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Abstract

Methods for obtaining cardiomyocytes from human embryonic stem cells (hESCs) are improving 

at a significant rate. However, the characterization of these cardiomyocytes is evolving at a 

relatively slower rate. In particular, there is still uncertainty in classifying the phenotype 

(ventricular-like, atrial-like, nodal-like, etc.) of an hESC-derived cardiomyocyte (hESC-CM). 

While previous studies identified the phenotype of a cardiomyocyte based on electrophysiological 

features of its action potential, the criteria for classification were typically subjective and differed 

across studies. In this paper, we use techniques from signal processing and machine learning to 

develop an automated approach to discriminate the electrophysiological differences between 

hESC-CMs. Specifically, we propose a spectral grouping-based algorithm to separate a population 

of cardiomyocytes into distinct groups based on the similarity of their action potential shapes. We 

applied this method to a dataset of optical maps of cardiac cell clusters dissected from human 

embryoid bodies (hEBs). While some of the 9 cell clusters in the dataset presented with just one 

phenotype, the majority of the cell clusters presented with multiple phenotypes. The proposed 

algorithm is generally applicable to other action potential datasets and could prove useful in 

investigating the purification of specific types of cardiomyocytes from an electrophysiological 

perspective.
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I. INTRODUCTION

The application of stem cells in the field of cardiology has been exciting and rapidly 

evolving in the last decade. Methods for cardiac differentiation of human pluripotent stem 

cells have been constantly improving since it was first reported using human embryonic 

stem cells (hESCs) [1]. Cardiomyocytes (CMs) can be obtained by differentiating natural or 

forced aggregates of hESCs (termed human embryoid bodies, hEBs), as hESC monolayers, 

or through co-culture with END2 cells [1]–[3]. The efficiency of differentiation has also 

been greatly improved, as seen in both the quantity and quality of hESC derived 

cardiomyocytes (hESC-CMs). For example, in hEB-based methods, contraction can be 

observed in over 90% of hEBs starting as early as 9 days after initiating differentiation [4], 

and in monolayer-based methods, greater than 85% cardiomyocyte purity has been reported 

[5]. Combined with both genetic- [6] and non-genetic- [7], [8] based purification methods, it 

is now possible to generate large populations of high purity hESC-CMs. These advances in 
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stem cell biology have greatly expanded the applications of these human cardiomyocytes 

from in vitro sources, especially in regenerative medicine [9]–[12] and drug models [13], 

[14].

The applications of hESC-CMs depend on their biological properties, especially whether 

and how well they faithfully represent native CMs. Generally, hESC-CMs have been found 

to be immature in both cellular structure and electrophysiology [5], [15], [16]. The cells 

usually have a small and rounded morphology, less organized sarcomere [5] and possess 

immature calcium handling mechanisms [17].

In addition to their immaturity, hESC-CMs are also heterogeneous. The variability of hESC-

CMs is usually described by categorizing their APs into different electrophysiological 

phenotypes, usually referred to as nodal (or pacemaker)-like, atrial-like and ventricular-like 

hESC-CMs [18]–[22], which correspond to the three major native CM phenotypes. The 

development of hESC-CMs into multiple phenotypes during differentiation is considered to 

recapitulate embryonic heart development [18]. Phenotypes of hESC-CMs are typically 

determined by parameters obtained from microelectrode or patch clamp recordings of APs, 

such as resting potential (or maximum diastolic potential for spontaneously beating cells), 

action potential duration (APD), action potential amplitude, and upstroke velocity. However, 

the criteria for assigning phenotypes by these AP parameters in different research labs are 

most often subjective in nature, and only rarely quantitatively defined, as in [23], [24]. The 

manual assessment of features to determine the phenotype of a cardiomyocyte is near 

impossible to scale to large datasets, or to remain consistent across research labs, as AP 

morphologies of hESC-CMs differ when using different differentiation protocols [13], [18], 

[23]–[25]. Confounding the analysis further, the APs of hESC-CMs have generally been 

spontaneously active even among cells believed to represent the ventricular phenotype, 

which could lead to classifications that can change over time, as the hESC-CMs mature. In 

addition, most AP parameters vary with beating rate, which is highly variable [18], making 

it problematic for phenotype identification.

In this paper, we propose a new, automated framework for separating a population of hESC-

CMs into different groups, which we hope will lead to more objective and biologically 

relevant methods for studying electrophysiological phenotypes of hESC-CMs. Our 

framework relies on signal processing and machine learning techniques that have been 

successfully used in other biological fields, such as neurophysiology [26], genomics and 

proteomics [27], and epidemiology [28]. However, to the best of our knowledge, they have 

not been applied to discriminate cardiac APs. We operate under the hypothesis that APs 

belonging to the same phenotype will have more similar shapes than APs belonging to 

different phenotypes, and that this similarity can be captured by machine learning 

algorithms. Specifically, we collected an original dataset of APs using optical mapping and 

used signal processing techniques to transform paced electrical activities at each recording 

site into representative APs. These representatives were aligned by activation time and 

compared using the Euclidean distance to define the similarity between APs. The similarities 

were used as the input to a spectral grouping algorithm to determine an objective separation 

of populations of cardiac APs with distinct phenotypes. Model selection techniques were 

then used to determine the optimal number of groups that represent that population. Our 
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work, partially outlined in [29], shows the viability of automated methods for determining 

electrophysiologically related groups among populations of cardiac APs.

II. METHODS AND MATERIALS

This section describes our framework for grouping APs of hESC-CMs. §II-A describes the 

acquisition protocol used to collect our optical mapping dataset. §II-B describes signal 

processing methods used to obtain a representative AP at each site of each optical map. §II-

C describes the algorithm used to group these APs into different phenotypes. §II-D describes 

model selection criteria used to determine the number of phenotypes. The overall processing 

pipeline is illustrated in Figure 1.

A. Signal Acquisition

The H9 line of human embryonic stem cells was differentiated into cardiomyocytes using a 

previously described hEB-based protocol [30]. The hEBs usually start beating around Day 9 

after the initiation of differentiation. Beating areas of hEBs were mechanically dissected on 

Day 15–16 of differentiation, and plated on gelatin-coated plastic coverslips as cardiac cell 

clusters for optical mapping. Cardiac cell clusters were stained with 10μM voltage-sensitive 

dye di-4-ANEPPS (Invitrogen, Grand Island, NY), and 50μM myosin II inhibitor 

blebbistatin (Sigma-Aldrich, St. Louis, MO) was applied throughout experiments to inhibit 

motion. Action potentials were recorded using a MiCAM Ultima-L CMOS camera (100 × 

100 pixels, 16μm/pixel) at 500 frames per second (fps). A pair of platinum electrodes was 

used to deliver fixed 90 beat per minute (bpm) pacing to the clusters, and 16 second 

recordings containing multiple APs were obtained from each cluster. Figure 1(a) illustrates 

the recordings obtained with this protocol. Note that the resulting optical recordings are 

normalized to be in the range [0,1].

B. Signal Processing

To improve signal-to-noise ratio, we processed the optical recordings of cardiac cell clusters 

into one representative AP for each pixel within the each cluster (each pixel represents 16 

μm × 16 μm area of the cluster). Let I(x,t) be the input optical recording, and let g(x) be a 5 × 

5 boxcar filter. First, we generate a spatially averaged image  by convolution of the 

input image with the boxcar filter in space:

(1)

Then, let T be the period of the pacing cycle.  is condensed into a one cycle recording 

 by averaging temporally over the period:

(2)
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for t ε [0, T).  is a single AP indicative of the cardiomyocytes in a neighborhood 

around each pixel. The APs from different averaged pixels were then aligned by their 

activation time, which was calculated to be the time point with maximal upstroke slope:

(3)

where

(4)

This alignment allows us to compare signals from different regions of the cell cluster that 

may be offset due to differences in activation time owing to electrical conduction of the AP 

wavefront through the cell cluster. Alignment is done post spatial averaging because the 

increased signal-to-noise ratio allows us to determine a more accurate , and 

experimentally we have found that the local misalignment is negligible compared to 

misalignment from different regions of the cell cluster. These aligned APs serve as our data 

elements for the machine learning framework. Figure 1(b) illustrates typical representatives 

obtained by this method.

C. Spectral Grouping

Once signals have been processed, the spectral grouping method of [31] is used to obtain the 

segmentation of the dataset into multiple groups. This algorithm represents the dataset with 

a graph , where  is the set of nodes and  is the set of 

edges. Each node  represents the i-th signal in the dataset, xi. Each edge (i, j) ε 

connects nodes i and j, i ≠ j, with a weight w(i,j) ≥ 0 that depends on the similarity between 

the signals xi and xj. Specifically, two similar signals are connected with a higher weight 

than two dissimilar signals. This weight is defined as

(5)

where

(6)

is the Euclidean distance between the APs xi and xj, T is the AP cycle length, and σ > 0 is a 

scaling parameter. By convention, there is no edge connecting node i with itself. This means 

the weight w(i, i) = 0, .

The selection of the scaling parameter σ has an important effect in the final grouping. On the 

one hand, a high σ makes all the weights closer to zero, which encourages each AP to form 

its own group. On the other hand, a low σ makes all the weights closer to one, which 

encourages all APs to form a single group. A good balance is obtained when σ is chosen to 

be in the typical range of the pairwise distances between APs. For this study, σ is chosen to 

be the mean of the squared pairwise distances,
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(7)

where | | is the number of edges in .

Once the weights have been computed, the goal is to group the nodes into K groups 

, i.e. to decompose  as  where  for all k ≠ k′. Since low 

weights correspond to low similarities, one possible criterion is to minimize the average 

over the K groups of the sum of the weights between signals in group k and signals not in 

group k, i.e., . However, this criterion can lead 

to unbalanced groupings, as shown in [32]. To avoid this issue, [32] proposes to normalize 

each term of the Cut criterion by the sum of the weights of every signal in group k to every 

other signal, i.e.,

(8)

Since finding the set of groups that minimizes (8) is a combinatorial problem, the spectral 

grouping methods in [31], [32] find an approximate solution from the eigenvectors of a 

matrix built from the weights. In this paper we use the spectral grouping approach of [31]. 

Once the grouping of the graph has been found, the phenotype of a signal is decided by the 

group to which the corresponding node in the graph belongs.

D. Model Selection

Spectral grouping requires the number of groups K to be known beforehand. To determine 

K, we need a measure of the quality of a segmentation as a function of K.

1) Normalized Cut Cost (NCC)—The first measure that is considered is the objective 

function of our grouping method in (8). For well separated clusters, the numerator will be 

very small, while the denominator will be large, because signal pairs of the same group will 

be well connected while signal pairs of different groups will be poorly connected. Thus a 

good grouping will have a low normalized cut cost.

2) Davies-Bouldin Index (DBI)—The other measure considered is a cluster distance 

between pairs of groups [26], [27], [33]. Given two groups,  and , the DBI distance 

between the groups is defined as follows:

(9)

where Sk and Sk′ are values for the dispersion or spread within each group, and Mkk′ is a 

measure between groups. For our work, Sk is defined as the average of the distances of the 
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signals within one group to the average signal of that group, while the measure Mkk′ is the 

distance between the average signals of the two groups:

(10)

(11)

where,

(12)

For well separated, tight clusters, the dispersion for each group is very small, since the 

distances to the mean will be small, while the measure Mkk′ between groups will be large 

because the means are well separated from each other. Therefore, a lower DBI indicates 

better grouping. For K groups, the average DBI over all pairs of groups is chosen to be the 

group measure:

(13)

where К = {k, k′ ε 1, …,K, k < k′}.

III. RESULTS

Using the methods in §II-A and §II-B, we obtained a dataset of 6940 APs from 9 cardiac 

cell clusters paced at 90 bpm. To quantify the differences in morphology between two APs, 

we computed the weight in (5) for all pairs of APs. Figure 2(a) shows these weights for a 

subset of all pairs. Specifically, from each cell cluster we define a reference line and plot the 

weights for pairs of pixels in this line. We use red to indicate high similarity (w > 0.9) 

between the action potentials (low distance) and blue to indicate low similarity (w < 10−3). 

We observe in Figure 2(b) that the similarity between cell clusters 1 and 9 (counting from 

left to right) was low, as indicated by the two large blue blocks in Figure 2(b). Thus, we 

expected these two cell clusters to separate into different groups. In Figure 2(c), we see that 

the similiarity between cell clusters 2 and 3 is high in some regions, as the left part of cell 

cluster 2 shared high similarity with the right part of cell cluster 3 and vice versa. We can 

also observe variability within the clusters, as the left part of cell cluster 2 had low 

similiarity with the right part of that cluster.

Figure 3 shows the results of applying spectral grouping to this dataset using 2, 3 and 4 

groups. Notice that cell clusters 1 and 9 presented with predominantly one phenotype, while 

the other 7 cell clusters showed varying degrees of mixed phenotypes. Notice also that, even 

though the grouping algorithm did not incorporate spatial regularization, the resulting 

groupings are spatially smooth, suggesting that the grouping algorithm to identify phenotype 

was robust. In the rightmost column, the temporal average of APs for each phenotype is 
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presented. We see that the two group results produce two distinct AP phenotypes, while 

increasing number of groups produce intermediate APs that are increasingly less distinct. 

This conclusion is supported by the NCC and DBI numbers, which suggest an optimal 

segmentation into 2 groups (NCC = 0.1457 and DBI = 1.1655).

To further evaluate the characteristics of the obtained groups, we also computed the 

distributions of commonly used AP features [18], [19], [23], [24]. In particular, Figure 4 

shows the distributions of APD30, APD80, triangulation (APD90–APD30), and normalized 

triangulation  for the groups determined by spectral grouping and 

visualized in Figure 3. For the case of 2 groups, APD30 and APD80 histograms were fitted 

well as distinctly separated subpopulations. However, triangulation, a parameter indicative 

of a proarrhythmic substrate when prolonged, had a wide range in both groups, with 

substantial overlap. By normalizing triangulation to APD90, we obtained a shape parameter 

that showed better discrimination of AP morphology between the two groups, and that the 

group with shorter APD30 and APD80 had greater triangulation. With increased number in 

groups (3 and 4 groups), we observed increased overlap in all AP features among different 

groups, especially in normalized triangulation. This increased overlap suggests that APs in 

different groups are similar in shape, thus increasing difficulty in discriminating the groups 

by such features. Overall, these results suggest that grouping the population based on 

standard AP features would be possible for 2 groups, while using the entire AP waveform is 

effective for 2, 3, or 4 groups.

IV. DISCUSSION

In order to provide objective phenotype identification of hESC-CMs based on their 

electrophysiology, we have introduced a framework for automated grouping of their APs 

and tested it using optical mapping data obtained from hESC-CM cardiac cell clusters. In 

contrast to conventional subjective criteria for phenotype classification, our automated 

algorithm relies entirely on raw signal information from the dataset. The grouping of signals 

is made based on the similarities between all pairs of signals in the dataset. This leads to an 

unbiased and reproducible method for discrimination that is also widely applicable to larger 

populations of cells. We believe that objective and consistent phenotype classification 

algorithms are important in understanding the biology of hESC-CMs, and our results show 

that applying methods developed in signal processing and machine learning is a viable 

approach.

A. Spatial Distribution and AP Variability of cell clusters

The weight matrix used for spectral grouping analysis also provides visualization of the 

similarity among APs within the dataset. The existence of both similar and dissimilar 

regions within some cardiac cell clusters indicates that more than one phenotype may 

coexist within a single cluster, consistent with previous work [16]. Our results show that 

while there were cell clusters in our dataset that expressed primarily one phenotype, the 

majority of the cell clusters presented with multiple phenotypes. For the clusters with more 

than one phenotype, even though the grouping method did not enforce spatial regularity, 

continous regions of cell clusters with only one phenotype were obtained. Further, we 
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observed smoothly varying AP shape across the boundary separating phenotypes. This is 

partly because of the spatial averaging performed during preprocessing, but it primarily 

reflects that APs vary as a continuum from one phenotype to another. Thus, it is particularly 

important to develop automated algorithms to maintain a consistent decision boundary 

across datasets.

B. Biological Interpretation

The clear differences in AP shapes and parameters between groups suggest that our 

algorithm is capable of distinguishing morphological differences of APs within a dataset, 

which is also the main goal of widely used subjective methods for phenotype identification. 

In our two-group classification results, APs were either less triangular (as quantified by 

normalized triangulation) with long APD, or more triangular with short APD. This can be 

interpreted as ventricular-like and nonventricular-like APs, respectively. However, definitive 

biological interpretation remains to be validated by further investigations. Possible avenues 

include phenotype-related biomarkers and patch clamp studies of phenotype-specific 

currents. It should also be noted that the global gene expression profile of hESC-CMs 

generally differs from both adult and fetal CMs [34], [35], and should also be taken into 

consideration. In addition, unlike most studies of spontaneously beating hESC-CMs [18], 

[19], we specifically controlled the beating rate to 90 bpm by delivering an external 

stimulus. The fixed pacing rate eliminated rate-dependent variations in AP morphology and 

exposed intrinsic differences in electrophysiology, which we believe are due to true 

phenotypic differences, and can provide insights into the mechanisms of variability among 

APs.

C. Adaptability of the Framework

A key feature of the proposed framework is that the pieces are generalizable. We used 

optical mapping recordings for our dataset, but because the spectral grouping and fitness 

evaluation operate with a processed action potential signal, they are amenable to action 

potential recordings obtained from other techniques, and thus could be used to investigate 

variability in current methods for purification of specific phenotypes of hESC-CMs [24], 

[36], [37]. Also, we used a very basic signal distance measure, the Euclidean distance, which 

assesses AP differences equally at every time point. This could be modified to emphasize 

AP differences in different segments of the action potential (e.g., more weight on the 

depolarization and repolarization phases of the AP and less on phase 4 resting potential), or 

to forgo the Euclidean distance altogether for other distances between AP shapes [38], [39]. 

Future work could investigate these other metrics and how the resulting groupings compare 

to this work. Another possiblity is to operate with other representations of the action 

potential such as the phase plot  representation. A benefit to phase plot 

analysis is that the need to align the signals temporally is no longer necessary. However, 

appropriate measures to compare and quantify the differences between the phase plots, so 

that electrophysiological phenotypes can be identified.
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V. CONCLUSION

We have introduced a framework for automated grouping of action potentials of 

cardiomyocytes derived from human embryonic stem cells together with a dataset with 

which future methods can be evaluated. Our results on this dataset showed that the groups 

obtained by our algorithm reflect phenotype differences in electrophysiology of hESC-CMs. 

We believe that the proposed framework provides a landmark first step into using machine 

learning techniques in the classification of stem cell-derived cardiomyocyte phenotypes by 

their action potentials.
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Fig. 1. 
Schematic drawing of the proposed method. (a) Raw measured signals were obtained over 

16 second intervals at a sampling rate of 500Hz. (b) From these 16 second traces, we 

obtained a representative AP by averaging over the individual APs. (c) These serve as input 

data for the spectral grouping algorithm, which treats the signals as vertices on a graph. Two 

vertices were connected by a weight defined by the integral of the squared difference 

between the corresponding signals. (d)–(e) The grouping of the data was obtained by finding 

the cut that minimizes a normalized sum of the weights.

Gorospe et al. Page 12

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 February 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2. 
Observed Weight Matrices. (a) AP similarity for a subset of our dataset. The silhouettes of 

the 9 cell clusters (black regions) are shown on the top and rotated 90 degrees on the left. 

The subset of pixels being analyzed from each cell cluster is marked by the blue lines 

crossing each cluster. The similarity between the signals at pixels i and j in a line is 

measured by the weight w(i, j) defined in (5). Red indicates high weight and blue indicates 

low weight. Weights along the diagonal are 0 by convention of spectral grouping. Areas 

with high weight should belong to the same group, and areas with low weight to belong to 

different groups. (b) AP similarity for a subset of cell clusters 1 and 9. Since the weights 

relating these two clusters are blue (see the top right and bottom left areas of the submatrix), 

they should be in different groups. (c) AP similarity for a subset of cell clusters 2 and 3. In 

contrast with (b), there are high similarities between the left part of cluster 2 and the right 

part of cluster 3 and vice versa, as well as low similarity between the left and right parts of 

each of the clusters individually. The left side of cell cluster 2 should group with the right 

side of cell cluster 3 and the right side of cluster 2 should group with the left side of cluster 

3.
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Fig. 3. 
Grouping Visualizaton. The first 9 columns show the results of applying spectral grouping 

to all the APs in our dataset for 2 (top row), 3 (middle row), and 4 (bottom row) groups with 

corresponding NCC and DBI measures listed underneath. Scale bars indicate 200 μm. Some 

cell clusters present with primarily one phenotype, while others present a mixture of 

phenotypes. Both NCC and DBI suggest that K = 2 gives the best grouping fitness. The 

average AP of each phenotype as determined by spectral grouping is shown on the last 

column. Scale bar indicates 100 ms. The average 2-group APs suggest different phenotypes, 

while for 3 and 4 groups, pairs of phenotypes (phenotypes 2 and 3 for 3 groups, phenotypes 

1 and 2 and phenotypes 3 and 4 for 4 groups) have similar shapes.
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Fig. 4. 
Morphological Feature Distributions. Distribution APD30 (first column), APD80 (second 

column), triangulation (APD90 – APD30) (third column), and normalized triangulation 

, rightmost column), for the spectral grouping result using 2 (top row), 

3 (middle row), and 4 (bottom row) groups. The two group segmentation suggest two unique 

phenotypes in APD30, APD80, and normalized triangulation.
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