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Abstract

Human immunodeficiency virus type 1 (HIV-1) transmission and infection occur mainly via the 

mucosal surfaces. The commensal bacteria residing in these surfaces can potentially be employed 

as a vehicle for delivering inhibitors to prevent HIV-1 infection. In this study, we have employed a 

bacteria-based strategy to display a broadly neutralizing antibody VRC01, which could potentially 

be used to prevent HIV-1 infection. The VRC01 antibody mimics CD4-binding to gp120 and has 

broadly neutralization activities against HIV-1. We have designed a construct that can express the 

fusion peptide of the scFv-VRC01 antibody together with the autotransporter β-barrel domain of 

IgAP gene from Neisseria gonorrhoeae, which enabled surface display of the antibody molecule. 

Our results indicate that the scFv-VRC01 antibody molecule was displayed on the surface of the 

bacteria as demonstrated by flow cytometry and immunofluorescence microscopy. The engineered 

bacteria can capture HIV-1 particles via surface-binding and inhibit HIV-1 infection in cell 

culture.

Introduction

The Acquired Immunodeficiency Syndrome (AIDS) pandemic caused by the human 

immunodeficiency virus type 1 (HIV-1) has been ongoing for over three decades (Barre-

Sinoussi et al., 1983; Schupbach et al., 1984). It is estimated that 39 million people have 

already died of AIDS-related diseases; 35 million people are living with HIV-1, and 2.1 

million people are newly infected each year (UNAIDS, 2014). In spite of the recent 

optimism regarding a functional cure for HIV-1, there are still substantial obstacles for 
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achieving a sterilizing cure with the current available treatment regimens. Therefore, 

preventing new infection is still the priority for curbing the AIDS epidemic. So far, much 

effort has been dedicated towards the development of an effective AIDS vaccine, but none 

has yet been successful (Burton et al., 2012; Johnston and Fauci, 2011; Lifson and 

Haigwood, 2012; O’Connell et al., 2012; Xiang, 2013). Therefore, other alternative 

prevention approaches are needed in order to curtail HIV-1 transmission and infection.

There are several reports on a new prevention approach using gram-positive bacteria, such 

as lactobacilli, for surface display of CD4 (2-domains) (Liu et al., 2008), HIV-1 entry 

inhibitor cyanovirin-N (CV-N) (Lagenaur et al., 2011; Liu et al., 2006; Yamamoto et al., 

2013), or for secretion of a CCR5 antagonist RANTES (Vangelista et al., 2010) and HIV-1 

fusion peptide inhibitors (Pusch et al., 2006) to prevent HIV-1 infection. These approaches 

involve the use of bacteria to synthesize anti-HIV-1 inhibitors that can be secreted or 

displayed on the cell surface so that the inhibitors can bind to the virus and prevent 

infection. Since these commensal bacteria inhabit the mucosal sites which are the port of 

entry for HIV-1, these protein-based inhibitors can be produced by the bacteria which can be 

maintained as part of the normal mucosal bacterial flora, this approach could thus be 

employed as a potential strategy to prevent HIV-1 infection.

Gram-negative bacteria have also been used for a number of therapeutic applications 

including gene delivery into the gut (Castagliuolo et al., 2005). Succesful attempts include 

surface display of lipase (Lee et al., 2013), antimicrobial peptides (Shin et al., 2013), p-

glucuronidase (Cheng et al., 2013) and also for the secretion of single-chain or Fab antibody 

fragments (Cheung et al., 1992; Fallecker et al., 2013; Fernandez et al., 2000). However, 

very few studies have been reported in the use of gram-negative bacteria as potential agents 

for the delivery (Abdel-Mohsen et al., 2013) of anti-HIV regimens. So far only one study 

has been reported in which Escherichia coli Nissle 1917 was used to secrete an anti-HIV-1 

fusion peptide inhibitor to target gp41 glycoprotein of the virus. The fusion peptides from 

bacterial secretion can inhibit viral infection in cell culture experiments, and bacterial 

colonization in mice can last for weeks, or in some cases even months, however, the viral 

challenge experiment in vivo has not yet been carried out as the mice cannot directly be used 

for HIV-1 infection (Rao et al., 2005). Surface display of anti-HIV-1 inhibitors on gram-

negative bacteria is another approach in this commensal bacterial strategy, but it has not yet 

been tested. For surface display, the bacterial transporter genes must be used to translocate 

the molecules of interest onto the cell surface (Castagliuolo et al., 2005; Fairman et al., 

2011; Jose et al., 2012). Among the known transporters, the autotranspoter (AT) is one of 

the most studied, and its structure and translocating mechanisms have been reported recently 

(Benz and Schmidt, 2011; Ieva and Bernstein, 2009; Rutherford and Mourez, 2006; van den 

Berg, 2010). More importantly, these autotransporters are shown to be able to translocate 

single-chain antibody molecules onto the bacterial surface (Pyo et al., 2009; Veiga et al., 

1999, 2003).

In this report, we have used the gram-negative bacteria for surface display of anti-HIV-1 

antibody molecules. The autotransporter, an immunoglobulin A (IgA) protease gene (IgAP) 

of Neisseria gonorrhoeae, was used because its C-terminal domain has been shown to 

efficiently translocate the passenger domain at its N-terminal (Dautin and Bernstein, 2007; 
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Pohlner et al., 1987). We therefore employed this gram-negative bacterial autotransporter 

for surface display of a potent broadly neutralizing antibody (VRC01) against HIV-1 

infection. VRC01 is a potent neutralizing antibody isolated from an HIV-1 patient, which 

can neutralize about 90% of HIV-1 isolates tested (Wu et al., 2010). VRC01 binds to the 

CD4-binding site (CD4-BS) and can mimic CD4-binding to gp120 (Zhou et al., 2010). We 

have generated the single-chain variable fragment (scFv) of VRC01 antibody (scFv-VRC01) 

and displayed it on the surface of E. coli to test its ability to inhibit HIV-1 infection.

Results

Design of the scFv-VRC01 surface-display constructs

The scFv-VRC01 was designed using a two-step approach. The first was the designing of 

the single-chain (scFv) VRC01 antibody domain for expression. The VRC01 antibody gene 

was used to generate the single-chain antibody (scFv). A linker (-GGGGSGGGGSGGGGS-) 

was used to link the heavy chain (VH) and light chain (VL) gene fragments. Two E-tags 

were inserted into the recombinant gene; one was located between the β-barrel domain and 

the single-chain antibody, another was added to the N-terminus of the single-chain antibody 

(Fig. 1A). The resulting recombinant protein would display the His-tag at the C-terminus 

when expressed in the pET22b vector, and will be 257 amino acids in length with an 

expected molecular weight of about 27kDa. The designed peptide was codon-optimized and 

synthesized for the E. coli expression system. The second step was to link scFv-VRC01 

fragment to the translocator β-barrel domain (C-IgAP) from bacterial (N. gonorrhoeae) 

autotransporter (434aa), which will then generate a fusion protein (scFv-VRC01-β-barrel 

domain (C-IgAP)) of about 75kDa. The proposed structural model of the fusion recombinant 

protein molecule is shown in Fig. 1B. The scFv-VRC01 fusion upon expression is then 

expected to be displayed on the surface of the bacterial cell and bind to gp120 on the surface 

of the HIV-1 virion to inhibit viral infection.

Expression of scFv-VRC01 antibody in E. coli

The synthesized single-chain VRC01 antibody (scFv-VRC01) gene was first cloned into the 

pET28b expression vector to test for expression of the scFv-VRC01 protein with the 

predicted molecular weight of about 27 kDa. As shown in Fig. 2A, a band of 27 kDa could 

be detected in total bacterial lysates upon induction by IPTG, but was absent in both un-

induced lysates or in the supernatant of induced samples. This suggests that the single-chain 

VRC01 antibody protein molecule could be expressed in E. coli, and found mostly in the 

insoluble fractions of the bacterial lysates. The recombinant protein was then further purified 

using the Ni-NTA column and the presence of the protein was confirmed by western blot 

analysis using anti-His-tag antibody. An example of the blot is shown in Fig. 2B, confirming 

that most of the expressed protein could be found in the insoluble fraction of the bacterial 

lysate.

We then further characterized the expressed single-chain antibody VRC01 by determining 

whether it could be refolded into a native conformation, and Far-Western blotting was used 

to analyze whether it could bind gp120. This was carried out using anti-gp120 antibody to 

detect gp120 that was captured by the refolded scFv-VRC01, and the result is shown in Fig. 
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2D. The gp120 molecule was found to be bound by the refolded scFv-VRC01 on the 

membrane, resulting in the presence of a 27 kDa band which corresponds with expected size 

of the scFv-VRC01 antibody molecule and with the size of purified scFV-VRC01 shown by 

Western blot analysis using anti-His-tag antibody (Fig. 2C). Our results thus confirmed that 

the detected 27kDa recombinant protein was indeed scFv-VRC01 and when refolded, could 

bind gp120.

Inhibition of HIV-1 by the scFv-VRC01 antibody

Since the recombinant scFv-VRC01 can bind gp120 as determined by Far-Western blotting 

analysis, this suggested that the refolded SCFV-VRC01 can possibly bind and neutralize 

HIV-1. We then tested whether the expressed single-chain antibody VRC01 had neutralizing 

activity for different HIV-1 subtype strains. We tested the activities of SCFv-VRC01 against 

two different HIV-1 subtypes, subtype B (YU2) and subtype C (1084i), and the results are 

shown in Fig. 3A. The sc-Fv-VRC01 was found to have neutralizing activity against both 

HIV-1 strains. However, its activity was found to be several folds lower than the full length 

VRC01 IgG (Fig. 3B). Ten µg/ml of VRC01 was able to achieve 50% neutralization of 

1084i but 50 ug/ml of sc-Fv-VRC01 was needed to achieve similar levels of neutralization 

(see Fig. 3A). This was not unexpected since a single-chain antibody is generally known to 

be weaker than the full-length antibody in binding activity.

Surface display of the scFv-VRC01 antibody on E. coli

In order to display the scFv-VRC01 on the bacterial surface, an anchor protein domain (β-

barrel domain) of IgAP from the autotransporter was added. The IgAP β-barrel domain can 

be integrated into the outer membrane of the bacterial cell wall and will translocate the N-

terminal domain scFv-VRC01 from the cytoplasm to the cell surface. We then generated a 

construct (Fig. 1A and 1B) that included the signal peptide (sp), the single-chain antibody 

(scFv-VRC01), the anchor domain (C-IgAP) and the E-tag for the detection. The induced 

bacterial lysate was tested for the expression of the recombinant fusion protein by western 

blot analysis, and as expected a 75 kDa fusion protein was detected by anti-E-tag antibody 

(Fig. 2E). To verify that this fusion protein molecule could be displayed on the surface of 

the bacterium, flow cytometry was carried out to identify the presence of the recombinant 

scFv-VRC01 using FITC-conjugated rabbit anti-human IgG antibody. Over 50% of the 

bacteria were shown to express scFv-VRC01 on the cell surface (Fig. 4A).

To further confirm the expression of the surface scFV-VRC01 confocal microscopy was 

carried out to directly visualize the presence of the molecule on the bacterial surface using 

FITC labelled antibodies. More than half of the cells were found to be positive (Fig. 4B). 

The results corresponded well with the number of positive cells determined by flow 

cytometry analysis (Fig. 4A), and suggest that the scFv-VRC01 molecules can be displayed 

on the bacterial surface.

Binding and inhibition of HIV-1 infection by the bacterial displayed scFv-VRC01

Since scFv-VRC01 could be expressed in a large number of bacteria, it was important to 

determine whether they could bind to HIV-1 and prevent its infection. To demonstrate that 

the bacteria which displayed surface scFv-VRC01 could adsorb viral particles, they were 
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mixed with viral particles (100µl of 108/ml bacteria, and 12,500 RT units of HIV-1) and the 

amount of unbound viral particles were determined by measuring the residual RT (reverse 

transcriptase) activities in the supernatant after binding. As shown in Fig. 5A, the presence 

of bacteria expressing surface scFv-VRC01 could reduce the RT activity in the supernatant 

by over 90% as compared to 60% non-specific adsorption of the virion by control bacteria. 

The adsorption was specific for HIV-1 since similar levels of inhibition were not observed 

with MuLV control. As expected the scFv-VRC01 bacteria were found to be equally 

effective against multiple strains of HIV-1 (Fig. 5A).

To further confirm the effectiveness of the displayed scFc-VRC01 bacteria in inhibiting 

HIV-1 infection, infectivity assays using CF2-Th cells were carried out. Following 

incubation of the virus with the bacteria, the residual virus in the supernatant was used to 

infect CF2-Th and the infectivity was determined by measuring luciferase activity in the 

target cells. These results support the adsorption data demonstrating that HIV-1 infectivity 

was reduced by over 90% after incubation with the scFc-VRC01 bacteria, while much lower 

levels of inhibition were observed with the control bacteria (Fig. 5B). Thus, the bacterial 

cells with surface displayed scFv-VRC01 have the ability to block HIV-1 infection in vitro.

Discussion

Using commensal bacteria as anti-HIV infection agents is a novel initiative, and 

investigation in this area is still lacking with only very few relevant published reports. In this 

report, we have demonstrated as a proof of principle that the use of the p-domain of an 

autotransporter is able to translocate a single-chain anti-HIV antibody molecule from the 

cytoplasm to efficiently display it on the cell surface. The displayed molecule retained its 

anti-HIV activities and was able to bind to different subtypes of HIV-1, however, our 

expression system still needs to be optimized. Flow cytometry analyses data showed that 

only about 53% of bacterial cells positively displayed the scVRC01 on the cell surface. This 

suggests that either some bacteria are either not expressing the recombinant protein or their 

expression levels were below the detection limit. Another possibility is that some of the 

bacteria might have lost the plasmid upon passaging and propagation, or over expression of 

the recombinant molecule could affect the bacterial viability, and only certain bacteria with 

lower levels of expression had survived. These issues will need to be further investigated 

since stable expression and appropriate display are important factors contributing to the 

success of this approach.

Another issue we encountered is the weaker neutralizing activities by the single chain 

antibody compared to a full length antibody, also indicated in a recent research paper that 

included evalutions of several single-chain antibodies against HIV infection including the 

scFv-VRC01 (West et al., 2012). This phenomenon is actually well documented, single-

chain antibody has weaker binding affinity, and will result in weaker neutralizing activity 

when compared to the native antibody molecule. As we know that the Fab fragment 

antibody has a better affinity than the single-chain antibody for binding to its antigen. 

Therefore, it will be significant for us to display the Fab fragment of the VRC01 antibody to 

increase the neutralizing activity and improve this strategy for application.
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Nevertheless, our in vitro study here has shown that the use of bacteria expressing anti-HIV 

inhibitors has the potential to be an alternate approach for the prevention of HIV-1 infection. 

Following this study and after the optimization of expression binding of the antibody 

molecule, it will be necessary to deliver these engineered bacteria into mice for colonization 

studies, examining how long the bacteria can stay viable in the animals and how well the 

bacteria are able to disseminate to different tissue sites. Further, it will be necessary to test 

our system in an animal model, such as a humanized mouse or the SHIV macaque model, 

for viral challenge experiments. This will demonstrate the role and the efficacy of the 

engineered bacteria in preventing HIV-1 infection in vivo before testing any human trials.

Conclusions

This is the first report of using gram-negative commensal bacteria for surface display of 

anti-HIV single-chain antibody to prevent HIV-1 infection. We have successfully displayed 

the anti-HIV-1 single-chain antibody VRC01 on the surface of E. coli bacteria and the 

engineered bacteria have shown neutralizing activity in vitro. It is likely that this approach 

could be expanded to be used in vivo as an alternative approach to prevent HIV-1 

transmission and infection.

Materials and methods

Bacterial strains and vectors

Escherichia coli K-12 strain DH5α, Escherichia coli BL21 (λDE3) (Novagen) E. coli K12 

strain UT5600 (ΔompT) were used for surface display (Lum and Morona, 2012; Maurer et 

al., 1997). pET22b, pET28b (Invitrogen) and PUC57 (GenScript) were used for cloning.

Design of the single-chain antibody and fusion protein

The single-chain antibody VRC01 gene was designed using a linker sequence 

(GGGGSGGGGSGGGGS) to connect the two domains of antibody light chain (VH), and an 

E-tag fragment was added to the N-terminus of the recombinant molecule to be used for 

detection of protein expression. A 789-bp fragment with BamH1 and Xho1 restriction sites 

was synthesized by GenScript (Piscataway, NJ).

The 410 amino acids of the β-barrel domain (C-IgAP) fragment were synthesized from the 

Neisseria gonorrhoeae IgA1 protease gene of C-terminal region from position 3364 to the 

end of the gene at position 4599. An E-tag was added to the N-terminus, and a His-tag was 

added to the end of the β-domain segment. The entire 1302 bp fragment was synthesized by 

GenScript.

The entire fusion protein consists of the signal peptide (sp), scFV-VRC01, the β-domain (C-

IgAP) plus the tags and linkers, which total ~2100 bp and encodes a peptide of ~700 amino 

acids. The structure of the recombinant gene and the predicted 3D structure of the fusion 

protein are shown in Fig. 1A and 1B respectively.
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Expression and purification of scFv-VRC01

The synthesized scFv-VRC01 gene fragment was removed from the original vector pUC57 

using the restriction enzymes BamH1 and Xhol, and then ligated into an E. coli expression 

vector pET28b (Invitrogen). The vector containing scFv-VRC01 gene was transformed into 

E. coli BL21 (ADE3) bacterial cells for protein expression. After transformation, the 

selected positive colonies were cultured and induced by 0.5mM IPTG (isopropylthio-p-

galactoside) for 3 hrs at 37°C. After induction, the cells were collected by centrifugation and 

then disrupted by sonication. To purify the protein from inclusion bodies, the precipitates 

were dissolved in 8M urea and purified by Ni-NTA affinity chromatography under 

denaturing conditions. The protein was dialyzed for 24 hrs at 4°C in refolding buffer 

containing 50mM Tris-HCL, 0.5M L-Arginine, 50mM NaCl and 10% glycerol. The protein 

concentration of purified scFv-VRC01 protein was measured by BCA protein assay (Pierce) 

and stored at −80°C.

Surface expression of scFv-VRC01

The E. coli K-12 strain UT5600 was used as host cells for surface display of the fusion 

protein. The designed β-domain(C-IgAP) gene (1302bp) was synthesized and cloned into the 

pUC57 vector (GenScript). To construct the recombinant expression vector pET22b–scFv-

VRC01-β-domain(C-IgAP), the β-domain-E-tag encoding fragment was cloned into the 

pET22b–scFv-VRC01 vector at the Xhol site to generate the vector pET22b–scFv-VRC01-

β-domain which harbors the main fusion structure of scFv-VRC01, the transporter C-

terminal β-domain of IgAP and the E-tag connecting the two fragments. Transformation of 

E. coli K-12 strain UT5600 was performed as previously described (Lum and Morona, 2012; 

Maurer et al., 1997). For induction of the fusion protein, single colonies were picked and 

inoculated into liquid LB containing 2% (w/v) glucose and antibiotics, and grown at 30°C 

until OD600 was ~0.5. Bacterial cells were then harvested by centrifugation, resuspended 

into similar volume of fresh liquid medium with antibiotics and 0.25mM or 0.5mM IPTG, 

and incubated further at 30°C for 3 hrs.

To verify the expression of the scFv and β-domain of IgAP fusion protein, 0.25mM or 

0.5mM IPTG-induced E. coli cells containing the vectors pET22b–scFv-VRC01-β-domain 

or control empty vector pET22b were centrifuged and resuspended in 20mM phosphate 

buffer. The bacterial suspensions were mixed with 2×SDS sample buffer. After 5 min of 

boiling, samples were briefly centrifuged and subjected to Western blot analysis. To verify 

that the fusion protein was expressed in the insoluble fraction including membranes and 

inclusion bodies, the bacterial cells, both before and after IPTG-induction, were resuspended 

in PBS and sonicated at 15W for 30 seconds 5 times to break open the cells. After sonication 

the samples were spun at 10,000×g for 20 minutes to pellet any unbroken cells or large 

cellular debris. The supernatant was then centrifuged at 100,000×g for 1 hr at 4°C to pellet 

the membrane, and then subjected to Western blot analysis.

SDS-PAGE, Western blotting and Far-Western blotting

Samples were run on a 10% SDS-polyacrylamide gel and stained with Coomassie blue to 

verify protein expression.
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For Western blotting analysis, the SDS-PAGE gel was further transferred to a 

polyvinylidene fluoride (PVDF) membrane (Millipore, USA) and the membrane was 

blocked with blocking buffer (5% skim milk in TBS) for 1 hr at room temperature and 

reacted with primary antibody (5000-fold diluted anti-His-tag antibody HRP conjugated or 

500-fold diluted rabbit anti-E-tag antibody) in blocking buffer for 16 hr at 4°C. The 

membrane was washed 3 times with wash buffer (0.05% tween-20 in TBS) and incubated 

with a secondary antibody (HRP conjugated anti-rabbit IgG antibody) for 1 hr at room 

temperature. After washing 3 times, the membrane was developed with TMB membrane 

peroxidase substrate (KPL, USA). The anti-His-tag antibody HRP conjugated (Abcam) or 

rabbit anti-E-tag antibody HRP conjugated (Bioss Inc) was used for detection.

To examine the single-chain VRC01 antibody (scFV-VRC01) in the fusion molecule, far-

Western blotting was performed. BSA was used as a negative control and HIV-1 gp120 was 

used as a positive control. The purified scFv-VRC01 and the fusion protein containing 

scFV-VRC01 were first separated by SDS-PAGE and then transferred to PVDF membrane. 

In order to refold the proteins on the membrane to generate an intact binding site, a 

denaturation step was added. Briefly, immediately after transfer, the blot was incubated in 

2% AC denaturing buffers (100 mM NaCl, 20 mMTris (pH 7.6), 0.5 mM EDTA, 10% 

glycerol, 0.1% Tween-20, 2% skim milk powder and 1 mM DTT) for 16 hrs at 4°C, the 

membrane was then blocked in 5% skim milk and incubated with 1:250 diluted gp120 in 2% 

AC buffer for 16 hrs at 4°C. The membrane was washed 3 times with wash buffer (0.05% 

tween-20 in TBS) and incubated with HRP conjugated anti-gp120 for 1 hr at room 

temperature. After washing 3 times, the membrane was developed with TMB membrane 

peroxidase substrate (KPL, USA).

Flow cytometry analysis

Bacteria were grown in the presence of IPTG as described above until the log phase, 10µl of 

each E. coli culture (106/ml bacteria) containing the vectors pET22b–scFv-VRC01-β-

domain(C-IgAP) or empty vector pET22b were washed three times in PBS by centrifugation 

(10,000g for 15 min) before they were resuspended in 50µl of PBS. A 20-fold diluted rabbit 

anti-E-tag rabbit antibody conjugated with Fluorescein isothiocyanate (FITC) (Bioss Inc) 

was added and the samples were incubated for 1 hr at 4°C. The washing procedure in PBS 

was repeated once and the samples were resuspended in 300µl of PBS. Bacterial flow 

cytometry analysis was carried out with FACSCalibur (Becton Dickinson) as described 

previously (Gunasekera et al., 2000).

Confocal Microscopy

After growth in the presence of IPTG as described above, 10µl of each E. coli culture 

(106/ml bacteria) containing the vectors pET22b–scFv-VRC01-β-domain or empty vector 

pET22b were washed 3 times in PBS, spunned at 10,000g for 15 min before resuspending in 

50µl of PBS. A 20-fold diluted rabbit anti-E-tag antibody conjugated-FITC (Bioss, Inc) was 

added and the samples were incubated for 1 hr at 4°C. The washing procedure in PBS was 

repeated and the samples were resuspended in 50ul of 2% PFA in PBS. Images were 

collected using a Leica TCS-NT/SP confocal microscope (Leica Microsystems, Mannheim, 

Germany). Standard filters were used for FITC. The detector slits for the FITC channel were 
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configured to collect between 500 and 547 nm to minimize overlapping of the green and 

yellow channels. All images were analyzed using the same gain, and organized using the 

Adobe Photoshop (Adobe Systems, San Jose, CA).

Single-chain antibody neutralization assay

Cf2Th cells with CD4 and CCR5 receptors were used to test the sensitivity of the viruses to 

neutralization by scFv-VRC01. 2,500 RT units of luciferase-expressing recombinant viruses 

were incubated with 50µg, 25µg, 5µg, and 0.5µg, and 0.05µg/ml of scFv-VRC01 in DMEM 

for 60 min at 37°C. The virus-antibody mixtures were then transferred to wells containing 

105/well of target Cf2Th cells. After overnight incubation, 0.1ml of fresh medium was 

added to each well, and the cells were cultured for 2 more days. The cells were then lysed 

and assayed for luciferase activity (Tuner 20; Promega). In another independent experiment, 

we compared the neutralizing activity between scFv-VRC01 and the native IgG VRC01 

antibody (20µg, 10µg, 5µg, and 0.5µg/ml) using a subtype C HIV-1 recombinant luciferase-

expressing virus 1084i.

Viral particles absorption assay

To determine the ability of E. coli expressing scFv-VRC01 on the cell surface to bind 

HIV-1, the bacteria (100µl of 108/ml) were mixed with 12,500 RT units of viral stock (YU2, 

1084i, HXBc2, AMLV) and incubated with rocking for 1 hr at 37°C, then spun down to 

remove the bacteria and RT was measured in the supernatant. RT assay performed as 

described previously (Rho et al., 1981).

Bacteria neutralization assay

To determine the HIV neutralizing activity of E. coli expressing scFv-VRC01 on the cell 

surface, the bacteria (100µl of 108/ml) were mixed with 2,500 RT units of viral stock (YU2, 

1084i, HXBc2, AMLV) and incubated with rocking for 1h at 37°C, then spun down to 

remove the bacteria. The supernatant was then transferred to wells containing the target 

Cf2Th cells. The cells were then lysed and assayed for luciferase activity. The luciferase 

activity assay was performed as described previously (Xiang et al., 2002).
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Highlights

Designed single-chain VRC01 antibody was demonstrated to bind HIV-1 envelope 

gp120.

Single-chain VRC01 antibody was successfully displayed on the surface of E. coli.

Engineered bacteria can absorb HIV-1 particles and prevent HIV-1 infection in cell 

culture.
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Fig. 1. 
Construction of fusion protein of single-chain antibody VRC01 and autotransporter β-

domain from N. gornohoeae(A). Schematic representation of the fusion protein construct for 

surface display. Sp, signal peptide; E, E-tag; L, linker (GSG); scFv, single-chain variable 

fragment; p-domain, the c-terminal part of autotransporter serine proteinase gene of N. 

gornohoeae. H, His-tag. (B). Three dimensional (3D) model of the fusion protein for surface 

display and its binding to gp120. The linker is GSG plus the E-tag, β-barrel domain (PDB 

1UYN (van den Berg, 2010)), scFV-VRC01 and gp120 of HIV-1 (PDB 3NGB).

Wang et al. Page 14

Virology. Author manuscript; available in PMC 2016 January 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Wang et al. Page 15

Virology. Author manuscript; available in PMC 2016 January 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2. 
Expression and purification of the designed single-chain antibody VRC01 in E. coli(A). 
Polyacrylamide gel with Coomassie blue staining. Lane 1, cell pellet total proteins of un-

induced; 2, cell pellet total proteins of induced; 3, supernatant of cell lysate; 4, pellet of cell 

lysate; 5, Urea-solubilized inclusion bodies. (B). Western blot of the same purified protein 

samples from Fig. 2A using anti-His-tag antibody. The specific band (~27kDa) of scFv 

antibody VRC01 is indicated by the arrow in Fig. 2A and 2B. Western blot to verify the 

purified single-chain antibody VRC01. (C). Western blot with anti-His-tag antibody. Lane1, 
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gp120, 2, scFv_VRC01. (D). Far-Western blot first with the binding of bait protein gp120, 

then with the anti-gp120 antibody. Lane 1, BSA; 2, gp120, 3, scFv-VRC01. (E). Western 

blot of scFv-VRC01 and scFv-VRC01-β-domain fusion protein (~75kDa). Both of the 

samples are labeled with as follows: Lane 1, Supernatant of strain containing plasmid scFv-

VRC01; 2, Supernatant of strain containing plasmid scFv-VRC01-β-domain; 3, Cell pellet 

of strain containing plasmid scFv-VRC01; 4, Cell pellet of strain containing plasmid scFv-

VRC01-β-domain.
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Fig. 3. 
Functional analysis of purified single-chain antibody VRC01. (A). Neutralization assay of 

the scFv-VRC-1 against different strains of HIV-1: YU2 (subtype B), 1084i (subtype C). 

(B). Comparison of the scFv VRC01 antibody and corresponding VRC01 IgG antibody.
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Fig. 4. 
Identification of Surface display of fusion protein on E. coli(A). Bacterial sample cells (E. 

coli) were treated with FITC-conjugated anti-rabbit IgG antibody and analyzed by Flow 

cytometer. Orange, unstained bacterial cells as negative control; green, stained bacteria cells 

harboring the vector only; cyan, stained bacteria harboring the scFv-VRC01-β-domain 

plasmid. The total gated positive cell percentage (M1) is shown in the figure. (B). Bacterial 

Cells displaying scFv-VRC01 on the surface using confocal microscopy. The positive 

stained bacterial cells by FITC-conjugated anti-rabbit IgG antibody are shown in green. The 

same image is shown in (a), dark background window (FITC). (b), the bright background 

window (FITC) + (DIC) (differential interference contrast). The size bar showing in the 

picture is 5.0µ in (a) and 10.0µ in (b).
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Fig. 5. 
(A).Adsorption of HIV-1 particles by scFv-VRC01 surface displayed bacteria. The 

engineered bacteria with the concentration of 108/ml mixed with the viral stock can reduce 

the viral titer by surface binding. HIV-1 strains: YU2 (R5 virus, subtype B), 1084i (R5 virus, 

subtype C), HXBc2 (X4 virus, subtype B), AMLV, unrelated virus. RT, reverse 

transcriptase. (B). Inhibition of viral infection by scFv-VRC01 surface displayed bacteria in 

vitro. The target cells (Cf2Th) stably expressed receptor CD4 and co-receptor CCR5 were 

used for infection, and the luciferase was a reporter gene. HIV-1 strains: YU2 (R5 virus, 

subtype B), 1084i (R5 virus, subtype C), HXBc2 (X4 virus, subtype B) as negative control, 

AMLV, unrelated virus.
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