty in 2000 Census Tracts (for every one percent 

increase in poverty: OR = 0.92; CI: 0.91, 0.93).

Plausibility of the Cuzick-Edwards’ results was also examined using the simulation 

approach based on ROC curves, as described in the section “Methods.” Here we used the 

observed disease map to define areas that are elevated at specific relative risk thresholds, 

and then assess the ability of the Cuzick-Edwards’ test to correctly identify these areas as 

cluster constituents. If we use results based on a RR = 1.2 (equivalent to a probability of 

early stage diagnosis = 0.9 for this dataset), we see fewer than 5% false positives regardless 

of the proportion of clusters correctly identified (ranging from 0–100%) (Fig. 3). Similar 

results are obtained for the case RR = 1.1. This suggests the Cuzick-Edwards’ clusters are 

real, since the method is capable of correctly identifying true clusters defined by relatively 

small increases in risk (RR = 1.1 or higher).

In addition to identifying significant clusters, the Cuzick-Edwards’ test generates a value for 

each early stage breast cancer case that reflects the proportion of early stage cases among its 

200 nearest neighbors. Cancer registry officials felt overlaying these proportions on top of 

state legislative districts was helpful for visually depicting and communicating which 

regions have the highest and lowest proportions of early stage cases (Fig. 4).

Discussion

This article results from a collaboration between researchers and cancer registry 

practitioners and presents three significant findings for analyzing and displaying cancer 

registry data. First, spatial analyses of early stage breast cancer conducted at the individual-

level have the potential to identify patterns missed using data aggregated within 

geographical units, even when such units are small (e.g., census block groups). Second, 

relative to the SaTScan spatial scan statistic, Cuzick-Edwards’ test is more sensitive for 

identifying early stage breast cancer clusters while having acceptably low Type I error. 

Third, Cuzick-Edwards’ test allows presentation of areas with high and low proportions of 

disease, facilitating communication to public health practitioners.

Spatial cluster analyses of disease have traditionally been used to address etiologic 

questions; however, given concerns about latency and mobility, spatial epidemiologists are 

increasingly turning their attention to spatial factors about health care availability and 

demography that influence disease diagnosis [13, 15, 36]. A number of studies have 

investigated clusters of early and late stage diagnosis of different cancers [10–16]; however, 

analyses were generally conducted at only one spatial scale. As MAUP implies and our 

results illustrate, analyses of early stage breast cancer in Michigan produce conflicting 

results when conducted on different spatial scales; this may be attributable to the 

diminishing variance between regions that results from aggregating data into larger and 
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larger geographic units (Table 1). Further, given the preference for individual-level data in 

epidemiologic studies and concerns about the ecologic fallacy [37], results using geocoded 

points are preferred.

Earlier comparison studies of local clustering approaches using point data have not 

demonstrated the superiority of one clustering algorithm [26–29]. In our analyses, Cuzick-

Edwards’ test identified clusters of early stage breast cancer not detected by SaTScan, and 

those clusters were considered to be important because simulations demonstrated that the 

method had few false positives at even small levels of elevated risk. Further, the clusters 

found were associated with established factors predictive of early stage breast cancer (race, 

poverty, and mammography screening facilities), and thus are etiologically plausible.

Few spatial epidemiologic studies have incorporated analyses of geocoded data, at least in 

part as a result of patient confidentiality concerns. The Health Insurance Portability and 

Accountability ACT (HIPAA) is vague with regard to the release of geographic identifiers, 

which has resulted in many health agencies adopting the safe approach and not sharing their 

geocoded data [38]. However, as demonstrated here, it is clearly in the interest of public 

health to forge research–practice partnerships that permit the sharing of geocoded data. 

Spatial masks that jiggle geocoded locations in small area studies are increasingly being 

used [39], and secure servers that allow data to be accessed and analyzed on the server side 

(over the internet) rather than on the client side may be a future solution [38]. At present, 

data sharing agreements, human subjects training, and Institutional Review Board (IRB) 

approval have proven satisfactory when using data from pre-existing cohort or case–control 

studies, and can also be implemented for secure data sharing with cancer registries (as we 

accomplished in this collaboration).

One major strength of this study is that the numerator (early stage cases) and the 

denominator (early plus late stage cases) come from the same cancer registry dataset, 

precluding the need for census-derived estimates of population at risk. Failure to account for 

error in census-derived denominators has confounded studies for decades, with geographic 

analyses only the latest victim [40–42]. For example, the rapid increase in breast cancer 

incidence in Marin County, California during the 1990s [43], turned out to be an artifact 

caused by census-derived population estimates [44].

The work presented here has several additional strengths. Multiple factors were considered 

in these analyses, including spatial scale, local clustering algorithms, Type I error, and 

association between significant clusters and known predictive factors. In doing so, this work 

takes several steps to support the use of Cuzick-Edwards’ test in spatial clustering analyses 

of point datasets. Further, by overlaying different geographic regions onto the Cuzick-

Edwards’ estimate of high and low proportions of early stage breast cancer cases, cancer 

registry practitioners felt confident they could communicate results easily, effectively, and in 

a straightforward manner with the public.

Notwithstanding the strengths of this work, both the data and methods have a few 

limitations. Stage at diagnosis was unknown for 10%of the cases and 8% were not 

successfully geocoded. Geocoding accuracy diminished in northern Michigan, including the 
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Upper Peninsula; however, the percentage of addresses successfully geocoded did not differ 

by stage or year of diagnosis. In the aggregated analyses, the Poisson model is the only 

option in SaTScan, and given that the outcome (proportion of early stage breast cancer 

cases) does not follow a Poisson distribution, it is possible that this model misspecification 

influenced the results. Another concern is whether tests of significance, as opposed to effect 

measures (e.g., odds ratios), are suitable for determining differences between the results 

from SaTScan analyses conducted on different spatial scales. We chose to use statistical 

significance because (a) sample size remained large when aggregating to census block 

groups (n = 8,409) or tracts (n = 1,748), and (b) tests of significance are used almost 

exclusively in spatial analyses because of multiple testing concerns associated with 

evaluating potential clustering around each case. Along similar avenues concerning 

significance testing, Cuzick-Edwards’ test requires user-specification of the number of k 

nearest neighbors, raising possibility of significance as a result of multiple testing when 

using several different levels of k, or missing important clusters that are not significant using 

the chosen k. These concerns, however, were not found to be important here, as we observed 

similar results for k = 100, 200, and 300 nearest neighbors, and limited Type I error in the 

simulation analyses. Although the predictive variables in the regression analysis were 

significant, demonstrating the clusters’ plausibility, the census-derived poverty measure, and 

the as-a-bird-flies measure of proximity to screening facilities are surrogate estimates of 

individual-level income and screening experiences, respectively. No data were available on 

individual income or screening practices. In addition, the locations of the screening facilities 

were from 2006, a slight temporal mismatch from the 2000–2002 breast cancer dataset. 

Lastly, while some may find concern with a comparative study using real as opposed to 

simulated data, we believe, like others [28], that it is important to compare algorithms using 

real datasets because they contain variances and nuances seldom found in simulated 

datasets. This study’s coupling of analyses of real data with simulations based on real data is 

an important innovation.

This study focused on developing an approach for identifying spatial clusters of early stage 

breast cancer using registry data. Another spatial analysis that could be accomplished with 

these data might, more directly, incorporate spatial regression models and potential spatial 

confounding. For example, one may wish to focus on what is causing high rates of early 

stage breast cancer in parts of Michigan. The regression model presented here explains part 

of the spatial pattern using surrogate measures of income and screening practices and race. 

This study does not investigate neither why white race is associated with early stage breast 

cancer nor whether additional factors could further explain the spatial patterns in early stage 

breast cancer. This type of spatial regression analysis is ground for future work, and would 

best be served if individual-level information on health care access, use of screening clinics, 

socio-economic position, racial/ethnic sub-grouping, etc., were routinely collected by cancer 

registries.

Collaborating in this research–practice partnership enabled us to identify and illustrate a 

practical approach for spatial analysis of geocoded cancer registry data. The researchers 

embarked on this project striving to develop an appropriate methodological protocol. Cancer 

registry practitioners desire maps that are accurate, easy to create, and easy to explain. The 
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methodology selected uses the actual geocoded data points, and does not require data to be 

aggregated into arbitrarily chosen administrative units, thereby saving time and effort in the 

data management process (especially cumbersome if aggregating multiple years of data). 

The resulting Cuzick-Edwards’ analysis of geocoded data produces maps of statistically 

significant clusters of early stage breast cancer (Fig. 2) and areas with high and low 

proportions of early stage breast cancer (Fig. 4). Different geographies may be easily added 

to the background of these maps (e.g., legislative districts, census districts, zip codes, 

counties, etc.) for assistance when communicating findings to legislators and community 

members.

In conclusion, in light of MAUP along with our findings of differences between analyses of 

point and aggregated data, we encourage researchers and cancer registry practitioners to 

jointly establish acceptable protocols for sharing confidential geocoded data. The approach 

illustrated here can be easily adopted to help understand and communicate about public 

health factors that are responsible for spatial patterns in stage at diagnosis, cancer survival, 

and other measures of relevance to cancer control.
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Fig. 1. 
Significant clusters of early stage breast cancer cases 1994–2002. Results of SaTScan 

Bernoulli clustering model applied to geocoded points
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Fig. 2. 
Centers of clusters of early stage breast cancer 2000–2002; Results of Cuzick-Edwards’ test
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Fig. 3. 
Receiver operating characteristic curve for relative risk ≥1.2; simulation using Cuzick-

Edwards’ test
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Fig. 4. 
Distribution of proportion of early stage breast cancer cases generated by Cuzick-Edwards’ 

test using k = 200 nearest neighbors
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