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Human iPSC-derived motoneurons harbouring
TARDBP or COORF/2 ALS mutations are
dysfunctional despite maintaining viability
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Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease for which a
greater understanding of early disease mechanisms is needed to reveal novel therapeutic
targets. We report the use of human induced pluripotent stem cell (iPSC)-derived moto-
neurons (MNs) to study the pathophysiology of ALS. We demonstrate that MNs derived from
iPSCs obtained from healthy individuals or patients harbouring TARDBP or COORF72
ALS-causing mutations are able to develop appropriate physiological properties. However,
patient iPSC-derived MNs, independent of genotype, display an initial hyperexcitability
followed by progressive loss of action potential output and synaptic activity. This loss of
functional output reflects a progressive decrease in voltage-activated Nat and KT currents,
which occurs in the absence of overt changes in cell viability. These data implicate early
dysfunction or loss of ion channels as a convergent point that may contribute to the initiation
of downstream degenerative pathways that ultimately lead to MN loss in ALS.
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myotrophic lateral sclerosis (ALS) is a rapidly progressing,

fatal neurodegenerative disease for which no effective

treatment exists. Although the mechanisms underlying
motoneuron (MN) loss in ALS remain unclear, recent patho-
logical and genetic discoveries have provided important insights
that implicate common mechanisms across both ALS and fronto-
temporal dementia, as well as a link between familial and sporadic
ALSY2. The discovery of a common pathological signature
characterized by cytoplasmic accumulation of TDP-43 in
sporadic forms of fronto-temporal dementia and ALS, along
with the discovery of mutations in TARDBP and C9ORF72 in
familial and sporadic forms of these diseases, has become
increasingly influential in shaping our understanding of ALS
and related disorders®=®. Nonetheless, despite the many advances
driven by accumulating genetic discoveries there has been a
striking failure to translate experimental observations into
therapies’. This reflects, in part, the absence of appropriate
human cell-based models in which to validate disease
mechanisms and test candidate therapeutics before lengthy and
costly clinical trials. Human induced pluripotent stem cell (iPSC)
systems have the potential to bridge this gap. Specifically, they
allow us to study the consequences of mutation(s) expressed at
disease-relevant levels in functional disease-relevant cell types.
We and others have previously reported that iPSC-derived
human neurons and astroglia recapitulate key aspects of the
adult human pathology and biochemistry that are hallmarks of
ALS® 15 In addition to revealing aspects of the molecular
pathology of MNs derived from ALS patients, iPSC-derived
neurons may reveal early and subtle pathophysiological changes,
which may highlight new targets for therapeutic interventions
that ultimately aim to maintain MN function in ALS.

Interestingly, physiological analyses have already revealed
changes in the functional properties of MNs at very early stages
(embryonic and early postnatal) in transgenic rodent models
of ALS. Several studies have demonstrated pre-symptomatic
hyperexcitability of MNs due to perturbations in their
intrinsic properties, particularly Na*t currents!®~22, Neuronal
hyperexcitability, again thought to relate to changes in Na™
currents, has also been shown in studies of ALS
patients?>?4,while very recent studies of human iPSC-derived
MNs have reported conflicting results of hyperexcitability'*
versus hypoexcitability'2. Taken together, these findings suggest
that perturbations in the intrinsic biophysical properties of
MNs lead to aberrant activity that may reflect and contribute
to the earliest events that ultimately lead to irreversible
neurodegeneration in ALS. Furthermore, they demonstrate the
sensitive nature of electrophysiological studies of MN function
and highlight their potential to reveal important early pathogenic
mechanisms occurring before molecular or anatomical signs of
neurodegeneration.

In the present study, we have undertaken detailed, temporal
electrophysiological analyses of human iPSC-derived MNs, to
investigate whether MN dysfunction represents an early feature of
ALS pathogenesis common to neurons carrying mutations in
TARDBP and C9ORF72. We demonstrate the development of
appropriate functional properties in both control and patient
iPSC-derived MNs but reveal a progressive loss of action potential
output, spontaneous synaptic activity and ionic conductances in
patient-derived MNss, regardless of their genotype, which occurs
before any overt changes in cell viability.

Results

Differentiation of MNs from human iPSC lines. iPSCs were
generated from fibroblasts of ALS patients and healthy indivi-
duals as previously described®?. We used eight iPSC lines: two
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clones from one TARDBP patient (lines D1 and D3); single clones
from two different C9ORF72 patients (lines S6 and R2); two
clones from one healthy control (lines R6 and M2); and single
clones from two additional healthy controls (lines D6 and D9; see
Methods for further details), with each line differentiated a
minimum of four times.

Differentiation into a neuronal and MN lineage was performed
using a modified version of established protocols, which enabled
the maintenance of cells for up to 10 weeks>?®. At weeks 5-6 post
plating, immunohistochemistry was performed on iPSC-derived
MNs, to assess the relative expression of glial, neuronal and
MN markers. Quantitative immunolabelling for B3-tubulin and
glial fibrillary acidic protein revealed comparable neuronal
and astroglial differentiation from one control (D6) and two
patient (TARDBP D1 and C9ORF72 S6) iPSC lines (B3-tubulin:
Control x 81.5 &+ s.e.m. 1.7%, TARDBP 78.4 £ 2.2%, C9ORF72
83.413.1%; glial fibrillary acidic protein: Control 18.5 % 1.7%,
TARDBP 21.6 £2.2%, C9ORF72 16.6 + 3.1%; Fig. 1a,b), as well as
a similar proportion of Hb9-positive MNs (Control X 46.8 £ s.e.m.
3.8%, TARDBP 44.6+3.7%, C9ORF72 43.4+52%; Fig. la,b;
negative binomial generalized linear model with multiple Wald’s
tests and Bonferroni correction). These findings are consistent
with previous reports of MN-enriched cultures derived from
TARDBP iPSC lines’.

Comparable viability of neurons derived from all iPSC lines.
Having established equivalent MN-enriched cultures from both
control and patient iPSC lines, we first investigated whether there
were any differences in cell viability between neurons derived
from control and ALS patient iPSCs. Our initial observations
suggested that control and patient iPSC-derived neurons with
either TARDBP or C9ORF72 ALS mutations were indistinguish-
able, based on cell morphology (Fig. 2a), up to the latest time
point investigated (10 weeks post plating). To confirm this, we
performed quantitative analyses of cell viability using cell counts,
lactate dehydrogenase (LDH) assays and assessment of nuclear
morphology. Cell counts performed on infrared-differential
interference contrast (IR-DIC) images revealed no difference
between patient-derived lines compared with controls throughout
the 10 weeks in culture (80 images analysed per cell type; Fig. 2a).
Analysis of LDH activity in two TARDBP lines (D1 and D3), two
C90RF72 lines (S6 and R2) and three control lines (D6, M2 and
R6) revealed no greater LDH activity in patient compared with
control lines at any time point during the 10 weeks in culture
(Fig. 2b; factorial analysis of variance (ANOVA)). There was in
fact less LDH activity in TARDBP lines at 9-10 weeks post plating
(Fig 2b, P<0.05). Finally, we also assessed nuclear morphology at
9-10 weeks post plating in one control (D6), one TARDBP (D1)
and one C9ORF72 (S6) line. We found no difference in the
percentage of cells with pyknotic nuclei in patient lines compared
with controls (Control X8.2 % =+ s.e.m.0.58, n=3,386 cells;
TARDBP 84%t0.25, n=1,558; C90ORF72 5.4% *0.36,
n=2,336; Supplementary Fig. 1; one-way ANOVA and Tukey’s
post-hoc test). In summary, cell counts, LDH assays and counts of
pyknotic nuclei failed to reveal any differences in viability
between neurons derived from iPSC lines harbouring TARDBP or
C90RF72 mutations compared with controls.

Functional perturbations in patient iPSC-derived MNs. Given
that standard cell viability assays failed to reveal overt effects of
TARDBP or C9ORF72 mutations on iPSC-derived cell viability,
we next turned to more sensitive electrophysiological analyses to
uncover any signs of neuronal dysfunction.

Whole-cell patch-clamp recordings were obtained from the
largest neurons visualized via IR-DIC microscopy in cultures
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Figure 1 | Differentiation of MNs from control and patient iPSC lines.
(a) Immunohistochemical staining of differentiated iPSCs (control, TARDBP
and C9ORF72 lines) using antibodies raised against B3-tubulin, Hb9, SMI-32
and glial fibrillary acidic protein (GFAP). (b) Proportion of differentiated
iPSCs expressing B3-tubulin, Hb9 and GFAP (total cells counted: control,
1,126 cells; TARDBP, 1,224 cells; COORF72, 1,534 cells; scale bar, 50 um).

from 2 to 10 weeks post plating. Our selection of the largest
neurons for recordings along with the high degree of MN
enrichment ensured studied cells were predominantly MNs. In a
subset of experiments, this was supported by post-hoc SMI-32
labelling of neurons filled with an Alexa Fluor dye during
recordings (Fig. 3a). We found that a high proportion of
recovered neurons (78%; 18 of 23 cells) were SMI-32 positive.
We cannot exclude the possibility that some recordings were
from spinal interneurons. However, data from mixed neuronal
populations are also valuable given that ALS affects a wide range
of neuronal cell types including cortical neurons and spinal
interneurons®”.

We began by comparing the passive membrane properties of
MNs derived from control and patient iPSCs. For these and all
other electrophysiological analyses, data were pooled for control
(D9, D6, R6 and M2), TARDBP (D1 and D3) and C9ORF72
(R2 and S6) iPSC lines (see Supplementary Table 1 and
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Figure 2 | Equivalent viability of control and patient iPSC-derived MNs.
(a) IR-DIC images of iPSC-derived MNs from control, TARDBP and C9ORF72
lines at weeks 9-10 post plating (scale bar, 20 um). (b) LDH activity plotted
for control and patient iPSC-derived cultures from weeks 3-10 post
plating (Control lines (D6: two experiments, M2 and R6), TARDBP lines
(D1 and D3), C90RF72 (S6: two experiments and R2); data are plotted

as X £+ s.e.m.; *P<0.05; factorial ANOVA).

Supplementary Fig. 2 for data and sample sizes separated by
iPSC line). Whole-cell capacitance (C,,) values were similar
across control and patient iPSC-derived MNs (see Table 1 for
X * s.em. and sample sizes; factorial ANOVA with Tukey’s
honest significant difference), although MNs harbouring
CY90ORF72 mutations had lower C, compared with MNs
harbouring TARDBP mutations at weeks 3-4, weeks 7-8 and
weeks 9-10 (P<0.001), and control MNs had lower C,
compared with MNs harbouring TARDBP mutations at weeks
7-8 and weeks 9-10 (P<0.0001). We found no significant
differences in the input resistance (Ry) of MNs derived from
control, TARDBP or C9ORF72 iPSCs from weeks 3 to 10 post
plating (Table 1). MNs harbouring a TARDBP mutation had
more depolarized resting membrane potentials (RMPs) compared
with controls at weeks 3-4 (P<0.001) and weeks 9-10
(P<0.0001), while the RMPs of MNs with a C9ORF72 mutation
were more depolarized than controls at weeks 7-8 (Table 1;
P<0.0001). The largest differences in RMP between control and
patient iPSC-derived MNs were apparent towards the end of the
time course studied. It should be noted that these numbers may
represent an underestimation of the extent of membrane
potential depolarization in patient iPSC-derived MNs, because
cells that were more depolarized than —20mV were excluded
from all analyses, to avoid the inclusion of cells that were
depolarized due to damage associated with the establishment of
recordings.

Current-clamp mode recordings of iPSC-derived MNs demon-
strated that by 2 weeks post plating, all lines developed the ability
to repetitively fire trains of action potentials in response to
current injections. To compare the excitability of repetitively
firing patient and control iPSC-derived MNs, frequency-current
(f-I) relationships were generated from responses to a series of
injected current steps (0 to 145pA, in 10pA increments, 1s
duration). Comparisons were performed on data pooled from
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Figure 3 | Hyperexcitability followed by loss of action potential output in patient iPSC-derived MNs. (a) Fluorescent image of a cell filled with
Alexa Fluor 488 dye during whole-cell patch-clamp recordings and immunolabelling with an antibody raised against SMI-32 (arrow heads point to cell
soma; scale bar, 10 um). (b) Repetitive firing in response to square current injection in iPSC-derived MNs from control, TARDBP and COORF72 lines.

() Frequency-current (f-1) relationships generated for repetitively firing iPSC-derived MNs from control (n=62), TARDBP (n=19) and C9ORF72 (n=19)
lines recorded from weeks 2-6 post plating (data are plotted as x &+ s.e.m. with lines of best fit; *significantly different to control, P<0.05; ***significantly
different to control, P<0.00071; linear model with multiple contrast for the gradient values, and adjusted with Bonferroni correction). (d) Examples

of the four categories of firing observed in iPSC-derived MNs (repetitive, adaptive, single or no firing). (e) Proportion of cells exhibiting each firing category
in iPSC-derived MNs from control (n=702), TARDBP (n=380) and C90ORF72 (n=239) lines across weeks 3-10 post plating (***significantly different
to control, P<0.00071; logistic regression with multiple Wald's test and Bonferroni correction).

TARDBP C90RF72

12.0£0.5 (103)
1M.2+£0.4 (71
16111 (96)**
19.7 £1.2 (82)***

8.7+0.3 (102)*#
10.1£0.5 (69)
11.94 0.9 (52)##
145+ 0.7 (42)**

660 * 33 723+33
788 +27 768142
762138 772145
688 +39 643 +58
—39.9+£1.0* —448+12
—40.4%10 —442+%15
—432+14 —379+1.5"
—401£1.9% —452+19

Table 1 | Passive membrane properties
Control
Cn (PF)
Weeks 3-4 10.4+£0.4 (196)
Weeks 5-6 1M.6+0.3 (322)
Weeks 7-8 10.7£0.3 (216)
Weeks 9-10 14.0£0.6 (111)
Rn(MEY)
Weeks 3-4 727 £22
Weeks 5-6 774+ 21
Weeks 7-8 774 +23
Weeks 9-10 709 %30
RMP(mV)
Weeks 3-4 —456+0.8
Weeks 5-6 —428+0.7
Weeks 7-8 —456+0.8
Weeks 9-10 —49.8+1.1
Values are mean *s.e.m.; number of cells noted in parentheses.
Significantly different to controls (**P<0.007; ***P<0.0001).
Significant difference between patient lines (##P<0.001).

recordings of repetitively firing cells at weeks 2-6 post plating
(Fig. 3b,c). No differences were observed in rheobase current
between control and patient iPSC-derived MNs (Control x
22.7tsem. 2.6pA, n=62; TARDBP 2341t4.1pA, n=19;
C90RF72 17.1£3.2pA, n=19; one-way ANOVA). However,
data demonstrated hyperexcitability in both the TARDBP

and C9ORF72 lines compared with controls, as indicated by the
greater slopes of their f-I relationships (Control 0.20 * s.e.
0.01HzpA~™ !, TARDBP 0.36 +0.04 Hz PA™ 1 C90RF72 0.31
0.03HzpA ~!; P<0.05; linear model with multiple contrast for
gradient values, and adjusted with Bonferroni correction). No
significant difference was detected between the excitability of
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MNs derived from the TARDBP and C9ORF72 lines. Thus, in
parallel with findings in animal models of ALS, human MNs
harbouring two different ALS-related mutations are initially more
excitable than controls.

Not all iPSC-derived MNs produced repetitive trains of action
potentials, demonstrating an incomplete functional maturation in
some neurons. Several different output patterns were observed in
response to current injections, which included repetitive,
adaptive, single and no firing (Fig. 3d). Repetitive firing was
defined as a train of action potentials that lasted for the duration
of the square current injection (1s), while adaptive firing was
defined as multiple action potentials that ceased before the end of
the current stimuli. Cells were classified as adaptive if they were
unable to repetitively fire in response to any of the series of
current steps applied. When data were compared across MNs
derived from control, TARDBP and C9ORF72 iPSC lines, no
difference in the relative proportion of firing versus non-firing
cells were found from weeks 3 to 6 post plating (Control firing
70.4%, n =419, TARDBP firing 64.0%, n=214; C9ORF72 firing
67.7%, n=149; Fig. 3e; logistic regression with multiple Wald’s
tests and Bonferroni correction). However, at weeks 7-8 and 9-10
post plating, the number of cells able to fire action potentials
decreased significantly in TARDBP and C9ORF?72 lines compared
with controls (P<0.0001), while the ratio of firing versus non-
firing cells remaining unchanged throughout the 10 weeks in
control lines (Weeks 7-8: control firing 77.0%, n = 183; TARDBP
firing 40.9%, n = 88; C9ORF?72 firing 32.6%, n =49; Weeks 9-10:
control firing 88.1%, n=110; TARDBP firing 24.3%, n=78;
C90RF?72 firing 14.6%, n = 41; Fig. 3d). These data demonstrate a
loss of action potential output from iPSC-derived MNs harbour-
ing ALS-related mutations, which renders them non-functional
despite their continued viability in culture.

Loss of synaptic activity in patient iPSC-derived MNs.
Following investigation of the output produced by iPSC-derived
MNs, we next examined their ability to receive synaptic input,
which is reported to be attenuated in ALS patients?®=3? and
animal models of the disease®!™33, We first assessed whether
iPSC-derived MNs could respond to the major excitatory
neurotransmitter (NT) glutamate (100 pM) or the inhibitory
NTs GABA (100 uM) and glycine (100 pM). This was assessed by
bath applying these NTs during voltage-clamp recordings from
iPSC-derived MNs held at —60mV (Fig. 4a). Depolarizing
currents were recorded from MNs derived from both control and
patient iPSC lines in response to glutamate applications (Fig. 4a).
Control and patient iPSC-derived MNs also responded to GABA
and glycine (Fig. 4a) with depolarizing currents as expected, based
on the theoretical reversal potential for chloride in our recording
solutions. Thus, both control and patient iPSC-derived MNs
developed receptors required to respond to major NTs.

Next, we assessed whether iPSC-derived MNs received
functional synaptic inputs in culture. Spontaneous synaptic
activity was observed in our recordings of both control and
patient iPSC-derived MNs throughout the time period studied
(Fig. 4b). Consistent with previous reports”!4, these inputs were
predominantly excitatory as evidenced by a lack of outward
currents, even when cells were held at —40mV, which is well
above the reversal potential for chloride (Fig. 4b). The proportion
of cells that received any synaptic input (defined as at least 1
event per minute) was similar in control and patient iPSC-derived
MNss from weeks 3-6 post plating (3-6 weeks: 33.2% of controls,
n=>518; 33.5% of TARDBP, n=274; 22.2% of C9ORF72, n=171;
Fig. 4c; logistic regression with multiple Wald’s tests and
Bonferroni correction). The occurrence of synaptic activity then
decreased in both patient-derived lines from weeks 7-10
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Figure 4 | Loss of synaptic input to patient iPSC-derived MNs.

(a) Current responses in iPSC-derived MNs during bath application

of glutamate (100 uM), GABA (100 uM) and glycine (100 pM).

(b) Voltage-clamp recordings of spontaneous synaptic activity in
iPSC-derived MNs at different holding potentials. (¢) Proportion of cells
displaying synaptic activity from weeks 3-10 post plating in iPSC-derived
MNs from control (n= 845), TARDBP (n=417) and C9ORF72 (n=265)
lines. (*significantly different to control, P<0.05; ***significantly different
to control, P<0.0007; logistic regression with multiple Wald's tests and
Bonferroni correction). (d) Graphs of inter-event interval and amplitude
of synaptic events recorded from control and patient iPSC-derived MNs.

compared with controls (7-8 weeks: 34.2% of controls, n=216;
4.1% of TARDBP, n=96; 11.5% of COORF72, n = 52; 9-10 weeks:
37.8% of controls, n=111; 6.1% of TARDBP, n=82; 9.5% of
C90RF72, n=42; P<0.05; Fig. 4c). In cells cultured from 2-6
weeks, we analysed the inter-event-interval and amplitude of
synaptic events. Neither parameter differed between controls and
patient iPSC-derived MNs (Fig. 4d). In summary, these data
demonstrate a loss of synaptic input to TARDBP and C9ORF72
iPSC-derived MNs, which may reflect the parallel loss of action
potential output in these cultures or perturbations in synaptic
transmission between cultured cells.
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Loss of voltage-gated currents in patient iPSC-derived MNs. To
investigate mechanisms underlying the progressive loss of action
potential output from patient iPSC-derived MNs, we next per-
formed voltage-clamp recordings of voltage-activated currents
involved in action potential generation.

We first investigated fast, inactivating Na ™ currents (Fig. 5a),
which underlie the upstroke of the action potential, by using a
series of voltage steps (— 70 to 20mV, 2.5mV increments, 10 ms
duration) from a holding potential of —60mV (Fig. 5b,c). We
found no differences in the current-voltage (I-V) relationships or
peak Na™ currents between MNs derived from patient and
control iPSCs at weeks 3-4 post plating (Peak current: X control
1,375 £ s.e.m. 93 pA, n=196; TARDBP 1,132+ 101 pA, n=103;
C90RF72 1,075+ 103 pA, n=102; Fig. 5b,d; linear model with
multiple Wald’s tests and Bonferroni correction). However,
from week 5 post plating, we observed a progressive loss of
Na® currents in MNs derived from patient iPSCs. Peak
Na™t currents were reduced compared with controls from
weeks 5-10 post plating in C9ORF72 iPSC-derived MNs
(P<0.0001) and from weeks 7-10 post plating in TARDBP
iPSC-derived MNs (P<0.01), while peak currents were also
smaller in neurons derived from C9ORF72 iPSCs compared with
those derived from TARDBP iPSCs (P<0.05) from week 7
onwards (weeks 5-6: X control 875*s.em. 53pA, n=322;
TARDBP 751 £ 64pA, n= 171; C9ORF72 587 £ 84 pA, n=69;
weeks 7-8: control 902 + 64 pA, n=216; TARDBP 741 £ 85 pA,
n=96; C9ORF72 3711t 66pA, n=>52; weeks 9-10: control
1,196 £ 78 pA, n=111; TARDBP 529 + 108 pA, n=82; C9ORF72
236 £ 49 pA, n=42; Fig. 5a,c,d).

Having revealed a progressive loss of Na™t currents, we next
assessed whether this reflected a more general decrease in voltage-
activated currents in patient iPSC-derived MNs. This was
achieved by measuring persistent K™ currents (Fig. 6a) elicited
by a series of voltage steps (—70 to 40 mV, 10 mV increments,
500 ms duration) from a holding potential of — 60 mV (Fig. 6b,c).
At weeks 3-4 post plating, peak KT currents were comparable in
TARDBP and control iPSC-derived MNs but were smaller in
MNs derived from C9ORF72 iPSCs when compared with controls
(Peak current: x control 853 *s.em. 57 pA, n=196; TARDBP
799 £ 86 pA, n=103; C9ORF72 565 + 57 pA, n=102; Fig. 6a,b,d;
linear model with multiple Wald’s tests and Bonferroni correc-
tion). We then observed a progressive decline in peak K™
currents in patient iPSC-derived MNs, with MNs harbouring a
CY9ORF72 mutation having significantly smaller K+ currents than
controls at all time points (P<0.0001) and MNs derived from
TARDBP iPSCs having smaller KT currents compared with
controls from weeks 7-8 post plating onwards (weeks 5-6:x
control 769 ts.em. 44pA, n=322; TARDBP 661 t54pA,
n=171; C9ORF72 490*61pA, n=69; weeks 7-8: control
804 £ 57 pA, n=216; TARDBP 626 + 84 pA, n=96; COORF72
276 £ 41 pA, n=>52; weeks 9-10: control 897 £ 64pA, n=111;
TARDBP 505+ 95pA, n=82; CIORF72 158 *29pA, n=42;
P<0.05; Fig. 6a,,d). K™t currents were also smaller in MNs
derived from C9ORF72 compared with TARDBP iPSCs from
weeks 5-6 post plating onwards (P<0.05).

Taken together, these data demonstrate a progressive reduction
in both fast, inactivating Na™ currents and persistent, voltage-
activated K™ currents in patient iPSC-derived MNs. Given the
similar time courses of current loss and action potential loss, and
the observation that current loss precedes changes in the
probability of firing, it is likely to be that reductions in voltage-
activated currents underlie the progressive loss of functional
output in MNs harbouring ALS-related mutations.

To examine this further, we investigated the relationship
between the magnitude of voltage-activated Na™ and K™
currents, and the type of output produced by iPSC-derived
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Figure 5 | Loss of fast-inactivating Na ™ currents in patient iPSC-derived
MNS. (a) Raw data showing fast, inactivating Na ™ currents in control,
TARDBP and C9ORF72 iPSC-derived MNs at week 3-4 and weeks 9-10.
(b) Current-voltage relationships of peak Na® currents recorded from
control and patient iPSC-derived MNs at weeks 3-4. (¢) Current-voltage
relationships of peak Na™ currents recorded from control and patient
iPSC-derived MNs at weeks 9-10. (d) Peak fast, inactivating Na™ currents
plotted from weeks 3-10 for control (n=847), TARDBP (n=452) and
C90RF72 (n=264) iPSC-derived MNs. (data are plotted as x + s.e.m,;
*significantly different to controls, P<0.05; ***significantly different to
controls, P<0.00071; #significant difference between patient lines, P<0.05;
##tsignificant difference between patient lines, P<0.001; linear model with
multiple Wald's tests and Bonferroni correction).

MNs for which both voltage- and current-clamp data were
available (control, n=573; TARDBP, n=277; C90RF72,
n=190). Plots of raw data indicated similar relationships
between peak currents and firing categories in all iPSC lines
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Figure 6 | Loss of persistent voltage-activated K currents in patient
iPSC-derived MNs. (a) Raw data showing persistent K+ currents in
control, TARDBP and CO9ORF72 iPSC-derived MNs at week 3-4 and weeks
9-10. (b) Current-voltage relationships of peak K+ currents recorded from
control and patient iPSC-derived MNs at weeks 3-4. (¢) Current-voltage
relationships of peak K™ currents recorded from control and patient
iPSC-derived MNs at weeks 9-10. (d) Peak KT currents plotted from weeks
3-10 for control (n=847), TARDBP (n=452) and C9ORF72 (n=264)
iPSC-derived MNs (data are plotted as x + s.e.m.; *significantly different
to control, P<0.05; ***significantly different to control, P<0.00071;
#significant difference between patient lines, P<0.05; ###significant
difference between patient lines, P<0.0001; linear model with multiple
Wald's tests and Bonferroni correction).

3-6 weeks post plating; larger currents were associated with
greater output (Fig. 7a). To assess this relationship further, we
fitted multinomial logistic regressions to the data using the firing
categories (No Spike/Single/Adaptive/Repetitive) as the outcome
variables with the type of iPSC line (control, TARDBP or

C90RF72) and peak current (Na©™ or KT) as the predictor
variables. Using these models, we assessed the predicted
probabilities for each firing category based on the measured
currents. Models showed that both Na™ and K™ currents were
strong predictors of firing category (Na™ model, P<0.001; K™
model, P<0.001). In addition, the type of iPSC line contributed
to the predicted firing outcome (Na¥ model, P<0.01; KT
model, P<0.05). As expected, we found that the probability of a
cell failing to spike in response to current injection decreases with
increasing peak Nat or K™ currents (No Spike category;
Fig. 7b,c). In comparison, the probability of a cell exhibiting
adaptive or repetitive firing in response to current injection
increases with increasing peak Na™ or K currents (Adaptive
and Repetitive categories; Fig. 7b,c). Whereas the probability of a
cell exhibiting only single spikes is highest at an intermediary
value of peak Na™ or KT currents (Single category; Fig. 7b,c).
Overall, the modelled probabilities suggest an ordered response of
firing outcome when Na™ or K™ currents are increased (No
Spike < Single < Adaptive < Repetitive; Fig. 7b,c).

In summary, these findings suggest that the mode of
iPSC-derived MN firing (Single/Adaptive/Repetitive) is governed
by the size of Na™ and K™ currents. Therefore, the reduced
probability of spiking observed in patient iPSC-derived MNs
(Fig. 7c) is likely to reflect perturbations in Na ™ and K™ currents
as a consequence of the TARDBP and C9ORF72 mutations they
harbour.

Discussion

We have demonstrated that MNs derived from human iPSCs
obtained from healthy individuals or patients harbouring
TARDBP or C9ORF72 ALS mutations develop appropriate
physiological properties. However, temporal analysis revealed
that patient iPSC-derived MNs display an initial hyperexcitability,
followed by a progressive loss in action potential output and
synaptic activity. This loss of functional output appears to result
from a progressive decrease in voltage-activated Na™ and K™
currents that occurs in the absence of overt changes in cell
viability. These novel data from ALS-affected human MNs
indicate that early dysfunction or loss of ion channels may
contribute to the initiation of downstream degenerative pathways
that ultimately lead to MN loss in ALS.

Given that all neurons must be by definition excitable, it is critical
that protocols established for the derivation of MNs from iPSCs are
validated via the electrophysiological demonstration of appropriate
functional properties. Previous studies have demonstrated the
ability of human iPSC-derived MNs to fire action potentials in
response to current injection and to receive spontaneous synaptic
inputs™12-142634 Tn this study, we used both current- and voltage-
clamp recordings to not only demonstrate that iPSC-derived MNs
can develop appropriate output and receive synaptic input, but to
also investigate the temporal profile of voltage-activated currents
underlying these functional properties. We observed comparable
rates of morphological and physiological maturation in control and
patient iPSC-derived MNs, with all lines reaching equivalent
maturity ~3 weeks post plating. These analyses provide a
detailed validation of the phenotype of iPSC-derived MNs as well
as enabling more sensitive functional comparisons between control
and patient iPSC-derived MNs. Given that the ultimate goal
of ALS therapeutics is to preserve MN function, it is critical that
detailed functional analyses of iPSC-derived MNs are performed
alongside more common analyses of cellular pathology such as
protein a%gregation, RNA accumulation and changes in gene
expression 11-15,34,35

Previous studies of ALS patients?>>*43%, human iPSCs!# and
animal models of the disease!®??> have reported early
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Figure 7 | Firing categories of iPSC-derived MNs are predicted by peak Na* and K™ currents. (a) Relationship between peak Na® and K+
currents and action potential firing category were determined using multinomial logistic regressions in control (n=448), TARDBP (n=230) and
C90RF72 (n=176) iPSC-derived MNs at 3-6 weeks post plating. Values in parentheses denote the proportion, as a percentage, of iPSC-derived
MNs exhibiting each firing category. (b) Predicted probability of each firing category calculated over a range of peak Na™ currents. (¢) Predicted
probability of each firing category calculated over a range of peak K+ currents.

hyperexcitability of spinal MNs and corticospinal neurons of the
motor cortex. In this study, we have shown that the
most functionally mature (repetitive firing) MNs derived from
patient iPSCs harbouring TARDBP or C9ORF72 mutations also
exhibit hyperexcitability at early stages in culture. Although
hyperexcitability was transient in our study and does not persist
into symptomatic stages in animal models of ALS?*>?”, an initial
phase of increased activity might contribute to and/or trigger a
cascade of excitotoxic disease mechanisms involving pathological
changes in Ca?* handling*®3°, accumulation of intracellular
Ca?t and the eventual activation of cell death pathways. In
opposition to this, however, recent work supports a link between
hyperexcitability and neuroprotection®’, in particular when
hyperexcitability is induced via activation of cholinergic
C-bouton inputs to MNs*1#2, which are known to be enlarged
presymptomatically in ALS model mice*>**, These data suggest
that MN hyperexcitability might represent an early compensatory
mechanism in ALS-affected MNs. To determine the true role of
hyperexcitability in ALS, it will be important for future studies to
examine the effects of finely controlled manipulations of
excitability on human MNss.

Following an early stage of hyperexcitability, we found that
patient iPSC-derived MNs progressively lost their ability to
generate action potentials. This was evidenced by a reduction in
the proportion of patient iPSC-derived MNs, which were able to
fire repetitive or even single spikes. In comparison, the proportion
of control iPSC-derived MNs in each of the firing categories
remained unchanged throughout the 10 weeks studied. Thus,
despite remaining viable in culture, ALS-affected MNs were
gradually rendered non-functional. Our findings of a progressive
loss of MN output are consistent with recent reports of
hypoexcitability of iPSC-derived MNs harbouring a C9ORF72
mutation'? and reduced output of spinal MNs in mSOD1 mice?”.
The latter study, which involved in vivo recordings from
presymptomatic mSODI1 mice, showed that a significant
proportion of MNs could not discharge repetitively in response
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to current ramps, although their neuromuscular junctions
remained functional. Thus, dysfunction at the MN cell body
appears to precede that at the neuromuscular junction. Taken
together, these findings highlight the importance of addressing
early perturbations in mechanisms underlying spike generation at
the MN soma when considering disease pathogenesis and
potential treatment strategies for ALS.

Importantly, we believe our work has addressed an apparent
contradiction arising from recent studies performing similar
electrophysiolo?cal analysis of ALS patient iPSC-derived MNs.
Wainger et al.' recently reported hyperexcitability of iPSC-derived
MNs harbouring a SOD-1 mutation at ~4 weeks post plating, a
time point equivalent to when we also observed hyperexcitability in
iPSC-derived MNs harbouring TARDBP or C9ORF72 mutations.
In contrast, Sareen et al!? reported hypoexcitability in iPSC-
derived MNs harbouring C9ORF72 mutations at a time point
comparable to our week 7-8 post plating when we first observed
loss of MN output. Thus, these recent studies support our
observation of a progression from hyperexcitability to
hypoexcitability. Although this progression is consistent with
work in animal models®’, it should be noted that iPSCs represent a
developmental model that may be difficult to directly compare to
ageing in vivo. It also remains unclear whether mechanistic links
exist between hyperexcitability and hypoexcitability, which will be
important to address in future studies.

Although our focus was on the intrinsic properties of MNs, we
also observed a concomitant reduction in the proportion of patient
iPSC-derived MNs that received synaptic inputs. Loss of synaptic
activity may simply reflect a general loss of action potential
generation in culture. However, §iven evidence of loss and
dysfunction of synapses in ALS?8-%3, specific deficits in synaptic
transmission might also contribute to reductions in synaptic
activity recorded from patient iPSC-derived MNs. Although we
demonstrated that iPSC-derived MNs expressed postsynaptic
receptors required to receive input, we were unable to compare
the magnitude of responses to NTs across control and patient
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iPSC-derived MNs due to difficulties in obtaining long-term
recordings, as required for drug applications, from sufficient
numbers of cells. It will be interesting in future studies, focussed on
synaptic function, to investigate the possibility that either pre- or
postsynaptic machinery is altered in cultures from patient iPSCs.

Following the demonstration of reduced output from patient
iPSC-derived MNs, we wused voltage-clamp recordings to
investigate the mechanisms likely to underlie this loss of function.
Previous studies have demonstrated changes in both the density
and function of Na™ and KT channels in animal models of
ALS'®17:2L45 1 ATS  patients’®4647 and patient iPSC-derived
MNs!214, Our analyses revealed a progressive loss of voltage-
activated Nat (fast, inactivating) and K™ (persistent) currents in
patient iPSC-derived MNs. Given that current loss began before
and continued in parallel with changes in firing probability, and
that Nat and K™ current magnitudes are excellent predictors of
firing patterns, reductions in voltage-activated currents most
likely underlie the loss of functional output observed in patient
iPSC-derived MNs. Mechanisms underlying the initial
hyperexcitability of MNs are less clear. Wainger et all4
proposed that reductions in delayed rectifier KT currents
underlie hyperexcitability in iPSC-derived MNs harbouring
SOD-1 mutations. Although we also observed lower KT
current magnitude in MNs harbouring C9ORF72 mutations at
hyperexcitable stages, the same was not true for MNs harbouring
TARDBP mutations. Thus, reductions in K™ currents are
unlikely to be the sole mechanism underlying hyperexcitability
in patient iPSC-derived MNs. Either loss or dysfunction of
channels may underlie the loss of current observed in patient
iPSC-derived MNs. Regardless of the exact effect on ion channels,
our data are consistent with the recent proposal that ALS involves
channelopathy-like mechanisms, a view which stemmed from the
demonstration that mutant SOD1 inhibits the conductance of a
mitochondrial ion channel®. Interestingly, although ALS-related
mutations may cause a general loss of voltage-activated currents,
the lack of change in input resistance in patient iPSC-derived
MNs indicates that leak channels are unaffected. Furthermore,
depolarization of the RMP, again with no changes in input
resistance, suggests additional membrane proteins are affected,
one possibility being the Na* /K™ pump for which reduced
expression has been shown in mSOD1 mice’.

In this study, we used iPSC-derived MNs harbouring
mutations in two different genes associated with ALS, TARDBP
and C9ORF72. TARDBP encodes the RNA-binding protein TDP-
43, which can act as a transcription repressor and a splicing
regulator, and can also contribute to RNA stability and
transport®*~>2, Mutations in TARDBP are associated with
deficits in RNA processing®>>4. Although the exact function of
C90ORF72 remains unknown, its mutant form also appears to
cause aberrant RNA processing®®!l, Thus, defects in RNA
processing provide a mechanistic link between TARDBP and
C90RF72-mediated ALS and may contribute to loss of voltage-
activated currents in patient iPSC-derived MNs. In support of
this, recent work has shown that the expression of genes involved
in neuronal excitability, including those encoding ion channels, is
altered in iPSC-derived MNs with CY9ORF72 mutations'2,
Common effects on RNA processing might also in part explain
why MNs derived from TARDBP and C9ORF72 iPSC lines
exhibited similar pathophysiology; hyperexcitability, followed by
a loss of functional output due to a reduction in the magnitude of
voltage-activated currents. Alternative interpretations include the
possibility that perturbations in ion channels and MN output
represent core disease mechanisms common to many forms of
ALS, including both familial and sporadic ALS given the
demonstration of TARDBP and C9ORF72 mutations in both of
these forms of the disease. Further experiments using a variety of

patient iPSC lines will be needed to confirm the relevance of our
findings to a wide spectrum of ALS cases.

In summary, our study has provided important new insight
into early ALS disease mechanisms by investigating pathophy-
siological changes in iPSC-derived MNs from ALS patients with
two different genetic mutations. We have shown that MN output
is severely compromised, due to the loss of voltage-activated
currents, before any other overt signs of neurodegeneration.
These data suggest that ‘functional loss’ of MNs may render the
motor system inactive before neurodegeneration of MNs, high-
lighting the importance of addressing MN function, perhaps by
targeting ion channels, when designing new treatment strategies
for ALS. Furthermore, our findings demonstrate the usefulness of
sensitive physiological studies of human iPSC-derived MNs for
future work aiming to develop much needed therapeutics for this
devastating disease.

Methods

iPSC lines. For this study, we used eight iPSC lines from six individuals: one male
M337V TDP-43 ALS patient (two clones; D1 and D3); one female COORF72 ALS
patient (one clone, S6); one male COORF72 ALS patient (one clone, R2); two female
healthy controls (two clones, R6 and M2; one clone, D6) and one male healthy
control (one clone, D9). All participants provided written signed consent to donate
their skin sample to derive iPSCs and their use was approved by the Ethics
Committee from the King’s College Hospital, a national Medical Research Ethics
Committee (MREC). iPSCs were generated from fibroblasts as previously descri-
bed®?5. At least four iPSC differentiations were performed for each line (Control:
D6 =38, D9 =6, M2=7, R6 =4; TARDBP: D1 =6, D3 =8; C9ORF72: S6 =4,

R2 =4), with control and patient iPSC differentiations always running in parallel.
iPSCs were established by virally transducing 10° fibroblasts with the Yamanaka
reprogramming factors OCT4, SOX2, KLF4 and ¢-MYC using either lentiviral
(Vectalys) or Sendai (Life technologies) reprogramming kits. Cells were maintained
in murine embryonic fibroblast (MEF) media at 37 °C and 5% CO,. MEF media
consisted of KO-DMEM (Invitrogen), 2mM L-glutamine (Invitrogen), 10% FBS
(Invitrogen) and 1% penicillin/streptomycin (Invitrogen). After 5 days, the cells
were split and re-plated as single cells on to an MEF feeder plate. On day 7, media
was changed to Knockout serum replacement (KSR) and fibroblast growth factor 2
(FGF2) consisting of advanced DMEM (Invitrogen), 20% serum replacer
(Invitrogen), 1 plml ~1 FGF2 (PeproTech), 1% penicillin/streptomycin
(Invitrogen), 1% L-glutamine (Invitrogen) and 0.007 pl ml ! 2-mercaptoethanol
(Invitrogen). After ~21 days, colonies with compact human embryonic cell-like
morphology were expanded and clonal lines were established. Human iPSC lines
were maintained long term on CF-1-irradiated mouse embryonic fibroblasts, with
KO-DMEM (Invitrogen) supplemented with 20% knockout serum replacement
(Invitrogen), 10 ng ml ! basic FGF2 (PeproTech), 1% L-glutamine (Invitrogen),
0.007 pl ml ~ ! 2-mercaptoethanol (Invitrogen) and 1% penicillin/streptomycin
(Invitrogen) at 37 °C and 5% CO,. For the neural conversion, the cells were
transitioned to feeder-free culture conditions in MTESR1 media (Stem Cell
Technologies) and passaged three times before use.

All iPSCs used in the study exhibited silencing of the four transgenes used to
induce pluripotency with subsequent activation of endogenous OCT4, SOX2 and
KLF4 (Supplementary Fig. 3). Pluripotency was confirmed by expression of
pluripotency markers OCT4, SOX2, TRA-1-60 and NANOG and RT-PCR with
three germ-layer differentiation confirmed by SOXI, Nestin, Brachyury, Eomes,
FOXA2 and GATA-4 expression (Supplementary Fig. 3). All clones used had a
normal karyotype, with genotyping confirming mutations in TARDBP lines and
hexanucleotide 5'-GGGGCC-3' repeat expansions in C9ORF72 lines shown by
repeat prime PCR (Supplementary Fig. 3). RNA foci containing 5'-GGGGCC-3'
hexanucleotide repeat expansions were also revealed in COORF72 lines using
fluorescence in situ hybridization (FISH; Supplementary Fig. 3).

iPSC differentiation to a MN lineage. Differentiation of iPSCs into a neuronal
and MN lineage was é)erformed using modifications of previously established and
validated protocols®?°. The iPSCs were neuralized to neuroectoderm using dual
SMAD inhibition in CDM (50% Iscove’s modified Dulbecco’s medium (Invitrogen),
50% F12, 5mgml ~! BSA (Europa), 1% chemically defined Lipid 100 x
(Invitrogen), 450 mM monothioglycerol (Sigma), 7 mg ml~ ! insulin (Roche),
15mgml ! transferrin (Roche), 1% penicillin/streptomycin), supplemented with
1 mM N-acetyl cysteine (Sigma), 10 uM Activin Inhibitor (R&D Systems) and 2 uM
Dorsomorphin (Merck Millipore)). This medium was changed every 2-3 days for
4-10 days. Neurospheres were patterned to a caudal, spinal cord identity in CDM,
1 mM N-acetyl cysteine, 5ngml ~! FGF (PeproTech)/heparin (Sigma; 20 pgml 1)
and 0.1 uM retinoic acid (Sigma) for 4-10 days, changing medium every 2-3 days.
Caudalized neural stem cells were ventralized in the presence of Advanced DMEM
Nutrient Mixture F12 (Invitrogen), 1% penicillin/streptomycin, 0.5% GlutaMAX,
1% B-27, 0.5% N-2 supplement, 5 ngml ~ ! FGF + Heparin, 1 pM retinoic acid and
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1M purmorphamine (Merck Millipore) for 4-10 days, changing every 2-3 days.
The FGF/Heparin was removed from the medium and replaced with 0.5 uM
purmorphamine, with the cells cultured for another 4-14 days, changing the
medium every 2-3 days. Caudalized and ventralized neural stem cells were
transitioned to MN maturation medium containing advanced DMEM/F12, 1%
penicillin/streptomycin, 0.5% B-27, 0.5% N-2 supplement, 2 ngml ~ ! Heparin,

10 ng ml ~ ! brain- derived neurotrophic factor (R&D systems), 10 ngml ~ ! glial cell
line-derived neurotrophic factor (R&D systems), 10 pM forskolin (R&D systems),
0.1 uM retinoic acid and 0.1 uM purmorphamine for 2-6 weeks, changing the
medium every 2-3 days. MN progenitors were next dissociated with the Papain
Dissociation System (Worthington Biochemical), plated at 50 x 103 cells per well in
24-well plates, with 13 mm glass coverslips coated with poly-ornithine (Sigma),
laminin (Sigma), fibronectin (Sigma) and Matrigel (BD Biosciences). Plate down
medium consisted of Neurobasal medium (Invitrogen), 1% penicillin/streptomycin,
0.5% GlutaMAX, 0.5% B-27, 0.5% N-2 Supplement, 20 ngml ~ ! basic FGF, 1M
retinoic acid, 1 M purmorphamine, 1 tM mouse Smo agonist SAG (Merck
Millipore)?6. Twenty-four hours post plating, 20 ngml ~ ! ciliary neurotrophic factor
(R&D systems), 10ngml ~ ! glial cell line-derived neurotrophic factor and 10 pM
forskolin, which promotes cell cycle exit, were added, and this medium was used
until day 14, feeding every 3 days. From day 14, RA, SAG, purmorphamine and
forskolin was removed from the medium, with cells then maintained for up to 10
weeks. As an indication that neuronal differentiation was successful, with few
mitotic cells present, we performed immunostaining for the mitotic marker

Ki67 (3-4 weeks post plating). Less than 7% of cells expressed Ki67 in control
and patient iPSC-derived cultures.

Immunofluorescence. Cells were fixed in 4% (wt/vol) paraformaldehyde for

10 min, permeabilized in 0.1% Triton X-100 at room temperature for 10 min and
blocked in 3% (vol/vol) goat or donkey serum for 45 min. They were then incu-
bated in primary antibodies for 45 min (Supplementary Table 2) followed by
secondary antibodies for 20 min (Alexa Fluor dyes, Invitrogen). The nuclei were
counterstained with DAPI (4',6-diamidino-2-phenylindole, Sigma) for 5 min and
coverslips were mounted on slides with FluorSave (Merck). Fluorescent imaging
was performed on fields of view containing uniform DAPI staining using an
Axioscope (Zeiss) microscope. Images were processed with Axiovision V 4.8.1
(Zeiss) and immunolabelled cells counted manually by a blinded observer within
Image]64 (v 1.47) software. Individual cells were first chosen based on DAPI
staining of nuclei before immunolabelling was assessed. Positive staining was
defined as a signal clearly above the background fluorescence present in areas
devoid of cells.

Repeat primed-PCR. Repeat primed-PCR was used to confirm the presence or
absence of the C90ORF72 hexanucleotide repeat expansion in control or carrier
neurons. PCR amplification was carried out using Multiplex Mastermix (Qiagen);
7% dimethylsulfoxide, 0.6 M Betaine, 7.6 pM Primer F (5'-CTGTAGCAAGCTCTG
GAACTCAGGAGTCG-3'), 3.6 um Primer Repeat R (5-TACGCATCCCAGTTT
GAGACGCCCCGGCCCCGGCCCCGGCCCC-3'), 11.6 uM Tail R (5'-TACGCA
TCCCAGTTTGAGACG-3'), 8 uM 7-deaza-2'-dGTP and 200 ng DNA. Cycling
conditions were performed as per the manufacturer’s recommendations, except for
the annealing temperature, which was 68 °C for 15 cycles, then 60 °C for a further
20 cycles. PCR products were separated on an ABI 3130 X I analyser (Life
Technologies) and data were analysed using GeneMarker software (Soft Genetics).

RNA fluorescence in situ hybridization. FISH analysis was performed using an
Alexa 546-conjugated (GGCCCC), oligoneucleotide probe (IDT). Briefly, cells on
glass coverslips were fixed in 4% paraformaldehyde for 30 min, permeabilized in
70% ethanol at 4 °C, incubated with 50% formamide/2 x SSC for 10 min at room
temperature and hybridized for 2h at 37 °C with the oligoneucleotide probe
(0.16 ngpl ~ 1) in hybridization buffer consisting of 50% formamide, 2 x SSC,
10% dextran sulphate, yeast transfer RNA (1 mgml ~ 1), salmon sperm DNA
(Imgml~ 1y and 0.2% Tween-20. The cells were washed twice with 50%
formamide/1 x SSC for 30 min at 37 °C and once with 2 x SSC at room
temperature for 30 min. Immunostaining was performed as described above.

Cell viability assays. Cell counts were performed, with the observer blinded
to cell type, on 20 IR-DIC images for each cell type (control, TARDBP
and C9ORF?72) at each 2 week time point throughout the 10 weeks cells were
maintained. Infrared-DIC images were chosen at random from a database of
images ( x 40 magnification) that were obtained whenever whole-cell patch-clamp
recordings were attempted. Cell counts were fitted with a negative binomial
generalized linear model and the effect of time assessed with a likelihood ratio test.
For LDH assays, cell culture medium was collected from control and patient-
derived lines, which were differentiated in parallel to enable direct comparisons.
Medium was collected twice per week across weeks 3-10 post plating from
TARDBP (D1 and D3), C9ORF72 (S6: 2 experiments and R2) and control lines
(D6: 2 experiments, M2 and R6). LDH activity (mUml ~ 1y was calculated for each
cell type using LDH assay kits (Abcam). LDH activity was plotted versus
postplating date and compared between cell types using linear models.
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Nuclear morphology was assessed, with the observer blinded to cell type, by
counting the number of pyknotic nuclei in 40 images taken from control and
patient-derived lines at 9-10 weeks post plating. Statistical analysis was performed
using a single factor ANOVA followed by Tukey’s post-hoc test.

Electrophysiology. Whole-cell patch-clamp recordings were used to assess the
functionality of iPSC-derived MNs. Voltage-clamp mode was used to investigate
intrinsic membrane properties. Current-clamp mode was used to investigate the
firing properties of MNs. Experiments were carried out in a recording chamber,
which was perfused continuously with oxygenated artificial cerebral spinal fluid
(aCSF) at room temperature (22-24 °C). Whole-cell patch-clamp recordings were
made from cells visualized by IR-DIC microscopy using an Olympus upright
BX51WI microscope with a x 40 submersion lens. Patch electrodes (4.0-5.0 MQ
resistance) were pulled on a Sutter P-97 horizontal puller (Sutter Instrument
Company, Novato, CA) from borosilicate glass capillaries (World Precision
Instruments, Sarasota, FL). Recorded signals were amplified and filtered (4 kHz
low-pass Bessel filter) using a MultiClamp 700B amplifier (Axon Instruments,
Union City, CA) and acquired at >10kHz using a Digidata 1440A analogue-to-
digital board and pClamp10 software (Axon Instruments). Whole-cell capacitance
(Ch), input resistance (Ry), series resistance (Rs) and RMP values were calculated
using pClamp10 software. Only cells with an R;<20 MQ, a RMP more hyperpo-
larized than —20mV and Ry > 100 MQ were included in data analysis. R, values
were not significantly different between control, COORF72 and TARDBP lines. Cells
were defined as neurons if they had clear fast-inactivating inward currents
(=50pA). In a subset of experiments, such currents were found to be tetrodotoxin
sensitive (data not shown). Recordings from glial cells, which were clearly
distinguishable based on their hyperpolarized RMP and absence of inward
currents, were excluded from all analyses. An on-line P4 leak subtraction protocol
was used for all recordings of voltage-activated currents. Descriptions of voltage-
and current-clamp protocols are provided in the Results section.

The aCSF used for all electrophysiological recordings contained the following in
mM; 127 NaCl, 3 KCl, 2 CaCl,, 1 MgSOy, 26 NaHCOs3, 1.25 NaH,PO,,

10 p-glucose (equilibrated with 95% O, and 5% CO, at room temperature, pH 7.45;
osmolarity,~ 310 mOsm). The pipette solution contained (in mM): 140 potassium
methane-sulfonate, 10 NaCl, 1 CaCl,, 10 HEPES, 0.2 EGTA, 3 ATP-Mg, 0.4 GTP,
(pH 7.2-7.3, adjusted with KOH; osmolarity adjusted to ~ 300 mOsm with
sucrose). All drugs were made up as concentrated stock solutions in single-use vials
and stored at — 20 °C. The final concentrations were achieved by diluting stock
solutions in aCSF. Stock solutions of GABA and glycine were made up in distilled
water. Stock solutions of glutamate were made up in 0.1 M NaOH. Drug
application was via addition to the perfusate.

Electrophysiological data were analysed using Clampfit10 software (Axon
Instruments) or Dataview (courtesy of Dr W.]J. Heitler, University of St. Andrews).
Data from each type of iPSC line (control, TARDBP and C9ORF72) were pooled for
all analyses. Peak Na™ currents and peak K currents (log;o transformed), C,,, Ry
and RMP were compared across the three different types of cell lines using factorial
ANOV As with postplating date (in 2 week bins; 3-4, 5-6, 7-8, 9-10) and cell line
type (control, TARDBP or C9ORF72) as factors. f-I relationships were compared
across cell lines using linear models fitted to the initial, most linear portion of the
f~I relationship (<50 pA above rheobase). Pair-wise comparisons were made using
Tukey’s honest significant difference test, where necessary.

For the purposes of statistical comparisons, spontaneous synaptic activity and
action potential generation were classified as either present or absent. These binary
data were fitted with a logistic regression using postplating date, transformed with a
second-order polynomial and cell line type as factors. Contrasts were made using
Wald’s tests and P-values adjusted using a Bonferroni correction.

Firing properties were further analysed by assigning cells into four categories
(No Spike/Single/Adaptive/Repetitive). These data were then fitted with a
multinomial logistic regression using type of iPSC line and either peak K or peak
Na™ currents (logyo transformed) as factors. Using these models, predicted
probabilities for each firing mode were calculated over a range of K* and Na ™
current magnitudes for all types of iPSC lines. Factors within the multinomial
logistic regression were assessed with likelihood ratio tests.

Statistical analyses were performed using SPSS, R and the software packages
MASS, multcomp and nnet. All data are presented as mean % s.e.m. Sample sizes
were similar to those used in previous studies.
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