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Abstract

We consider a setting in which we have a treatment and a potentially large number of covariates 

for a set of observations, and wish to model their relationship with an outcome of interest. We 

propose a simple method for modeling interactions between the treatment and covariates. The idea 

is to modify the covariate in a simple way, and then fit a standard model using the modified 

covariates and no main effects. We show that coupled with an efficiency augmentation procedure, 

this method produces clinically meaningful estimators in a variety of settings. It can be useful for 

practicing personalized medicine: determining from a large set of biomarkers the subset of patients 

that can potentially benefit from a treatment. We apply the method to both simulated datasets and 

real trial data. The modified covariates idea can be used for other purposes, for example, large 

scale hypothesis testing for determining which of a set of covariates interact with a treatment 

variable.

1 Introduction

To develop strategies for personalized medicine, it is important to identify the treatment and 

covariate interactions in the setting of randomized clinical trials [Royston and Sauerbrei, 

2008]. To confirm and quantify the treatment effect is often the primary objective of a 

randomized clinical trial. Although important, the final result (positive or negative) of a 

randomized trial is a conclusion with respect to the average treatment effect on the entire 

study population. For example, a treatment may not be different from the placebo in the 
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overall study population, but it may still be better for a subset of patients. Identifying the 

treatment and covariate interactions may provide valuable information for determining this 

subgroup of patients.

In practice, there are two commonly used approaches to characterize the potential treatment 

and covariate interactions. First, a panel of simple patient subgroup analyses, where the 

treatment and control arms are compared in different subgroups defined a priori, such as 

male, female, diabetic and non-diabetic patients, may be performed following the main 

comparison. Such an exploratory approach is mainly focusing on simple interactions 

between treatment and a dichotomized covariate. However it often suffers from false 

positive findings due to multiple testings and can not find complicated treatment-covariates 

interaction.

In a more rigorous analytic approach, the treatment-covariates interactions can be examined 

in a multivariate regression analysis where the product of the binary treatment indicator and 

a set of baseline covariates are included in the regression model. Recent breakthroughs in 

biotechnology make a vast amount of data available for exploring potential interaction 

effects with the treatment and assisting in the optimal treatment selection for individual 

patients. However, it is very difficult to detect the interactions between treatment and high 

dimensional covariates via the direct multivariate regression. Appropriate variable selection 

methods such as Lasso are needed to reduce the number of covariates interacting with the 

treatment. The presence of the main effect, which often have a bigger effect on the outcome 

than interactions, further compounds the difficulty in dimension reduction since a subset of 

variables need to be selected for modeling the main effect as well.

Recently, Bonetti and Gelber [2004] formalized the subpopulation treatment effect pattern 

plot (STEPP) for characterizing interactions between the treatment and continuous 

covariates. Sauerbrei et al. [2007] proposed an efficient algorithm for multivariate model-

building with flexible fractional polynomials interactions (MFPI) and compared the 

empirical performance of MFPI with STEPP. Su et al. [2008] modified the CART to explore 

the covariates and treatment interactions in survival analysis. Tian and Tibshirani [2011] 

proposed a simple way to construct an index score, the sum of selected dichotomized 

covariates, to stratify the patient population according to the treatment effect. In a more 

recent work, Zhao et al. [2012] proposed a novel approach to directly estimate the optimal 

treatment selection rule via maximizing the expected utility. There are also rich Bayesian 

literatures for flexible modeling nonlinear, nonadditive or interaction covariate effects 

[Chipman et al., 1998, Gustafson, 2000, Chen et al., 2012]. However, most of these existing 

methods except for the one by Zhao et al. [2012], are not designed for analyzing high-

dimensional covariates.

In this paper, we propose a simple approach to estimate the covariates and treatment 

interactions without the need for modeling the main effects in analyzing data from a 

randomized clinical trial. The idea is simple, and in a sense, obvious. We simply code the 

treatment variable as ±1 and then include the products of this variable with each covariate in 

an appropriate regression model. Figure 1 gives a preview of the results of our method. The 

data consist of baseline covariates including various biomarker measurements and medical 

Tian et al. Page 2

J Am Stat Assoc. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



history for patients with stable coronary artery disease and normal or slightly reduced left 

ventricular function, who were randomized to either the angiotensin converting 

enzyme(ACE) inhibitor or placebo arm. Our proposed method constructs a numerical score 

using baseline information on a training set to reveal covariates-treatment interactions. The 

panels show the estimated survival curves for patients in a separate validation set, overall 

and stratified by the score. Although there is no significant survival difference between two 

arms in the overall comparison (p = 0.67), we see that patients with low scores have better 

survival with the ACE inhibitor treatment than with the placebo (hazard ratio=0.74, p = 

0.06). This type of information after appropriate validation could be very useful in clinical 

practice.

In section 2, we describe the methods for the continuous, binary as well as survival type of 

outcomes. In section 3, the finite sample performance of the proposed method has been 

investigated via extensive numerical studies. In section 4, we apply the proposed method to 

two real data examples. Finally, limitation and potential extensions of the method are 

discussed in section 5.

2 Method

In the following, we let T = ±1 be the binary treatment indicator and Y(1) and Y(−1) be the 

potential outcome if the patient received treatment T = 1 and −1, respectively. We only 

observe Y = Y(T), T and Z, a q–dimensional baseline covariate vector. Here we assume that 

the treatment is randomly assigned to a patient, i.e., T and Z are independent. The observed 

data consist of N independent and identically distributed copies of (Y, T, Z), {(Yi, Ti, Zi), i = 

1, ···, N}. Furthermore, we let W(·) : Rq → Rp be a p dimensional functions of baseline 

covariates Z and always include an intercept. In practice, W(·) may include spline basis 

functions and interactions selected by the users. We denote W(Zi) by Wi in the rest of the 

paper. Here the dimension of Wi could be large relative to the sample size N. For simplicity, 

we assume that P(T = 1) = P(T = −1) = 1/2.

2.1 Continuous Response Model

When Y is a continuous response, a simple multivariate linear regression model for 

characterizing the interactions between the treatment and covariates is

(1)

where ε is the mean zero random error. In this simple model, the interaction term 

 models the heterogeneous treatment effect across the population and the linear 

combination of  can be used for identifying the subgroup of patients who may or 

may not benefit from the treatment. Note that since the vector W(Z) contains an intercept, 

the main effect for treatment is always included in the model. Specifically, under model (1), 

we have

Tian et al. Page 3

J Am Stat Assoc. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



i.e.,  measures the causal treatment effect for patients with the baseline covariate z. 

With observed data, γ0 can be estimated via the ordinary least squares (OLS) method.

On the other hand, noting the relationship that

one may estimate γ0 by directly minimizing

(2)

We call this the modified outcome method, where 2YT can be viewed as the modified 

outcome, which has been first proposed in the Ph.D thesis of James Sinovitch, Harvard 

University.

Under the simple linear model (1), estimators from both methods are consistent for γ0, and 

the full least squares approach in general is more efficient. In practice, the simple 

multivariate linear regression model is often just a working model approximating the 

complicated underlying probabilistic relationship among the treatment, baseline covariates 

and outcome variables. It comes as a surprise that even when model (1) is mis-specified, the 

multivariate linear regression and modified outcome estimators still converge to the same 

non-random limit γ* determined by the joint distribution of (Y(1), Y(−1), Z). Furthermore, the 

score W(z)′γ* is a sensible estimator for the interaction effect in the sense that it seeks the 

“best” function of z in a functional space  to approximate Δ(z) by minimizing

where the expectation is with respect to Z.

2.2 The Modified Covariate Method

The modified outcomes estimator defined above is useful for the Gaussian case, but does not 

generalize easily to more complicated models. Hence we propose a new estimator which is 

equivalent to the modified outcomes approach in the Gaussian case and extends easily to 

other models. This is the main proposal of this paper.

We consider the simple working model
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(3)

where ε is the random error. Based on model (3), we propose the modified covariate 

estimator γ̂ as the minimizer of

(4)

That is, we simply multiply each component of Wi by one-half the treatment assignment 

indicator (= ±1) and perform a regular linear regression. Now since

the modified outcome and modified covariate estimates are identical and share the same 

causal interpretations. Operationally, we can perform a simple linear regression with the 

modified covariates without intercept. We summarize the general proposal below.

1 Modify the covariate

Zi → Wi = W(Zi) → Wi
∗ = Wi · Ti / 2

2 Perform appropriate regressions

Y ~γ0
′W∗ (5)

based on the modified observations without intercept

(Wi
∗
, Yi) = {(Wi · Ti) / 2, Yi}, i = 1, 2, … N . (6)

3 γ̂′W(z) can be used to stratify patients for individualized treatment selection.

Figure 2 illustrates how the modified covariate method works for a single covariate Z. The 

raw data are shown on the left and the data with modified covariate are shown on the right. 

The regression line in the right panel estimates the personalized treatment Δ(z).

The advantage of this new approach is twofold: it avoids having to directly model the main 

effects and it has a causal interpretation for the resulting estimator regardless of the 

adequacy of the assumed working model (3). Furthermore, unlike the modified outcome 

method, it is straightforward to generalize the new approach to other types of outcome.
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2.3 Binary Responses

When Y is a binary response, in the same spirit as the continuous outcome case, we propose 

to fit a logistic regression model with modified covariates W* = W(Z) · T/2 :

(7)

If model (7) is correctly specified, then

and thus  has an appropriate causal interpretation. However, even when model (7) is 

not correctly specified, we still can estimate γ0 by treating (7) as a working model. In 

general, the maximum likelihood estimator (MLE) of the working model converges to a 

deterministic limit γ* and W(z)′γ*/2 can be viewed as the solution to the following 

optimization problem

where the expectation is with respect to (Y, T, Z). Therefore, if W(z) forms a “rich” set of 

basis functions, W(z)′γ*/2 is an approximation to the minimizer of E{Yf(Z)T − log(1 + 

ef(Z)T)}. In the Appendix, we show that the latter can be represented as

under very general assumptions. Therefore,

may serve as an estimate for the covariate-specific treatment effect and used to stratify the 

patient population, regardless of the validity of the working model assumptions.

As described above, the MLE from the working model (7) can always be used to construct a 

surrogate to the personalized treatment effect measured by the “risk difference”
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On the other hand, different measures for individualized treatment effects may also be of 

interest. In supplementary materials we have provided an alternative approach to 

approximate the personalized treatment effect using the “relative risk” rather than “risk 

difference”.

2.4 Survival Responses

When the outcome variable is survival time, we often do not observe the exact outcome for 

every subject in a clinical study due to incomplete follow-up. In this case, we assume that 

the outcome Y is a pair of random variables (X, δ) = {X˜ ∧ C, I(X˜ < C)}, where X˜ is the 

survival time of primary interest, C is the censoring time and δ is the censoring indicator.

Firstly, we propose to fit a Cox regression model with modified covariates

(8)

where λ(t|·) is the hazard function for survival time X˜ and λ0(·) is a baseline hazard function 

free of Z and T. When model (8) is correctly specified,

and  can be used to stratify the patient population according to Δ(z), where 

 is a monotone increasing function. Under the proportional hazards 

assumption, the maximum partial likelihood estimator γ̂ is a consistent estimator for γ0 and 

semiparametric efficient. Moreover, even when model (8) is mis-specified, we still can 

“estimate” γ0 by maximizing the partial likelihood function. In general, the resulting 

estimator, γ̂, converges to a deterministic limit γ*, which is the root of a limiting score 

equation [Lin and Wei, 1989]. More generally, W(z)′γ*/2 can be viewed as the solution of 

the optimization problem

where N(t) = I(X˜ ≤ t)δ, τ is a fixed time point such that P(X ≥ τ) > 0, and the expectations 

are with respect to (Y, T, Z). Therefore, W(z)′γ*/2 can be viewed as an approximation to

In Appendix, we show that if the censoring time does not depend on (Z, T), then the 

minimizer f* satisfies
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for a monotone increasing function Λ*(u). Thus, when censoring rates are balanced between 

the two arms, e.g., the hazard rate is low and most of the censoring is due to administrative 

reasons,

can be used to characterize the covariate-specific treatment effect and stratify the patient 

population even when the working model (8) is mis-specified.

2.5 Regularization for the High Dimensional Data

When the dimension of W*, p, is high, we can easily apply appropriate variable selection 

procedures based on the corresponding working model. For example, L1 penalized (Lasso) 

estimators proposed by Tibshirani [1996] can be directly applied to the modified data (6). In 

general, one may estimate γ by minimizing

(9)

where  and

The resulting Lasso regularized estimator may share the appealing finite sample oracle 

properties [Van De Geer, 2008, Zhang and Huang, 2008, Van De Geer and Buhlmann, 2009, 

Negahban et al., 2012]. For example, for continuous outcomes, if we select the penalty 

parameter λn = O({log(p)/N}1/2) and the covariates W(Zi)Ti/2, i = 1, ···, N satisfy the 

restricted eigenvalue condition, then
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where , γ̂
λN is the corresponding Lasso regularized estimator, #γ* is the 

number of non-zero components in the vector γ*, and ci, i = 1, 2, 3 are positive constants 

depending on the joint distribution of (Y, W(Z), T) [Negahban et al., 2012]. Therefore, 

although the dimension p may be big, γ* can always be approximated by the Lasso estimator 

with an approximation error proportional to only the number of its non-zero components, 

which is small if γ* is sparse. Following the Corollary 3 of Negahban et al. [2012], similar 

results hold when γ* is not exactly sparse but can be approximated by a sparse vector. One 

consequence is that if W(·) is adequately rich such that |W(z)′γ* − f*(z)| is small and γ* is 

either exact or approximately sparse, then  is a good approximation of f*(z) with a 

high probability, where f*(z) is a monotone transformation of the individualized treatment 

effect Δ(z). This property holds for any pair of finite N and p with a sufficiently small ratio 

log(p)/N and does not depend on the correct specification of the working model. A similar 

result for the expected utility in the patient population with the estimated optimal treatment 

assignment rule has been established in Qian and Murphy [2011]. This result can be 

extended to the binary case, with appropriate regularity condition on the covariates 

W(Zi)Ti/2 to ensure that the negative log-likelihood function satisfies a form of restricted 

strong convexity [Negahban et al., 2012]. For the survival case, parallel results have been 

established for Lasso-regularized maximum partial likelihood estimator under the 

assumption that the multiplicative Cox model is correctly specified [Kong and Nan, 2013, 

Huang et al., 2013]. The finite sample properties of the Lasso estimator for mis-specified 

Cox model are still unknown and warrants further study.

Note that the Lasso regularization method may not be able to consistently recover all the 

nonzero components of γ* [Zhao and Yu, 2006, Zou, 2006]. However, since our focus is on 

approximating the personalized treatment effect under a potentially misspecified working 

model, where the regression coefficients γ* may not have a clinically meaningful 

interpretation, this limitation is not necessarily a severe drawback of the proposed method.

Regularization methods other than Lasso especially those with nonconvex penalties such as 

SCAD and MCP may also be used [Fan and Li, 2001, Zhang, 2010]. The composite gradient 

descend algorithm and the adaption thereof developed recently can be used to compute the 

corresponding regularized optimizer efficiently [Loh and Wainwright, 2012]. In addition, in 

contrast to Lasso, some nonconvex regularization methods may provide consistent estimates 

for the support of γ* under suitable regularity conditions if the working model is correctly 

specified. [Zou, 2006, Huang and Xie, 2007, Huang et al., 2008, Zhang and Zhang, 2012].

2.6 Efficiency Augmentation

When the models (5, 7 and 8) with modified covariates are correctly specified, the MLE 

estimator for γ* is the most efficient estimator asymptotically. However, when models are 

treated as working models subject to mis-specification, a more efficient estimator can be 

obtained for estimating the same γ*. To this end, note that in general γ̂ is defined as the 

minimizer of an objective function motivated from a working model:
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(10)

Since for any function a(z) : Rq → Rp, E{Tia(Zi)} = 0 due to the randomization, the 

minimizer of the augmented objective function

converges to the same limit as γ̂. Furthermore, by selecting an optimal augmentation term 

a(·), the minimizer of the augmented objective function may have smaller variance than that 

of the original estimator. In supplementary materials, we show that

are optimal choices for continuous and binary responses, respectively. Therefore, we 

propose the following two-step procedures for estimating γ* :

1. Estimate the optimal a0(z) :

a. For continuous responses, fit the linear regression model E(Y|Z) = ξ′B(Z) for 

the appropriate function B(Z). Let

b. For binary response, fit the logistic regression model logit{P(Y = 1|Z)} = ξ

′B(Z) for the appropriate function B(Z). Let

Here as W(z), B(z) is a transformation of z selected by users.

2. Estimate γ*

a. For continuous responses, we minimize (appropriately regularized)

b. For binary responses, we minimize (appropriately regularized)
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For survival outcome, the log-partial likelihood function is not a simple sum of i.i.d terms. 

However, in supplementary materials, we show that the optimal choice of a(z) is

where G1(u; z) = E{M(u)|Z = z, T = 1}, G2(u; z) = E{M(u)|Z = z, T = −1},

Unfortunately, a0(z) depends on the unknown parameter γ*. On the other hand, for the high-

dimensional case, the interaction effect is usually small and it is not unreasonable to assume 

that γ* ≈ 0. Furthermore, if the censoring patterns are similar in both arms, we have G1(u, z) 

≈ G2(u, z). Using these two approximations, we can simplify the optimal augmentation term 

as

where

Therefore, we propose to employ the following approach to implement the efficiency 

augmentation procedure:

1. Calculate

and fit the linear regression model E(M̂(τ)|Z) = ξ′B(Z). Let
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2. Estimate γ* by minimizing (appropriately regularized)

Remark 1—When the response is continuous, the augmented estimator minimizes

This equivalence implies that this efficiency augmentation procedures is asymptotically 

equivalent to that based on a simple multivariate regression with main effect “ξ̂′B(Z)” and 

interaction “γ′W(Z) · T”. This is not a surprise: the specification of the main effect in the 

linear regression does not affect the asymptotical consistency of estimating the interactions. 

On the other hand, a good choice of the main effect model can help estimate the interaction, 

i.e., personalized treatment effect, more accurately. Another consequence is that one may 

directly use the same standard algorithm to compute the augmented estimator when the 

Lasso penalty is used. For binary or survival responses, the augmented estimator under the 

Lasso regularization also can be computed with an efficient algorithm, which is given in the 

supplementary materials.

Remark 2—For nonlinear models such as logistic and Cox regressions, the augmentation 

method is NOT equivalent to the full regression approach including both the main effect and 

interaction terms. In those cases, different specifications of the main effects in the full 

regression model result in asymptotically different estimates for the interaction terms, 

which, unlike the proposed modified covariate estimators, in general can not be interpreted 

as good surrogates for the personalized treatment effects.

Remarks 3—The similar technique can also be used for improving other estimators such 

as that proposed by Zhao et al. [2012], where the surrogate objective function for the 

weighted mis-classification error can be written in the form of (2.6) as well. The optimal 

function a0(z) needs to be derived case by case.

3 Numerical Studies

In this section, we performed extensive numerical studies to investigate the finite sample 

performance of the proposed method in various settings: the treatment may or may not have 

the marginal main effect; the personalized treatment effect may depend on complicated 

functions of covariates such as interactions among covariates; the regression model for 

detecting the interactions may or may not be correctly specified. Due to the limitation of the 

space, we only presented simulation results from the selected representative cases.
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3.1 Continuous Responses

For continuous responses, we generated N independent Gaussian samples from the 

regression model

(11)

where the covariates (Z1, ···, Zp) follow a mean zero multivariate normal distribution with a 

compound symmetric variance-covariance matrix, (1 − ρ)Ip + ρ1′1, and ε ~ N(0, 1). We let 

(γ0, γ1, γ2, γ3, γ4, γ5, ···, γp) = (0.4, 0.8, −0.8, 0.8, −0.8, 0, ···, 0), αij = 0.8I(i = 1, j = 2), 

, N = 100, and p = 50 and 1000 representing low and high dimensional cases, 

respectively. The treatment T was generated as ±1 with equal probability at random. We 

consider four sets of simulations:

1. , j = 3, 4, ···, 10 and ρ = 0;

2. , j = 3, 4, ···, 10 and ρ = 1/3;

3. , j = 3, 4, ···, 10 and ρ = 0;

4. , j = 3, 4, ···, 10 and ρ = 1/3.

Settings 1 and 2 represented cases with relatively small main effects, where the variations in 

responses contributable to the main effect, interaction and random error were about 37.5%, 

37.5% and 25%, respectively, when the covariates were correlated. Settings 3 and 4 

represented cases with relatively big main effects, where the variations in responses 

contributable to the main effect, interaction and random error were about 75%, 15% and 

10%, respectively, when the covariates were correlated. For each of the simulated data set, 

we implemented three methods:

• full regression: Fit a multivariate linear regression with complete main effects and 

covariate/treatment interaction terms, i.e., the dimension of the covariate matrix 

was 2(p + 1). The Lasso was used to select the variables.

• new: Fit a multivariate linear regression with the modified covariate W* = (1, Z)′ · 

T/2. The dimension of the covariate matrix was p + 1. Again, the Lasso was used.

• new/augmented: The proposed method with efficiency augmentation, where E(Y|Z) 

was estimated with Lasso-regularized ordinary least squared method and B(z) = z.

The selection of W(z) = B(z) = z mimicked the realistic situation where the knowledge of 

the true functional forms for interaction and main effects were often lacking. For all three 

methods, we selected the Lasso penalty parameter via 10-fold cross-validation. The outputs 

of all three methods are estimated scores, which are linear combinations of W(z) 

approximating the personalized treatment effect Δ(z) or a transformation thereof. 

Specifically, the score is γ̂′W(z), where γ̂ is simply the estimated coefficients for the 

covariate-treatment interaction terms in the full regression approach and the estimated 
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coefficients for modified covariates in our proposal. The estimated scores can be used to 

rank patients according to their personalized treatment effects and select a subgroup of 

patients who may benefit from the treatment. Therefore, to evaluate the performance of the 

resulting score, we estimated the Spearman’s rank correlation coefficient between the 

estimated score and the “true” treatment effect

in an independently generated set with a sample size of 10000. Based on 500 sets of 

simulations, we plotted the boxplots of the rank correlation coefficients between the 

estimated scores γ̂′W(Z) and Δ(Z) under simulation settings (1), (2), (3) and (4) in the top 

left, top right, bottom left and bottom right panels of Figure 3, respectively. For all settings, 

the performance of the modified covariates method was better than that of the full regression 

approach with further boosting from the efficiency augmentation. The superiority of the new 

method was fairly obvious especially when p = 1000. For example, in the setting 3, where 

all the covariates were independent and the main effect was relatively big, the median 

correlation coefficients were 0.15, 0.46 and 0.51 for the full regression, new and new/

augmented methods, respectively. Furthermore, the results on identifying covariates 

interacting with the treatment are reported at Tables 1 and 2 for p = 50 and 1000, 

respectively. The new method was also superior in terms of selecting the right covariates. 

For example, in the setting 3 with p = 1000, while the new method with augmentation on 

average selected 25.2 covariates with 2.9 true positives, i.e. covariates from Zi, 1 ≤ i ≤ 4, the 

full regression method only selected 4.9 covariates with 0.9 true positive.

3.2 Binary Responses

For binary responses, we used the same simulation design as that for the continuous 

response. Specifically, we generated N independent binary samples from the regression 

model

(12)

where all the model parameters were the same as those in the case of continuous responses. 

Noting that the logistic regression model was mis-specified under the chosen simulation 

design. We also considered the same four settings with different combinations of βj and ρ. 

For each of the simulated data set, we implemented three methods as those for the 

continuous outcome: full regression, new and new/augmented. The logistic regression 

working model is used for all three approaches. In the efficiency augmentation, E(Y|Z) was 

estimated with the Lasso-penalized logistic regression.

To evaluate the performance of the resulting score measuring the individualized treatment 

effect, we estimated the Spearman’s rank correlation coefficient between the estimated score 

and the “true” treatment effect
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Although the scores measuring the interaction from the first and second/third methods were 

different even when the sample size goes to infinity, the rank correlation coefficients put 

them on the same footing in comparing performances.

In the top left, top right, bottom left and bottom right panels of Figure 4, we plotted the 

boxplots of the correlation coefficients between the estimated scores γ̂′W(Z) and Δ(Z) under 

simulation settings (1), (2), (3) and (4), respectively. The patterns were similar to those for 

the continuous response and confirmed our findings that the “efficiency-augmented method” 

performed the best or close to the best in all four settings. For example, in the setting 3, the 

median correlation coefficients were 0, 0.23 and 0.29 for the full regression, new and new/

augmented methods, respectively, when p = 1000. In addition, while the proposed method 

with augmentation on average selected 13.2 covariates with 1.5 true positives, the full 

regression method only selected 2.0 covariates with 0.3 true positive in the same setting. 

Here the true positive covariates of interest are again Zi, 1 ≤ i ≤ 4. The detailed results on 

covairates identification were given at Tables 1 and 2.

3.3 Survival Responses

For survival responses, we used the same simulation design as that for the continuous and 

binary responses. Specifically, we generated N independent survival times from the 

regression model

(13)

where all the model parameters were the same as those in the previous subsections. The 

censoring time was generated from the uniform distribution U(0, ξ0), where ξ0 was selected 

to induce a censoring rate of 25%. For each simulated data set, we implemented the 

following three methods as above: full regression, new and new/augmented. The Cox 

regression working model is used for all three methods. In the efficiency augmentation, 

E{M(τ)|Z} is estimated with the Lasso-regularized linear regression.

To evaluate the performance of the resulting score measuring the individualized treatment 

effect, we estimated the Spearman’s rank correlation coefficient between the estimated score 

and the “true” treatment effect based on survival probability at t0 = 20

In the top left, top right, bottom left and bottom right panels of Figure 5, we plotted the 

boxplots of the correlation coefficients between the estimated scores γ̂′W(Z) and Δ(Z) under 

simulation settings, (1), (2), (3) and (4), respectively. The patterns were similar to those for 
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the continuous and binary responses. For example, when p = 1000, the median correlation 

coefficients were 0.00, 0.40 and 0.39 in the setting 3 for the full regression, new and new/

augmented methods, respectively.

Lastly, we also repeated the aforementioned numerical studies for continuous, binary and 

survival outcomes with the Lasso replaced by adaptive Lasso, whose empirical performance 

is often similar to that of nonconvex regularization such as SCAD and MCP. The simulation 

results (not shown here) are very similar to those presented above, demonstrating that the 

modified covariate approach can be coupled with regularization methods other than Lasso 

for the purpose of dimension reduction in practice.

4 Examples

In this section, we applied the proposed method to analyze two real data examples. In the 

first example, we considered a recent clinical trial “Preventive of Events with Angiotensin 

Converting Enzyme Inhibition” (PEACE) to study if the ACE inhibitors are effective for 

lowering cardiovascular risk for patients with stable coronary artery disease and normal or 

slightly reduced left ventricular function [Braunwald et al., 2004]. In this study, 8290 

patients were randomly assigned to treatment and control arms with 633 deaths occurred by 

the end of the study. The estimated hazard ratio is 0.95 with an insignificant p-value of 0.13. 

However, in a secondary analysis, Solomon et al. [2006] reported that ACE inhibitors might 

significantly reduce the mortality for patients whose kidney function was abnormal at the 

baseline. Although this result needs to be interpreted cautiously, it suggests the possibility of 

existence of a subgroup of patients who may benefit from the treatment. For this example, 

we considered the survival time as the primary endpoint and the objective was to use seven 

baseline covariates: age, gender, left ventricular ejection fraction (LVEF), renal function 

measured by EGFR, hypertension, diabetic status and history of myocardial infarction to 

build a scoring system capturing the individualized treatment effect. Those covariates were 

selected for their known association with the cardiovascular risk. The continuous covariates, 

age, LVEF and EGFR are log-transformed. In addition to the seven covariates, we also 

included all the two-way interactions among them in the model. In summary, Z was a 7 

dimensional vector and W(Z) was a 7 + 7 × 6/2 = 28 dimensional vector. We included all 

patients with complete information on these seven covariates. The final data set consisted of 

3947 patients in the treatment arm and 3918 patients in the placebo arm. The outcome of 

interest was the survival time and there were 292 and 315 deaths in the treatment and 

placebo arms, respectively. The estimated survival curves by arms were plotted in Figure 6. 

The goal of the analysis was to construct a score using baseline covariates to identify 

subgroups of patients who may or may not be benefited from the ACE inhibition treatment. 

To this end, we selected the first 2000 patients in the treatment arm and placebo arm to form 

the training set and reserved the rest 3865 patients as an independent validation set. In 

selecting the training and validation sets, we used the original order of the observations in 

the data set without additional sorting to ensure the objectivity.

First we maximized the partial likelihood function with modified covariates to construct a 

score aiming for capturing the individualized treatment effect. The resulting score was a 

linear combination of selected covariates and their two-way interactions. Here, a low score 
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favored ACE inhibition treatment. We then applied the score to classify the patients in the 

validation set into the high and low score groups depending on whether the patient’s score 

was greater than the median level. In the high score group, the survival time in the ACE 

inhibition arm was slightly shorter than that in the placebo arm with an estimated hazard 

ratio of 1.27 for ACE inhibitor versus placebo (p = 0.163). In the low score group, the 

survival time in the ACE inhibition arm was longer than that in the placebo arm with an 

estimated hazard ratio of 0.74 (p = 0.061). The estimated survival functions of both 

treatment arms were plotted in the upper panels of Figure 7. The interaction between the 

constructed score and treatment was statistically significant in the multivariate Cox 

regression based on the validation set (p = 0.022).

Furthermore, we implemented the efficiency augmentation method and obtained a new 

score. Again, we classified the patients in the validation set into the high and low score 

groups based on the constructed gene score. The results were very similar and the interaction 

between the constructed score and treatment was also statistically significant (p = 0.025).

For comparison purposes, we also fitted a multivariate Cox regression model with treatment, 

W(Z), and their interactions as the covariates. In this model, we had 57 different covariates. 

The resulting score failed to stratify the population according to the treatment effect in the 

validation set. The results were shown in the lower panel of Figure 7. The interaction 

between the constructed score and treatment was not statistically significant (p = 0.980).

To further objectively examine the performance of the proposal in this data set, we randomly 

split the data into a training set of 2000 patients and a validation set of 5865 patients. We 

then estimated the score measuring individualized treatment effect in the training set with 

the modified covariates and full regression approaches. The Lasso method coupled with BIC 

criterion was used in the full regression approach due to the large number of covariates 

relative to the number of deaths in the training set. Patients in the validation set were then 

stratified into the high and low score groups. We calculated the hazard ratios of the ACE 

inhibition arm versus the placebo arm in high and low score groups, respectively. In Figure 

8, we plotted the boxplots of the hazard ratios in the high and low risk groups of the 

validation set based on 500 random splits. The results indicated that the proposed method 

tended to perform better than the commonly used full regression method in separating 

patients according to the treatment effect measured by the hazard ratio, which was consistent 

with our previous findings from the simulation studies. Furthermore, the empirical 

probability of obtaining an interaction significant at the one-sided 0.05 level in the 

validation set was 27.0% for the new method and 13.6% for the full regression method. This 

observation supported that our previous significant findings for the detected interaction was 

likely not due to the random chance.

It has been known that the breast cancer can be classified into different subtypes using gene 

expression profile and the effective treatment may be different for different subtypes of the 

disease [Loi et al., 2007]. In the second example, we applied the proposed method to study 

the potential interactions between gene expression levels and Tamoxifen treatment in breast 

cancer patients. The data set consisted of 414 patients in the cohort GSE6532 collected by 

Loi et al. [2007] for the purpose of characterizing ER-positive subtypes with gene 
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expression profiles. The data set can be downloaded from the web-site 

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6532. Excluding patients with 

incomplete information, there were 268 and 125 patients receiving Tamoxifen and 

alternative treatments, respectively. In addition to the routine demographic information, we 

had 44, 928 gene expression measurements for each of the 393 patients. The outcome of the 

primary interest here was the distant metastasis free survival (MFS) time, which could be 

right censored due to incomplete follow-up. The MFS times were not statistically different 

between the two groups with a two-sided p value of 0.59 (Figure 9). The goal of the analysis 

was to construct a gene score using gene expression levels to identify a subgroup of patients 

who may benefit from the Tamoxifen treatment. We selected the first 90 patients from each 

group to form the training set and reserved the rest 213 patients as the independent 

validation set.

We identified 5,000 genes with the highest empirical variances and then constructed a gene 

score by fitting the Lasso-penalized Cox regression model with modified covariates in the 

training set. The Lasso penalty parameter was selected via cross-validation. The resulting 

gene score was a linear combination of expression levels of seven genes. We applied the 

gene score to classify the patients in the validation set into the high and low score groups 

according to the median. In the high score group, the MFS time in the Tamoxifen group was 

shorter than that in the alternative group with an estimated hazard ratio of 3.52 (p = 0.064). 

In the low score group, the MFS time in the Tamoxifen group was longer than that in the 

alternative group with an estimated hazard ratio of 0.694 (p = 0.421). The estimated survival 

curves for both groups were plotted in the upper panels of Figure 10. The interaction 

between constructed score and treatment was statistically significant in the validation set (p 

= 0.004).

We implemented the efficiency augmentation method to obtain a new gene score, which was 

based on the expression level of eight genes. Again, we classified the patients in the 

validation set into the high and low score groups using the constructed score. The results 

were very similar to that from the gene score constructed without augmentation.

When we fitted a multivariate Cox regression model with treatment, the gene expression 

levels, and all treatment-gene interactions as the covariates, only one gene interacting with 

the treatment was selected by Lasso. However, the interaction could not be reproduced in 

the validation set (lower panel of Figure 10). Furthermore, the computational speed was 

substantially slower due to the high-dimensional covariates matrix in this case.

The second example was chosen for demonstrating the potential use of the proposed method 

in the high-dimensional setting. An important limitation of this example is that the treatment 

was not randomly assigned to patients as in PEACE trial and the gene expression levels 

were measured at the study baseline, which may be different from the treatment initiation 

time. Therefore, the results need to be interpreted with caution and further verification based 

on data from a randomized clinical trial is desired.
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5 Discussion

In this paper, we have proposed a simple method to explore the potential interactions 

between treatment and a set of high dimensional covariates. The general idea is to use W(Z)

·T/2 as new covariates in a regression model to predict the outcome. This provides a 

convenient approach for constructing a proper objective function whose optimizer can be 

used to estimate the individualized treatment effect as a function of given covariates. Once 

the objective function is constructed, one may employ one’s favorite algorithms such as 

boosting to optimize the empirical version of the objective function and the resulting 

estimator can be used to stratify the patient population according to the treatment benefit. 

Therefore, the proposed method can be used in a much broader way than those already 

described in the paper. For example, after creating the modified covariates W(Z) · T/2, data 

mining techniques such as nearest shrunken centroid classification, PAM and support vector 

machines can also be used to link the new covariates with the outcomes [Friedman, 1991, 

Tibshirani et al., 2002, Hastie and Zhu, 2006]. For univariate analysis, we also may perform 

large scale hypothesis testing on the modified data, to identify a list of covariates having 

interaction with the treatment; one could for example directly use the Significance Analysis 

of Microarrays (SAM) method for this purpose [Tusher et al., 2001].

When the randomization is not one-to-one, i.e., P(T = 1) = π ≠ 1/2, one may weight the 

observations in the T = 1 arm by 1 − π and observations in the T = −1 arm by π and perform 

the weighted regression analysis with modified covariates. The theoretical justification is 

given at the end of the Appendix.

As a limitation, the proposed method is primarily designed for analyzing data from 

randomized clinical trials. When applied to an observational study, where the covariates and 

treatment assignment are correlated, the constructed score may lose its causal interpretation. 

On the other hand, if a reasonable propensity score model is available, then we can still 

implement the modified covariate approach on matched or reweighted data so that the 

resulted score may retain the appropriate causal interpretations [Rosenbaum and Rubin, 

1983].

Lastly, we want to emphasize that although the proposed method aims to estimate the 

individualized treatment effect with casual interpretation, the method is not immune to the 

common problems encountered in high dimensional data analysis such as multiple testing, 

false discovery, over-fitting et al., as the numerical studies demonstrated. Therefore the 

proposed method is just an exploratory tool and it is crucial to withhold an independent 

validation set, which can be used to verify the estimated interaction. In the validation set, 

one may make valid statistical inference on various parameters of interest. For example, one 

may estimate and test the treatment effect in subgroup of patients selected from the 

estimated covaraite-treatment interactions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix: Justification for the Model-Based Loss

Under the linear working model for continuous responses, we have

where mt(z) = E(Y(t)|Z = z) for t = 1 and −1. Therefore

The minimizer of this objective function is f*(z) = {m1(z) − m−1(z)}/2 = Δ(z)/2 for all z ∈ 

Support of Z.
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Under the logistic working model for binary responses, we have

Therefore

which implies that the minimizer of (f) is

for all z ∈ Support of Z.

Under the Cox working model for survival outcomes, we have

where λt(u; Z) is the hazard function for X˜(t) given Z for t = 1/− 1. Thus

where X(j) = X˜(j) ∧ C(j), C(j) is the censoring time if the patient is assigned to the group j,

Setting the derivative at zero, the minimizer f*(z) satisfies
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for all z ∈ Support of Z, where  is an increasing 

function of v. Here, we assume that C and (Z, T) are independent and fC(·) is the density 

function of C. Furthermore, when censoring rates in two arms are close to each other for all 

given z, i.e., P(δ = 1|T = 1, Z = z) ≈ P(δ = 1|T = −1, Z = z),

If P(T = 1) = π ≠ 1/2, we perform the modified covariate analysis with observations in T = 1 

and −1 arms weighted by (1 − π) and π, respectively. All the justifications above still hold. 

For example, for the continuous outcome, the weighted loss function is

whose minimizer is still f*(z) = Δ(z)/2.
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Figure 1. 
Example of the modified covariate approach, applied to patients with stable coronary artery 

disease and normal or slightly reduced left ventricular function, who were randomly given 

ACE inhibitor or placebo in a randomized trial. Our procedure constructed a score based on 

baseline covariates to detect covariates-treatment interactions. The numerical score was 

constructed on a training set, and then categorized into low and high. The panels show the 

survival curves in a separate validation set, overall and stratified by the score.
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Figure 2. 
Example of the modified covariate approach. The raw data is generated from the regression 

model Y = 2ZI(T = 1) + (Z − 1)I(T = −1) + N(0, 1/9) consisting of a single covariate Z and a 

treatment T = 1 or −1 and shown on the left. On the right panel, we have plotted the 

response against the modified Z · T/2. The regression line computed in the right panel 

estimates the personalized treatment effect for each given value of covariate Z = z, Δ(z) = z + 

1.
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Figure 3. 
Boxplots for the correlation coefficients between the estimated score and true treatment 

effect with three different methods applied to continuous outcomes. The empty and filled 

boxes represent high and low dimensional (p = 1000 and p = 50) cases, respectively. Left 

upper panel: moderate main effect and independent covariates; right upper panel: moderate 

main effect and correlated covariates; left lower panel: big main effect and independent 

covariates; right lower panel: big main effect and correlated covariates.
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Figure 4. 
Boxplots for the correlation coefficients between the estimated score and true treatment 

effect with three different methods applied to binary outcomes. The empty and filled boxes 

represent high and low dimensional (p = 1000 and p = 50) cases, respectively. Left upper 

panel: moderate main effect and independent covariates; right upper panel: moderate main 

effect and correlated covariates; left lower panel: big main effect and independent 

covariates; right lower panel: big main effect and correlated covariates.
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Figure 5. 
Boxplots for the correlation coefficients between the estimated score and true treatment 

effect with three different methods applied to survival outcomes. The empty and filled boxes 

represent high and low dimensional (p = 1000 and p = 50) cases, respectively. Left upper 

panel: moderate main effect and independent covariates; right upper panel: moderate main 

effect and correlated covariates; left lower panel: big main effect and independent 

covariates; right lower panel: big main effect and correlated covariates.
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Figure 6. 
Survival functions of the ACE inhibitor and placebo arms (7865 patients): solid line, the 

ACE inhibitor arm; dashed line, the placebo arm; thin line, the point-wise 95% confidence 

limits.
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Figure 7. 
Survival functions of the ACE inhibitor and placebo arms stratified by the estimated score in 

the validation set: solid line, the ACE inhibitor arm; dashed line, the placebo arm; thin line, 

the point-wise 95% confidence limits. Upper panels: the score is based on the “new” 

method; lower panel: the score is based on the “full regression” method.
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Figure 8. 
Boxplots for hazard ratios in high and low risk groups based on 500 random splits of the 

PEACE data. A big difference between the two groups represents high quality of the 

constructed score in stratifying patients according to the individualized treatment effect.
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Figure 9. 
Survival functions of the Tamoxifen and alternative treatment groups: solid line, the 

Tamoxifen group; dashed line, the alternative treatment arm; thin line, the point-wise 95% 

confidence limits.
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Figure 10. 
Survival functions of the Tamoxifen and alternative treatment groups stratified by the 

estimated score in the validation set: solid line, the Tamoxifen treatment group; dashed line, 

the alternative treatment group; thin line, the point-wise 95% confidence limits. Upper 

panels: the score is based on the “new” method; lower panel: the score is based on “full 

regression” method.
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