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Abstract

Abnormal choline metabolism is emerging as a metabolic hallmark that is associated with 

oncogenesis and tumour progression. Following transformation, the modulation of enzymes that 

control anabolic and catabolic pathways causes increased levels of choline-containing precursors 

and breakdown products of membrane phospholipids. These increased levels are associated with 

proliferation, and recent studies emphasize the complex reciprocal interactions between oncogenic 

signalling and choline metabolism. Because choline-containing compounds are detected by non-

invasive magnetic resonance spectroscopy (MRS), increased levels of these compounds provide a 

non-invasive biomarker of transformation, staging and response to therapy. Furthermore, enzymes 

of choline metabolism, such as choline kinase, present novel targets for image-guided cancer 

therapy.

The complexity and adaptability of cancer cells and their ability to recruit and modulate host 

stromal cells to create a tumour microenvironment that enables survival has led to the 

disease continuing to confound conventional treatments and molecular targeting. Because of 

their genomic and phenotypic plasticity, cancer cells have a multitude of redundant 

pathways and networks, as well as a genomic and proteomic diversity that highlights the 
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need for personalized medicine in this era of ‘omics’ and disease fingerprinting. A handful 

of common hallmarks of cancer1 have emerged that cut through this variation. Activated 

choline metabolism, which is characterized by increased phosphocholine (PCho) and total 

choline-containing compounds (tCho) and which we refer to as the cholinic phenotype, is a 

fairly new metabolic hallmark that was discovered mostly owing to the introduction of 

magnetic resonance spectroscopy (MRS) studies of tumours in the 1980s2,3 (TIMELINE). 

Initially, the increased PCho levels in cancer cells were interpreted as a requirement for the 

high rate of cell proliferation4. In subsequent studies, non-malignant breast or prostate 

epithelial cells that were induced to proliferate as rapidly as cancer cells using growth 

hormones still exhibited significantly lower levels of PCho and tCho levels, identifying 

malignant transformation rather than just cell proliferation as the cause of abnormal choline 

metabolism in cancers5. The tumour microenvironment also influences choline metabolism. 

Tumours have abnormal physiological environments such as hypoxia and acidic 

extracellular pH6. In studies with perfused mammalian cells, an acidic extracellular pH was 

found to significantly increase glycerophosphocholine (GPC) levels and to decrease PCho 

levels7. Hypoxia was also found to increase tCho and PCho levels in a human prostate 

cancer xenograft model that was genetically engineered to express green fluorescent protein 

under the control of a hypoxia response element8. A close correlation was observed between 

regions of high tCho levels and hypoxia in vivo8, which was subsequently identified to be 

due to the regulation of choline kinase-α (CHKα) expression by the transcription factor 

hypoxia-inducible factor 1 (HIF1)8. The conditioned growth medium from cultured cancer 

cells was also found to increase PCho levels when used to culture human vascular 

endothelial cells9, suggesting that cancer cells can influence stromal cells in the tumour 

microenvironment.

Because of the ability of non-invasive clinically available imaging techniques such as MRS 

and positron emission tomography (PET) (BOX 1; FIG. 1) to detect these changes in choline 

metabolism, the cholinic phenotype is being exploited for radiological diagnosis, prognosis, 

monitoring response and the development of novel treatments. In fact, early 31P MRS 

studies showed a close association between phosphomonoesters (PMEs) and 

phosphodiesters (PDEs) with therapeutic response2,3, and paved the way for later studies 

with 1H MRS to study choline metabolism. The search for biomarkers to detect cancer and 

to non-invasively monitor the response to treatment has led to several clinical studies 

evaluating the non-invasive detection of tCho for these objectives. Similar to studies in 

cancer cells10, human tumour xenograft models10 and excised tumour tissue11,12, clinical 

studies have confirmed the activation of choline metabolism in human tumours in vivo10,13.

Phosphocholine is both a precursor and a breakdown product of phosphatidylcholine 

(PtdCho), which, together with other phospholipids such as phosphatidylethanolamine 

(PtdEtn) and neutral lipids, forms the characteristic bilayer structure of cellular membranes 

and regulates membrane integrity14. The synthesis of PtdCho and PtdEtn, which are the 

most abundant phospholipids in the cell membrane, was first described by Kennedy and 

Weiss in 1956 (REF. 15) and this de novo biosynthesis of PtdCho and PtdEtn is termed the 

Kennedy pathway. The high-energy intermediates cytidine diphosphate (CDP)-choline and 

CDP-ethanolamine are required to synthesize PtdCho and PtdEtn. These two mirroring 
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pathways, one that uses choline and the other that uses ethanolamine, are called the CDP-

choline and CDP-ethanolamine pathways, respectively. The biosynthesis and hydrolysis of 

PtdCho mediates mitogenic signal transduction events in cells, and products of choline 

phospholipid metabolism, such as PCho16, diacylglycerol (DAG)17,18 and arachidonic acid 

metabolites17, may function as second messengers that are essential for this mitogenic 

activity. Growth factor stimulation18, cytokines19, oncogenes5 or requirements for 

eicosanoid production17 also regulate choline phospholipid metabolism (FIGS 1,2). 

Underlying these phenotypic alterations in choline metabolism, is a network of transporter 

systems and enzymes involved in choline phospholipid metabolism that are deregulated in 

cancer cells.

This Review highlights the causes and consequences of the cholinic phenotype within the 

context of radiological applications, the molecular mechanisms and the interconnected 

networks underlying this phenotype, and the possibility of targeting this metabolic hallmark 

of cancer.

Key enzymes in choline metabolism in cancer

The increased PCho and tCho levels that have been detected in human cancers are caused by 

interplay between multiple enzymes, which are at the core of choline metabolism (FIG. 3) 

and which constitute the biosynthetic and catabolic pathways of PtdCho. Here, we review 

the different enzymes that are involved in choline metabolism. Reported enzyme expression 

levels and activities in human cancers are compared with those in normal tissue of the same 

origin and are summarized in TABLE 1.

Choline transporters

Choline is an essential nutrient that is derived from the diet, with plasma concentrations of 

about 10 µM. The enhanced transport of free extracellular choline into cancer cells (FIG. 3) 

has been identified as a dominant cause for the cholinic phenotype, as it can be a rate-

limiting step in PCho formation under some circumstances20. Four different types of 

choline-transporting transmembrane systems have been implicated in cancer. These are 

high-affinity choline transporters (CHTs), choline transporter-like proteins (CTLs), organic 

cation transporters (OCTs) and organic cation/carnitine transporters (OCTNs). Subtypes of 

each transporter have increased expression levels in cancer cells (TABLE 1).

High-affinity choline transport has been attributed to CHT1 (also known as SLC5A7)21, 

which has a Km (Michaelis constant) for choline of less than 10 µM. CTLs are responsible 

for intermediate-affinity, sodium-independent choline transport22. The CTL family consists 

of at least six genes, and all gene products undergo complex alternative splicing23. SLC44A1 

(which encodes CTL1)23 exists as two splice variants. It is ubiquitously expressed in human 

tissues24 and supplies choline for phospholipid biosynthesis22,24. Both OCTs and OCTNs 

are part of the SLC22 family and carry out low-affinity choline transport in addition to the 

transportation of other organic cations25. Human OCTs exist as three subtypes and 

translocate organic cations in an electrogenic, sodium-independent and reversible manner25. 

There are two human OCTN isoforms25. OCTN1 (also known as SLC22A4) functions in a 

sodium-independent manner25; whereas OCTN2 (also known as SLC22A5) functions as a 

Glunde et al. Page 3

Nat Rev Cancer. Author manuscript; available in PMC 2015 February 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



sodium-dependent co-transporter for certain zwitterions, and as a sodium-independent 

transporter of organic cations25.

CTL1 was shown by microarray analysis to be expressed in cancers of the central nervous 

system (CNS), ovary, breast and prostate, as well as in leukaemia, and to be highly 

expressed in melanoma, and renal and colon cancer24. Human pulmonary adenocarcinoma 

tissues highly overexpress CTL1 and somewhat overexpress OCT3 (also known as 

SLC22A3) compared with matched normal tissues, as shown by immunohistochemistry26. 

In lung adenocarcinoma cell lines, enhanced choline uptake mostly depends on CTL1, and 

only partially on OCT3, OCTN1 and OCTN2 (REF. 26). However, in human HT-29 colon 

carcinoma cells, enhanced choline transport is predominantly mediated by CTL1, and to a 

lesser extent by CTL2 (also known as SLC44A2) and CTL4 (also known as SLC44A4)27. 

Increased choline transport20 and elevated mRNA expression of SLC5A7 (which encodes 

CHT1) and SLC22A2 (which encodes OCT2)28 was observed in breast cancer cells 

compared with mammary epithelial cells. Choline transport in PC-3 prostate cancer cells had 

a facilitative component that was characterized by sodium dependence and intermediate 

affinity, as well as non-facilitative components, although the transporters involved were not 

identified29.

More molecular characterization is required to decipher the exact roles of the different 

transporters and how they lead to the enhanced choline transport that is observed in cancer 

cells. As a common theme so far, CTL1 is overexpressed in multiple types of cancer. 

However, it is also possible that different types of cancer use different choline transport 

mechanisms depending on their tissue of origin.

Choline kinase

CHK was first described in 1953 by Wittenberg and Kornberg30, and first cloned in 1992 by 

Hosaka et al.31. It catalyses the phosphorylation of free choline using ATP as a phosphate 

donor, thereby producing PCho, and CHK can take on a rate-limiting, regulatory role in 

PtdCho biosynthesis under some circumstances32. CHK is primarily located in the 

cytoplasm of cells from various tissues, and its enzymatic properties have been extensively 

studied (reviewed in REF. 32). At least three isoforms of CHK exist in mammalian cells, 

and these are encoded by two genes: choline kinase-α (CHKA) and choline kinase-β 

(CHKB)32. The two functional isoforms, CHKα1 and CHKα2, are derived from CHKA by 

alternative splicing32. Homodimeric or heterodimeric forms of CHK are enzymatically 

active32. Both CHKα1 and CHKα2 homodimers display a dual choline and ethanolamine 

kinase activity, with a lower Km for choline, whereas the CHKβ homodimer predominantly 

has ethanolamine kinase activity, and the CHKα–CHKβ heterodimer has an intermediate 

substrate specificity33,34. The proportions of different homodimer and heterodimer 

populations are tissue-specific33, and studies with knockout mice demonstrate that Chka 

loss, but not Chkb loss, is embryonically lethal35,36. Taken together, knockout studies 

suggest that CHKβ cannot compensate for the loss of CHKα, which is necessary to sustain 

PtdCho biosynthesis35,36. Although the activity of yeast choline kinase (CKI) can be 

upregulated by protein kinase A (PKA)-dependent phosphorylation at both Ser30 and Ser85, 

there has been only one report indicating that PKA-mediated phosphorylation partially 
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regulates human CHK37. Thus, the upregulation of CHK activity in cancer probably results 

from an increase in CHKα expression, which would lead to a higher proportion of CHKα–

CHKα dimers in cancer cells and in turn a higher CHK activity level than CHKα–CHKβ 

heterodimers or CHKβ–CHKβ homodimers.

Overexpression of CHKα, but not of CHKβ, has been reported in several human tumour-

derived cell lines of multiple origins, as well as in biopsy samples of lung, colon and 

prostate carcinomas, among others, which were compared with matched normal tissue from 

the same patient34,38,39 (TABLE 1). These findings, combined with the studies in knockout 

mice, indicate that CHKα, but not CHKβ, is essential for PtdCho biosynthesis, which is 

required for the uncontrolled growth of cancer cells. In addition, the activity of CHKα was 

shown to increase in human colon cancers40 and in human breast carcinomas compared with 

normal breast tissue41. Increased enzymatic activity and overexpression of CHKα correlated 

with advanced histological tumour grade and negative oestrogen receptor status in breast 

carcinomas41, which is consistent with the increased levels of PCho and tCho that are 

observed in breast cancers42. By contrast, no significant correlation was found with age, 

tumour size, progesterone receptor status, vascular invasion and histological tumour type, or 

with expression of p53, ERBB2 or Ki-67, in these breast tumours41. These clinical findings, 

combined with a large body of work in cancer cells, suggest that CHKα expression and 

activity is directly associated with increased cancer cell proliferation and malignancy, 

making it a potential prognostic marker of some cancers, such as non-small-cell lung 

cancer39. CHKα expression and activity levels have not yet been investigated in metastases.

CTP:phosphocholine cytidylyltransferase

CTP:phosphocholine cytidylyltransferase (CCT) catalyses the synthesis of CDP-choline and 

PPi from PCho and cytidine triphosphate (CTP) (FIG. 3). CDP-choline is the most highly 

activated Cho intermediate of the Kennedy pathway, and it is directly used by diacylglycerol 

cholinephosphotransferase 1 (CHPT1) to form the membrane lipid PtdCho. First described 

in 1957 by Kennedy et al.43, CCT catalyses the ratelimiting step in PtdCho synthesis in 

normal cells, and it catalyses the main rate-limiting and regulatory step in PtdCho 

biosynthesis in cancer cells44, but CHK32, and choline transporters20, can take on an 

important regulatory role in some cases. CCT exists as an inactive soluble form and as an 

active lipid-bound form in the nuclear membrane45. Four highly homologous isoforms of 

CCT exist in mammalian cells: CCTα (also known as PCYT1A), which is ubiquitously 

expressed and active as a homodimer45; and CCTβ1, CCTβ2 and CCTβ3, which are splice 

variants of PCYT1B that exhibit tissue-specific expression46. Much of the work on CCT was 

carried out before the different isoforms were identified; nonetheless, it is clear that the 

control of CCT activity is complex and that it involves multiple factors that modulate 

membrane localization, phosphorylation and transcription of CCTs47. All of these factors 

have been linked to oncogenic signalling.

Hepatocarcinogenesis was demonstrated to be associated with increased CCT activity and 

mRNA expression, whereas phosphatidylethanolamine N-methyltransferase (PEMT) activity 

and mRNA expression were decreased, suggesting a reciprocal relationship between these 

two enzymes48. PEMT converts PtdEtn to PtdCho and can therefore replenish cellular 
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PtdCho levels at the expense of PtdEtn48. An increase in CCT activity would therefore result 

in the depletion of cellular PCho levels. However, 31P MRS has frequently demonstrated 

that liver tumours contain significantly increased cellular PCho levels compared with normal 

liver49. Because several enzymes, other than CCT, such as CHK and PtdCho-specific 

phospholipase C (PC-PLC), can increase intracellular PCho levels, these enzymes may 

counteract a possible depletion of cellular PCho levels by increased CCT activity in liver 

tumorigenesis (TABLE 1). CCT expression and activity were also increased in colon cancer, 

which resulted in elevated PtdCho levels in colon cancer50. Taken together, CTL1, CHKα 

and CCT expression and activity are increased in colon cancer, which results in elevated 

PCho and PtdCho levels, thereby facilitating enhanced cell growth and proliferation 

(TABLE 1).

PtdCho-specific phospholipase D

PtdCho-specific phospholipase D (PC-PLD) was discovered in plants in 1947 (REF. 51), but 

it only attracted widespread attention when experiments in mammalian cell cultures revealed 

that PLD1 and PLD2 were rapidly activated in response to extracellular stimuli (reviewed in 

REF. 52). PLD1 and PLD2 hydrolyse PtdCho to phosphatidic acid and Cho, which is one of 

the breakdown pathways in PtdCho metabolism that directly produces intracellular free Cho 

(FIG. 3). PLD1 and PLD2 occur as three splice variants and share 50% sequence 

homology53,54. PLD1 is predominantly localized to Golgi membranes, whereas PLD2 is 

associated with both Golgi membranes and the plasma membrane55. Both PLD enzymes 

were also found in the cytoplasm and a variety of other organelles, and their location may 

depend on the cell type and physiological state of the cell56. PLD1 and PLD2 are crucial in 

cell proliferation, survival signalling, cell transformation and tumour progression57.

Elevated activity of PC-PLD has been observed in gastric58 and ovarian cancers59, as well 

as in epithelial ovarian cancer cell lines59. PLD1 activity and expression were increased in 

breast cancers60,61, as well as several human breast cancer62 and melanoma63 cell lines. 

PLD2 activity and expression were elevated in colorectal64,65 and renal66 cancers. A 

C1814T polymorphism occurs in PLD2, resulting in T577I substitution, which is associated 

with colorectal cancer but which does not affect PLD2 activity67. PLD1 or PLD2 expression 

were able to transform cells that overexpressed a tyrosine kinase such as epidermal growth 

factor receptor (EGFR) or SRC, suggesting a contribution of PLD1 or PLD2 to malignant 

progression in cells with elevated tyrosine kinase activity68 (TABLE 1).

The overexpression of PLD1 and PLD2 in mouse fibroblasts caused neoplastic 

transformation, resulting in upregulated matrix metalloproteinase 9 (MMP9) activity, 

anchorage-independent growth in soft agar and the formation of undifferentiated sarcoma in 

nude mice69. Multidrug-resistant colon and breast cancer cells exhibited a higher level of 

PLD2 activity and expression than the parental drug-sensitive cells70. A correlation between 

increased PC-PLD activity and loss of oestrogen receptor expression in breast cancer cells 

has been observed, suggesting that PC-PLD could provide a survival signal that is normally 

provided by oestrogen in a developing tumour71. PC-PLD activity has also been implicated 

in tumour invasion and may play an important part in the metastasis of cancer cells72,73. 

High levels of PC-PLD activity correlate with high invasive potential in human breast 
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cancer cells71, and elevated PC-PLD activity was shown to correlate with increased protease 

secretion, which is commonly observed in invasive cancer cells72–75.

PtdCho-specific phospholipase C

PC-PLC catalyses the hydrolysis of PtdCho, thereby producing PCho and DAG (FIG. 3). 

DAG is a second messenger that induces protein kinase C (PKC) activation, which 

phosphorylates multiple target proteins and which is involved in several signal transduction 

cascades. PtdCho hydrolysis produces a longer and more sustained action of DAG than 

phosphatidylinositol cleavage by PC-PLC76. To date, no mammalian PC-PLC isoforms have 

been sequenced or cloned, and studies investigating the putative mammalian PC-PLC 

enzyme have relied on detecting PC-PLC activity and/or protein expression with rabbit 

polyclonal antibodies against bacterial PC-PLC from Bacillus cereus. PC-PLC translocates 

from a perinuclear cytosolic area to the plasma membrane following activation by growth 

factors, insulin or phorbol esters77 (FIG. 3).

A function for PC-PLC has been demonstrated in hepatocarcinogenesis78, in which the 

activity of calcium-dependent PC-PLC, but not of calcium-independent PC-PLC, increased 

significantly in a rat model of N-nitrosodiethylamine-induced hepatocarcinoma78. Stable 

transfection of NIH3T3 fibroblasts with bacterial PC-PLC led to chronically elevated levels 

of DAG and PCho, and a transformed phenotype in these cells that was mediated by RAF1 

and PKCζ79. In ovarian cancer cells, the elevated PCho levels, which are linked to ovarian 

carcinogenesis, are partially caused by PC-PLC activation80. In breast cancer cells, PC-PLC 

accumulates on the plasma membrane of HER2 (also known as ERBB2)-overexpressing 

cells and associates with HER2 in lipid raft domains81.

Other choline-related enzymes

Additional enzymes, such as PtdCho-specific phospholipase A2 (PC-PLA2), 

lysophospholipase, GPC phosphodiesterase (GPC-PDE; also known as GPCPD1) and 

CHPT1, may also be important in establishing the cholinic phenotype by altering the 

metabolite levels of PCho, GPC and Cho (FIG. 3). PC-PLA2 exists as 19 isoforms, 

complicating its investigation. Ovarian cancer lines contained unaltered or decreased 

expression of PC-PLA2 isoforms, which was accompanied by decreased overall PC-PLA2 

activity59. The expression of cytosolic phospholipase A2 (PLA2; also known as PLA2G4A) 

was decreased in breast cancer cells82, and may modulate the cellular MRS-detected GPC 

levels83. Sphingomyelinases, which catalyse the cleavage of the phosphodiester bond in 

sphingomyelin to form ceramide and PCho, are involved in cancer pathogenesis84, and may 

potentially contribute to elevated PCho levels that constitute the cholinic phenotype. 

Inhibition of CHKα has been reported to increase ceramide levels, and therefore 

sphingomyelinases may have a role in the action of CHKα inhibitors as antitumour drugs85.

Oncogenic regulation of choline metabolism

The first indication that choline metabolism could be regulated by oncogenic signalling 

came from early work showing that PCho levels increased following growth factor 

stimulation of NIH3T3 fibroblasts86. Subsequent studies (discussed below) have 
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demonstrated the complex and often reciprocal interactions (FIG. 2) between oncogenic 

signalling pathways and the enzymes that are involved in choline metabolism.

The RAS pathway

Each of the enzymes involved in choline metabolism is affected by the RAS pathway (FIG. 

2). Activation of CHK and elevated PCho levels were initially reported in serum-stimulated, 

KRAS- or HRAS-transformed NIH3T3 fibroblasts87–89. Detailed investigations indicate that 

CHK activation downstream of oncogenic HRAS occurs via combined RAL GTPase 

guanine nucleotide dissociation stimulator (RALGDS) and PI3K signalling90. Activation of 

CHK could also be mediated by the small GTPase RHOA and its effector RHO-associated 

coiled-coil-containing protein kinases (ROCKs), which are associated with transformation 

and metastasis, and which are overexpressed in various cancers91.

Oncogenic HRAS controls the transcription of CCT through the activation of the MAPK 

pathways92. MAPK signalling also modulates the expression of sterol regulatory element 

binding proteins (SREBPs). SREBPs, in turn, can induce CCT expression, but are more 

likely to lead to increased CCT activity by enhancing fatty acid synthesis, which promotes 

membrane translocation and thus the activation of CCT93. By contrast, other studies indicate 

that RAS signalling can result in the inhibition of CCT. Phosphorylation, and thus 

inhibition, of CCT is mediated by ERK94 and JUN N-terminal kinase (JNK)95. Accordingly, 

oncogenic signalling can reduce CCT activity and can increase PCho levels92,94,96. Elevated 

CCT expression could lead to enhanced PtdCho synthesis, enabling rapid cell proliferation 

and tumour growth. However, the importance of reduced CCT activity in cell transformation 

remains unclear.

The activation of PC-PLD was first reported in serum-stimulated HRAS- or KRAS-

transformed NIH3T3 cells97. Recent work has demonstrated the complex oncogenic 

regulation of PC-PLD with two positive regulatory pathways that are mediated by RALGDS 

and PI3K, and two negative feedback mechanisms that are mediated by RAF and 

RALGDS71,98. In turn, PC-PLD was identified as a regulator of cell transformation and 

tumour progression71. This effect could be mediated by phosphatidic acid, which couples 

EGFR stimulation to RAS activation through SOS99, or it could be mediated through a 

positive feedback loop via WNT57,100.

The activation of PC-PLC in cells that express oncogenic HRAS was hypothesized in early 

studies as an explanation for the presence of elevated PCho levels in these18. Subsequently, 

increased PC-PLC activity was observed downstream of serum stimulation, or platelet-

derived growth factor (PDGF) stimulation via RAF1, and was associated with cell 

transformation79,80,101. However, an alternative mechanism for the elevation of PCho levels 

downstream of PDGF has been proposed and involves increased PC-PLD expression 

combined with increased CHK activity102. Unfortunately, the lack of molecular biological 

information regarding PC-PLC has hampered more detailed studies into its role in cancer.

The expression of PLA2 is mediated through JNK and ERK signalling 103, and its activity is 

further induced by ERK through phosphorylation on Ser505 (REF. 104). In turn, PLA2 has 

been reported to mediate cell transformation downstream of HRAS105.
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The PI3K–AKT pathway

Inhibiting the PI3K–AKT signalling pathway blocked choline uptake in lung 

adenocarcinoma cell lines, suggesting that this pathway might participate in the regulation of 

choline transport26. As mentioned above, PI3K–AKT signalling also affects CHK 

activation, which occurs via combined RALGDS and PI3K signalling90 (FIG. 2). Recent 

studies point to a reciprocal interaction between the enzyme and oncogenic pathways. 

CHKα overexpression resulted in the differential expression of multiple genes that are 

associated with cell cycle progression, whereas partial inhibition of CHKα resulted in cell 

cycle arrest or apoptosis106. Knockdown of CHKα using small interfering RNA (siRNA) led 

to the simultaneous attenuation of MAPK and PI3K–AKT signalling and was associated 

with the inhibition of cell proliferation107. A separate study indicated that knockdown of 

CHKα or CHKβ inhibited AKT-S473 phosphorylation independently of PI3K, and this was 

associated with the inhibition of cell proliferation108. Consistent with this observation, 

treatment with the CHKα inhibitor Mn58b inhibited tumour growth in vivo 108. Most 

recently, a role for CHKα in mediating the synergistic actions of EGFR and SRC in breast 

cancer development has also been shown109. These observations reinforce the proposed role 

of CHKA as an oncogene, with its overexpression contributing, through a positive feedback 

loop, to increased MAPK and PI3K signalling.

Transcription factors

Transcriptional control of the regulators of choline metabolism by factors associated with 

cancer has been most clearly demonstrated for CHK. In the liver, the binding of JUN to a 

distal activator protein 1 (AP1) element in the promoter region of CHKA mediates its 

expression, indicating a possible link between the role of AP1 in cell proliferation and 

transformation and CHK110 (FIG. 2). Two additional transcription factors, which are 

important in oncogenesis and which are likely to be involved in the control of CHK 

expression, are MYC and HIF1. A possible role for the proto-oncogene MYC was indicated 

in studies that showed elevated levels of CHK and PCho in Myc+/+ compared with Myc−/− 

rat fibroblasts111. In the case of HIF1, a recent study clearly identified putative hypoxia 

response elements within the promoter of CHKA and showed that hypoxia and HIF1 

stabilization increase PCho levels8 (FIG. 2). How this effect could enhance cancer cell 

survival under hypoxic conditions is unclear, but this observation indicates that cells that 

survive in a hypoxic environment are likely to demonstrate elevated PCho levels.

With regard to other transcription factors that are associated with choline metabolism, SP1, 

which is involved in cell growth and which is upregulated in a variety of cancers, controls 

the expression of CTL1 (REF. 24), CCTα112 and PLD1 (REF. 113). Collectively, these 

enzymes could therefore enhance PtdCho synthesis, facilitating cell growth and 

proliferation.

Clinical implications

Several clinical implications arise from the deregulated choline metabolism of cancers. The 

most evident of these is non-invasively detecting cancer with MRS, and indeed many 

centres throughout the world are evaluating the use of spectroscopic imaging to assist in the 
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diagnosis and the staging of cancer. Two additional, equally valuable, areas of application 

are in detecting therapeutic response and exploiting choline phospholipid metabolism to 

identify new targets for cancer treatment (FIG. 3).

Diagnosis and staging of cancer

Several ongoing multi-centre trials evaluating 1H MRS imaging (MRSI) of breast114, 

brain115 and prostate116,117 cancer, have reported an elevation of tCho levels in tumours. 

Increased tCho levels have been associated with aggressiveness in breast cancer118. The 

elevation of tCho expression is a specific biomarker of prostate cancer and correlates with 

Gleason score and aggressiveness117. In breast and ovarian cancers, the low PCho and high 

GPC levels that are observed in non-malignant cells change to high PCho and low GPC 

levels with malignant transformation5,59. PCho, GPC and tCho concentrations in human 

cancers versus normal tissue of the same origin are summarized in TABLE 1. The elevated 

tCho level in brain tumours has been used for detection119 and grading120, radiation therapy 

treatment planning121, and determining recurrence from radiation-induced necrosis and 

reactive astrocytosis122.

Although the spatial resolution of MRS is orders of magnitude lower than histological 

evaluation and staging from biopsies or excised tumours, MRS has the advantage of non-

invasively detecting tumour metabolism, and can be combined with clinically approved 

magnetic resonance imaging (MRI) methods in the same setting. Unlike the histological 

evaluation of biopsies, MRS also provides information about the entire tumour.

MRS applications in the clinic are technically challenging and, unfortunately, are currently 

not reimbursed by healthcare providers in the United States123. This prevents patients from 

receiving the potential benefits of MRS, and slows down future progress in clinical MRS 

techniques, as, without reimbursement, there is no incentive for manufacturers to support 

MRS development or for radiologists to use MRS123. Nonetheless, several large multi-

centre clinical trials are currently evaluating the use of MRS for the detection of tCho and 

other metabolites in diagnosis, staging and therapeutic response monitoring. This reflects the 

fairly early stages of MRS technology in terms of clinical translation111,112,114,115. 

However, the value of MRS in identifying tumours and predicting survival has been 

demonstrated111,112,114,115. Furthermore, the introduction of higher field clinical MR 

scanners, such as 7 Tesla and higher, although to date technically more demanding, should 

allow for better spatial and spectral resolution of non-invasive MRS in clinical applications, 

probably achieving resolution of the tCho signal into GPC, PC and Cho and further 

enhancing the information obtained by 1H MRS.

Recent advances in the process of dynamic nuclear polarization (DNP) and the development 

of commercial polarizers provide a novel method to dramatically increase the MRS signal 

that arises from exogenous hyperpolarized compounds and their metabolites. The use of 

hyperpolarized 13C MRS is now in clinical trials at the University of California in San 

Francisco (UCSF), USA, with very promising results. Whereas monitoring of 

hyperpolarized PCho synthesis from hyperpolarized choline has not yet been demonstrated 

in cells or tumours, some studies indicate that this approach might be feasible in the future. 

Synthesis of PCho from hyperpolarized 15N-labelled choline was observed in vitro using 
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purified CHK124, and the presence of 15N choline, al though not its metabolism, was 

reported in vivo in rat brain125. Metabolism of hyperpolarized 13C-labelled choline to 

acetylcholine was also observed in vitro 126. In addition, 11C- and 18F-labelled choline and 

choline derivatives are being evaluated for non-invasive PET radiological diagnosis of 

metastatic or recurrent cancers127.

Detecting therapeutic response

Treatment with most conventional chemotherapeutic agents results in a decrease of tCho 

levels in responding tumours in preclinical models128 and in human tumours129,130. Studies 

investigating the molecular basis underlying these changes are urgently needed. These 

studies will provide much needed insight into how choline metabolism in cancer cells is 

affected by chemotherapy, and whether treatment outcome would be improved by 

combining conventional chemotherapy with the downregulation of enzymes in this pathway.

Because the enzymes that control choline metabolism are modulated by oncogenic 

signalling pathways (FIG. 2), the inhibition of this signalling results in altered choline-

containing metabolite levels of Cho, PCho and GPC. Accordingly, these metabolites could 

provide downstream metabolic readouts of effective inhibition of these pathways. Several 

studies have used MRS and have demonstrated the value of this approach for the non-

invasive detection of drug molecular action. The inhibition of oncogenic signalling in 

mutant HRAS-transfected NIH3T3 cells resulted in reduced levels of PCho, whereas PCho 

levels remained unchanged in the parent line131. Inhibition of PI3K or MAPK signalling 

also resulted in reduced PCho and tCho levels, with recent studies indicating that this effect 

is primarily mediated by CHKα inhibition as a result of its reduced expression downstream 

of HIF1 activation8,132–135. Consistent with these findings, and with the fact that p53 can 

regulate HRAS136, loss of p53 function also led to an increase in PCho levels137. In 

addition, the inhibition of HIF1α138 resulted in reduced PCho levels, and tumours deficient 

in HIF1β (also known as ARNT), which HIFα heterodimerizes with to form the HIF 

transcription factor, showed lower levels of PCho than controls139.

Other metabolic imaging studies highlight the need for further investigation. The inhibition 

of heat shock protein 90 (HSP90), which results in reduced signalling through both the 

MAPK and the PI3K pathways, leads in most cases to an unexpected increase in PCho and 

GPC levels140,141 and to increased uptake of the PET tracer [11C]-choline142. These effects 

could be mediated by the increased expression of the choline transporter CTL1 (REF. 143), 

but this varies across cancer types, which possibly reflects differences in genetic 

background144. Drug-induced inhibition of fatty acid synthesis resulted in reduced PCho 

levels and lower CHK activity, potentially identifying fatty acids as post-translational 

modulators of CHK activity, which is similar to their role in the control of CCT activity, but 

such an effect remains to be confirmed145. The inhibition of cyclooxygenase resulted in 

reduced levels of PCho and an increase in GPC levels with no concomitant changes in the 

expression of the enzymes that are associated with choline metabolism, but this study 

identified several candidate genes that could be involved in altering choline metabolism 

through secondary, as yet undetermined, effects146. Finally, phenylbutyrate induced 

increases in GPC levels, which was consistent with an as yet undetermined mechanism 
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whereby peroxisome proliferator-activated receptor-γ (PPARγ) is responsible for increased 

PLA2 activity147.

Therapeutic opportunities

The increased expression and activity of CHKα make it an attractive molecular target for 

anticancer therapy148–151. Lacal and colleagues first suggested CHKα inhibition as a 

potential antitumour therapy152, and developed novel chemical compounds for this 

purpose152. The most promising of these compounds exhibited significant antiproliferative 

activity, induced the reduction of tumour growth and was specific for CHKα 

inhibition152,153. Overall, these novel pharmacological inhibitors targeting CHKα151 

resulted in tumour growth arrest and apoptosis through the induction of a cytotoxic increase 

in ceramide levels85,149. A CHKα inhibitor (TCD-717) is currently undergoing Phase I 

clinical trials for toxicity testing in cancer patients.

Targeting CHKα results in decreased PCho and tCho levels, which can be detected non-

invasively with 31P or 1H MRS149,150. Silencing of CHKα in human breast cancer cells by 

RNA interference (RNAi) has been demonstrated to decrease cellular 1H MRS-detectable 

PCho levels, while leaving human mammary epithelial cells unaffected148,150,154. A 

significant decrease of cell proliferation and induction of differentiation in highly invasive 

and metastatic human breast cancer cells and tumour xenografts was observed with CHKα 

downregulation148. Non-invasive 31P MRS detected a reduction in PCho levels following 

gene therapy with an intravenously injected lentiviral vector that delivered short hairpin 

RNA targeting CHKα in a breast cancer model150. Combining CHKα silencing with 

chemotherapeutic 5-fluorouracil treatment resulted in a more pronounced anti-proliferative 

and growth inhibitory effect in breast cancer cells, but not in non-malignant breast epithelial 

cells154. Radiolabelled choline or choline analogues can also be used as pharmacodynamic 

markers to monitor CHKα-targeted therapies using PET155.

Hemicholinium-3 (HC-3), which inhibits low-affinity sodium-independent choline 

transport156, has been proposed as a potential therapeutic anticancer agent152. However, 

HC-3 is not specific to choline transport and also inhibits CHK152. Radiolabelled HC-3 was 

evaluated as a molecular imaging agent in a preclinical study, to potentially detect prostate 

cancer by PET29.

Hexadecylphosphocholine (HePC; also known as miltefosine) is a synthetic 

alkylphosphocholine that is currently being investigated for antineoplastic therapy and it has 

been approved for the topical treatment of cutaneous metastases of mammary 

carcinomas157. Its mechanism of action involves the inhibition of CCT activity by 

preventing CCT translocation to the membrane158,159. This leads to elevated cellular PCho 

levels, and decreasing cellular PtdCho levels, and identifies a potential approach for 

monitoring the effects of treatment158,159.

Because PC-PLD is involved in several aspects of cell proliferation and oncogenic 

signalling, it could prove to be valuable as a target for therapeutic intervention in cancer. 

HePC was also shown to modulate PC-PLD activity160. Chronic exposure of different non-

tumorigenic mammalian cell lines to HePC strongly inhibits PC-PLD activity, which may be 
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related to its antitumour activity160. The selective oestrogen receptor modulators tamoxifen 

and raloxifene, which are commonly used for the chemotherapy of oestrogen receptor-

positive breast cancer, were reported to differentially affect PC-PLD activity161. Multidrug 

resistance in human cancer cells was accompanied by increased PLD2 activity in detergent-

insoluble glycolipidrich and caveolar membranes70. High levels of PC-PLD activity also 

conferred resistance to rapamycin, an inhibitor of mTOR, in human breast cancer cells162.

The anti-oestrogen drug tamoxifen, which is widely used for the treatment of breast 

cancer163, as well as some other cancers164,165, activates cellular PC-PLD and PC-PLC, 

thereby causing increased levels of DAG, PCho and phosphoethanolamine (PEtn), and 

sustained translocation and activation of PKC, which may ultimately lead to changes in cell 

growth166. PC-PLC inhibition reduced HER2 expression on the plasma membrane, thereby 

inducing antiproliferative effects, which suggests that it may provide a valuable strategy to 

counteract the tumorigenic effects of HER2 and thus complement HER2-targeting 

therapies81. The antiviral, potentially antitumoural xanthate D609 was shown to be a potent 

inhibitor of PC-PLC167, and significantly reduced PCho levels along with cell proliferation 

in ovarian cancer cells59. D609 can also inhibit sphingomyelin synthase168. Although it has 

shown promising results in cancer cell lines and transformed cells in vitro169, D609 

exhibited little antitumour activity in in vivo animal studies170. The dual-specificity 

phosphatase inhibitor SC-ααδ93,4-(benzyl-(2-[(2,5-diphenyloxazole-4-carbonyl)amino] 

ethyl)carba-moyl)-2-decanoylaminobutyric acid, which exhibits antitumour activity in vivo, 

was also shown to be a potent inhibitor of PC-PLC171.

Conclusions

As a disease, cancer continues to confound the technological advances that are available in 

the twenty-first century. Common pathways are a rarity in this disease, but these provide the 

vision and hope for finding effective treatments (FIG. 3). Over the past decade, aberrant 

choline metabolism is one common pathway that has been consistently revealed by bench-

to-bedside MRS studies evaluating tCho levels as a biomarker for detection and monitoring 

response to treatment (FIG. 1). Elevated levels of PCho and tCho have been observed in 

almost every cancer type studied. Although substantial advances have been made in 

understanding the molecular mechanisms that drive these differences, the challenges for the 

future are to comprehensively understand the mechanisms underlying this elevation, 

interactions between cancer cells and stromal cells, and the transcription factors that regulate 

enzymes and transporters in the choline pathway. New methodologies such as mass 

spectrometric imaging172 in combination with molecular biology techniques such as PCR 

carried out on tissue sections should allow a genomic- to proteomic-scale characterization of 

deregulated choline metabolism. Although 31P MRS studies have identified increased PEtn 

levels in tumours13, the role of the CDP-ethanolamine pathway in malignant transformation 

and progression is almost completely unexplored and merits further investigation. The 

apparent positive feedback that is mediated by enzymes in the choline cycle, as well as the 

interaction and compensatory mechanisms between enzymes in the choline cycle and the 

ethanolamine cycle that may allow cancer cells to adapt and survive the downregulation of 

individual enzymes, are other areas that require focus in the future. As the connectivity, 

networks and feedback mechanisms in choline metabolism become more evident, a systems 
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biology approach will be necessary to identify the crucial nodes that should be targeted in 

this pathway. Other challenges are the sequencing of all genes in the choline cycle to allow a 

better understanding of deregulated choline metabolism in cancers. Targeting the enzymes 

involved in choline metabolism may prove to be highly effective against cancer cells, and 

MRSI would lend itself most easily to clinical applications to detect the effect of targeting 

choline metabolism non-invasively in vivo for image-guided therapy. The development of 

image-guided siRNA delivery to target enzymes173 could allow the downregulation of 

multiple enzymes in the choline cycle, and the clinical translation of these technologies 

provides hope for the future.
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Glossary

Total choline-
containing 
compounds

(tCho). The sum of choline (Cho),phosphocholine (PCho) and 

glycerophosphocholine (GPC),this term was coined because 

these three metabolite signals appear as one overlapping signal 

in non-invasive in vivo 1H magnetic resonance spectra owing to 

limited spectral resolution

Magnetic resonance 
spectroscopy

(MRS). A technique that measures the nuclear magnetic 

resonance of 1H,31P and other magnetic resonance-active nuclei 

to determine their physical and chemical properties either non-

invasively in live organisms or at high spectral resolution in ex 

vivo samples

Phosphomonoesters (PMEs). Phospholipid metabolism intermediates, such as 

phosphocholine (PCho) and phosphoethanolamine (PEtn), 

which contain one ester bond between the phosphate group and 

the specific phospholipid head group alcohol

Phosphodiesters (PDEs). Phospholipid metabolism intermediates, such as 

glycerophosphocholine (GPC) and glycerophosphoethanolamine 

(GPE),which contain two ester bonds at the phosphate 

group,one to the specific phospholipid head group alcohol and a 

second one to glycerol

Magic angle spinning (MAS). A specialized magnetic resonance spectroscopy 

technique that avoids tissue extraction to detect high-resolution 

spectra by spinning solid tissue samples at the angle of 

54.74°with respect to the magnetic field. These tissue samples 

can be used for subsequent histological,biochemical and genetic 

analyses
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Phorbol esters A class of compounds originally derived from esterification of 

the plant compound phorbol,which promote tumorigenesis 

through the activation of protein kinase C

MRS imaging (MRSI). Applies magnetic resonance spectroscopy (MRS) in a 

spatially resolved manner, thereby providing metabolite 

concentrations in tissue in two or three spatial dimensions and 

allowing for the display of metabolic maps throughout the tissue
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Box 1

Detecting deregulated cancer choline metabolism with MRS

Choline metabolism in cells and tumour xenografts has been extensively investigated 

with 1H, 13C and 31P magnetic resonance spectroscopy (MRS). In 1H MR spectra 

obtained in vivo, the total choline-containing compounds (tCho) signal in tumours is 

detected as a single peak observed between 3.2 ppm and 3.3 ppm (see part a of the 

figure). This peak consists of choline (Cho), phosphocholine (PCho) and 

glycerophosphocholine (GPC), which can be resolved in high-resolution 1H MR spectra 

of tissue and cell extracts, or in high-resolution magic angle spinning (MAS) 1H MR 

spectra of tissue biopsy samples (see part a of the figure). These peaks arise from the 

nine chemically equivalent protons in the highlighted choline-N(CH3)3 groups of Cho, 

PCho and GPC (see part b of the figure).

In vivo31P MR spectra contain signals from phosphomonoesters(PMEs)that consist of the 

overlapping peaks from membrane precursors PCho and phosphoethanolamine (PEtn), 

and from phosphodiesters (PDEs) that consist of the overlapping peaks from membrane 

breakdown products GPC and glycerophosphoethanolamine (GPE) (see part a of the 

figure). PCho and PEtn can also be formed during the breakdown of phosphatidylcholine 

(PtdCho) and phosphatidylethanol-amine (PtdEtn). Individual PCho, PEtn, GPC and GPE 

peaks are detected in high-resolution 31P MR spectra (see part a of the figure). These 

PCho and GPC peaks arise from the 31P nuclei in the highlighted phosphate groups (see 

part b of the figure). Increased levels of PMEs were evident in the very first MR 
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spectrum of a human sarcoma, which was acquired in 1983 (REF. 3). Because of its low 

sensitivity, 31P MRS has limited application in human studies.

13C MRS studies of choline metabolism are carried out to track the metabolism of 

exogenously supplied 13C-labelled choline in cells143 or in vivo174. The incorporation 

of 13C-labelled choline into different metabolites in the choline phospholipid metabolic 

pathways can be used to calculate flux rates from the rate of enrichment of the metabolite 

pool. Future studies might demonstrate the value of hyperpolarized Cho for monitoring 

Cho uptake and phosphorylation with greater sensitivity.

Figure is modified, with permission, from REF. 175 © 2011 Elsevier.
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At a glance

• Some of the levels of metabolic intermediates that are generated in choline 

phospholipid metabolism, particularly phosphocholine (PCho) and total choline 

(tCho), are elevated in cancer, and can be used for non-invasive detection in 

cancer diagnosis and staging by using magnetic resonance spectroscopy (MRS) 

or positron emission tomography (PET).

• Several enzymes in choline metabolism, such as choline transporter-like protein 

1 (CTL1), choline kinase-α (CHKα), CTP:phosphocholine cytidylyltransferase 

(CCT), phosphatidylcholine-specific phospholipase D (PC-PLD) and PC-PLC, 

are overexpressed and/or activated in cancer and can potentially be used as 

prognostic markers.

• Overexpression and activation of choline cycle enzymes are mediated by 

oncogenic signalling via pathways such as the RAS and PI3K–AKT pathways, 

and by transcription factors associated with oncogenesis such as hypoxia-

inducible factor 1 (HIF1). Recent studies point to a reciprocal interaction 

between choline cycle enzymes and oncogenic signalling, where modulation of 

the enzymes can contribute to enhancing oncogenic signalling.

• The therapeutic response of tumours can be monitored non-invasively by MRS 

of the tCho signal because treatment with conventional chemotherapeutic agents 

results in a decrease of tCho levels in responding, but not in non-responding, 

tumours.

• Inhibition of oncogenic signalling pathways with targeted anticancer drugs 

results in altered choline-containing metabolite levels. Therefore, these 

metabolites could provide downstream metabolic readouts of the effective 

inhibition of these pathways.

• New molecularly targeted therapeutic opportunities arise from targeting choline 

cycle enzymes such as CHKα, which is currently being tested in Phase I clinical 

trials.
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Figure 1. Overview of deregulated choline metabolism in cancer
Magnetic resonance spectroscopy (MRS) studies with cells, animal models and human 

studies have revealed deregulated choline metabolism in cancer. Oncogenic pathways 

(shown in light red), tumour suppressor pathways (dark red) and molecules that are 

associated with choline metabolism (green) in cancer are shown in the upper circle. These 

studies have led to the use of MRS for cancer detection and for following the treatment-

induced changes in total choline-containing compounds (tCho) to determine response to 

therapy. The association of choline metabolism with cancer has also led to the development 

of inhibitors that target enzymes in the pathway, and a Phase I clinical trial with a choline 

kinase-α (CHKα) inhibitor has been initiated. COX2, cyclooxygenase 2; HIF1, hypoxia-

inducible factor 1.
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Figure 2. Control of choline metabolism by oncogenic signalling pathways
Oncogenic signalling pathways (part a) that interact with the choline metabolic pathway 

(part b) are shown. Grey arrows represent the choline metabolism pathway, proteins in grey 

catalyse the reaction that is depicted by the corresponding grey arrow. Dashed grey arrows 

indicate the regulation of enzyme activity in the choline metabolism pathway. Black arrows 

indicate connections to the oncogenic signalling pathways shown in part a. Solid black 

arrows indicate increased or decreased enzyme activity, dashed black arrows indicate 

increased gene transcription. AP1, activator protein 1; CHK, choline kinase; CHPT1, 

diacylglycerol cholinephosphotransferase 1; CCT, CTP:phosphocholine 

cytidylyltransferase; DAG, diacylglycerol; FA, fatty acid; GPC, glycerophosphocholine; 

HIF1, hypoxia-inducible factor 1; JNK, JUN N-terminal kinase; PC-PLC, 

phosphatidylcholine-specific phospholipase C; PC-PLD, phosphatidylcholine-specific 

phospholipase D; PLA2, phosphatidylcholine-specific phospholipase A2; PCho, 

phosphocholine; PtdCho, phosphatidylcholine; RALGDS, RAL GTPase guanine nucleotide 

dissociation stimulator; RTK, receptor tyrosine kinase; SREBP, sterol regulatory element 

binding protein.
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Figure 3. The major enzymes involved in choline phospholipid metabolism in the cell
Enzymes shown in grey indicate active choline cycle enzymes, which are shown in the 

organelle in which they are active. Enzymes shown in dark blue indicate the location of 

choline cycle enzymes that are deactivated by translocation to a different organelle. Black 

arrows represent the choline metabolism pathway, proteins in grey catalyse the reaction that 

is depicted by the corresponding black arrow and choline cycle metabolites are shown in 

bold. Dashed grey arrows show translocation to different subcellular locations, which can 

deactivate (dark blue) or activate (grey) the enzyme. CCT, CTP: phospho-choline 

cytidylyltransferase; CDP-Cho, cytidine diphosphate-choline; CHKα, choline kinase-α; 

Choe, extracellular free choline; Choi, intracellular free choline; CHPT1, diacylglycerol 

cholinephosphotransferase 1; CMP, cytidine monophosphate; CTP, cytidine triphosphate; 

FA, fatty acid; GPC, glycerophosphocholine; GPC-PDE, glycerophospho-choline 

phosphodiesterase; Gro-3-P, glycerol-3-phosphate; Lyso-PLA1, lyso-phospholipase A1; 

PCho, phosphocholine; PC-PLC, phosphatidylcholine-specific phospholipase C; PC-PLD, 

phosphatidylcholine-specific phospholipase D; PLA2, cytoplasmic phosphatidylcholine-

specific phospholipase A2; PPi, diphosphate.
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Timeline. Deregulated choline metabolism in cancer
CHKα, choline kinase-α; HSP90, heat shock protein 90; MRS, magnetic resonance 

spectroscopy; PCho, phosphocholine; PET, positron emission tomography; PEtn, 

phosphoethanolamine; PLD1, phospholipase D1; PME, phosphomonoester; PtdCho, 

phosphatidylcholine; RALGDS, RAL GTPase guanine nucleotide dissociation stimulator; 

tCho, total choline-containing compounds.
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