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Diabetes is characterized by altered metabolism of key
molecules and regulatory pathways. The phenotypic
expression of diabetes and associated complications
encompasses complex interactions between genetic,
environmental, and tissue-specific factors that require
an integrated understanding of perturbations in the
network of genes, proteins, and metabolites. Metabolo-
mics attempts to systematically identify and quantitate
small molecule metabolites from biological systems.
The recent rapid development of a variety of analytical
platforms based on mass spectrometry and nuclear
magnetic resonance have enabled identification of com-
plex metabolic phenotypes. Continued development of
bioinformatics and analytical strategies has facilitated
the discovery of causal links in understanding the path-
ophysiology of diabetes and its complications. Here, we
summarize the metabolomics workflow, including ana-
lytical, statistical, and computational tools, highlight re-
cent applications of metabolomics in diabetes research,
and discuss the challenges in the field.

Diabetes is a metabolic disorder characterized by complex
alterations in glucose and lipid metabolism in both type 1
(insulin deficiency due to autoimmune destruction of the
pancreatic b-cells) and type 2 (insulin resistance and im-
paired insulin secretion due to islet cell dysfunction) di-
abetes. In congruence with the rise in obesity, diabetes is
becoming increasingly prevalent. According to the Centers
for Disease Control and Prevention, 8.3% of the U.S. pop-
ulation has diabetes and an estimated 35% have predia-
betes (1). Metabolic diseases such as diabetes are often
difficult for physicians to manage because they can be

present for years before becoming clinically apparent.
For example, significant b-cell dysfunction has already
occurred by the time hyperglycemia becomes clinically
evident. Conventional risk predictors of diabetes compli-
cations, such as degree of glycemic control, remain imper-
fect predictors of complications, mirroring our incomplete
understanding of underlying pathophysiology. Metabolo-
mics offers a new avenue for the identification of novel
risk markers with the advent of high-throughput analyt-
ical platforms in which measurements of hundreds of
analytes are now possible. Together with other omics
data (genomics, transcriptomics, and proteomics) and bio-
informatics pathway integration strategies, these technolo-
gies have the ability to illuminate the underlying biology
and discover clinically relevant diagnostic and prognostic
markers of disease risk. The purpose of this review is to
highlight the role of metabolomics in diabetes research
and discuss the tools for analyzing and integrating metab-
olomics data.

CHALLENGES OF METABOLOMICS IN HEALTH
SCIENCES RESEARCH

Metabolomics attempts to comprehensively identify and
quantify all or select groups of endogenous small molecule
metabolites (,1,500 Da) in a biological system in a high-
throughput manner. Although quantification of metabo-
lites to study disease process is decades old (2–5), recent
high-throughput methods have improved coverage of metab-
olites in biofluids (6). However, there are several technical
challenges in broad-spectrum metabolomics studies. First,
the metabolome is composed of a variety of chemically di-
verse compounds such as lipids, organic acids, carbohydrates,
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amino acids, nucleotides, and steroids, among others. In
comparison, genes and proteins may perhaps be more
chemically homogenous as each gene is a combination of
only four basic nucleotides and each protein is composed of
a mixture of 32 amino acids. Second, metabolites occur in
a wide dynamic range of concentrations (nanomolar to mil-
limolar) in biological systems. Third, not every metabolite is
present in each tissue or biofluid. Finally, the metabolome
can be altered by exogenous substances obtained from food
or medications or endogenously by metabolism of gut
microbiota, which may not be uniform in each subject.
Therefore, comprehensive metabolomics is an analytical
challenge. Indeed, no single metabolomics methodology is
currently able to measure the entire metabolome accurately.

THE METABOLOMICS WORKFLOW

Metabolomics experiments follow a typical workflow con-
sisting of experimental design, sample preparation, sep-
aration and detection of metabolites, data processing, and
bioinformatics analysis (Fig. 1).

Experimental Design
When designing a metabolomics experiment, several aspects
need to be considered. These include determining metab-
olites of interest (specific subset vs. all measurable), whether
a snapshot of metabolite levels or determination of dynamic
changes to the metabolome are required, and incorporation
of biological and technical controls.

Targeted and Untargeted Approaches
Experiments can be designed with either a targeted or
untargeted approach (Table 1). In targeted metabolomics,
there is a predetermined list or class of metabolites that
are being investigated. This approach is hypothesis
driven, where a specific question is being addressed.
One of the key features of targeted metabolomics is the
use of isotope-labeled internal standards, which allows
for the clear identification and quantification of analytes.
Therefore, targeted metabolomics results in the high
sensitivity and accurate detection and quantification of
a relatively low number of metabolites at a given time.
Conversely, untargeted metabolomics is hypothesis gener-
ating and aims to detect as many metabolites as possible,
followed by identification of metabolites using software
tools based on known or predicted spectral patterns. Various

statistical tests, such as principal component analysis or
random forest, can be used to classify phenotypes based
on metabolite patterns (7). Untargeted metabolomics is par-
ticularly useful for identifying putative biomarkers, and ex-
perimental results can be confirmed by following untargeted
experiments with a targeted approach. Although untargeted
metabolomics can detect a large number of metabolites in
a single run, quantification and high-quality precision is lost
and the time required for accurate metabolite identification
and quantification can be significant (8).

Steady-State or Metabolic Flux Analysis
Traditional metabolomics analyses assess steady-state
metabolite levels or levels at a given time (time of cell/
tissue harvest or time of biofluid collection) either in a
targeted or untargeted manner. Steady-state detection
will establish a difference in levels of a metabolite but
will not provide information on why a difference occurs
or through which metabolic pathway (e.g., glycolysis or
gluconeogenesis). Therefore, it is sometimes necessary
to determine the dynamic flow of metabolites through
metabolic pathways. The influx into a pathway may not be
equal to the efflux out of a pathway, resulting in a buildup
or loss of a specific metabolite, pointing out critically
regulated steps in metabolism. Metabolic flux analysis
(MFA) allows for the time-dependent assessment of flux
through pathways (9). For MFA, incorporation of heavy
isotopes from individual substrates (e.g., U-[13C]glucose)
into specific metabolites (e.g., glyceraldehyde 3-phosphate)
is used to determine the amount of a specific metabolite
derived from a given pathway (Fig. 2) (10–13). The mass
shift due to the heavy isotope is detected and the percent
enrichment of the isotope in each metabolite, after cor-
rection for natural abundances, allows for determination
of the percent or amount of metabolite present that was
derived from a particular substance or pathway. MFA has
been performed in cell culture (14), animal models (4), and
humans (3). With MFA, isotope-labeled internal standards
are not used as they can interfere with results. Although
informative, MFA has its disadvantages over steady-state
analysis; the isotope tracers are costly and analysis is time-
consuming and complex. Due to data complexity, MFA has
primarily been used with targeted analysis; however, recent
strides have been made for the use of MFA with untargeted
analysis (13).

Figure 1—Summary of the metabolomics workflow.
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Experimental Quality Control
When planning any experiment, quality control needs to
be considered. In the field of metabolomics, sample
quality and technical reproducibility must be addressed
(2,5). For sample quality, it is important to predetermine
how samples will be collected and stored. For cell culture
experiments, type of media, exposure to nutrients (glu-
cose or amino acids), and processes to quench metabolism
prior to sample analysis need to be carefully addressed. In
human studies, factors such as diurnal variation, fasting
versus fed state, type of anticoagulant used, diet, and
medications need to be considered. Effects of anesthesia
can lead to significant variation in animal studies. As
a technical control, analytical pools should be interspersed
among sample runs to allow for determination of instru-
mental variability and data quality. The reader is referred
to an excellent review for a more in-depth discussion of
quality control (2).

Sample Preparation
Due to the complexity of the metabolome, sample
preparation varies depending upon experimental goals,
sample matrix (tissue, biofluid, or cell culture), and
analytical method to be used. Regardless of these factors,
metabolism should be quenched as quickly as possible
after sample collection and samples stored at 280°C. For a
more in-depth review of sample preparation, please see
previous literature on optimization techniques (5,6,15,16).

Analytical Approaches for Separation and Detection
of Metabolites
The most frequently used analytical platforms in metab-
olomics are nuclear magnetic resonance (NMR) spectros-
copy and mass spectrometry (MS), which is generally

coupled to a chromatographic technique such as gas
chromatography (GC) or liquid chromatography (MS). For
a summary of MS separation and detection techniques for
classes of metabolites common to diabetes research, see
Table 2.

NMR Spectroscopy
NMR spectroscopy is highly reproducible and quantita-
tive. NMR requires little sample preparation, as no
separation or derivatization is required, and therefore
does not destroy the sample. The basis for NMR spec-
troscopy revolves around the fact that the nuclei of many
isotopes (e.g., 1H, 13C, etc.) have a characteristic spin and,
when placed in a magnetic field, absorb radiation and
resonate at a specific frequency. The primary limitation
to NMR spectroscopy is its sensitivity, as concentrations
can only be detected into the micromolar range, limiting
its ability with low-abundance metabolites (17).

GC-MS
GC-MS is a highly sensitive and specific method for
separation and detection of volatile metabolites such as
organic acids. A carrier gas propels the sample through
the separation column, after which it can be ionized by
electron ionization or chemical ionization for detection by
the mass spectrometer. As separation by GC occurs at
high temperatures, samples need to be thermally stable as
well as volatile. For samples to be readily volatile,
chemical derivatization of samples may be necessary prior
to analysis. Derivatization is one of the major drawbacks
of GC-MS, as it can result in metabolite loss and can
complicate analysis due to incomplete derivatization or
artifact formation. For this reason, the proper derivati-
zation method needs to be determined based upon the
metabolite(s) of interest. Another drawback of GC-MS is
the relatively limited mass range. However, GC-MS has
some distinct advantages. Spectral patterns and retention
times of compounds are highly reproducible by GC-MS,
allowing compounds to be searched against existing
libraries. Also, there is lower instrumental-based variabil-
ity among results than with LC-MS.

LC-MS
LC-MS is the most commonly used platform for metab-
olomics studies. As opposed to GC-MS, there is no need
for sample derivatization and there is greater coverage of
mass ranges. LC-MS is versatile, allowing for the separa-
tion and detection of many different classes of metabo-
lites. Part of the versatility of LC-MS is due to the various
separation techniques and wide array of mass analyzers.

Selection of the appropriate chromatography column is
an important step in LC-MS. Reverse-phase columns, such
as C18 columns, provide good retention and separation of
nonpolar compounds. Conversely, hydrophilic interaction
chromatography (HILIC) columns have a high affinity for
polar compounds. HILIC has increased sensitivity but less
reproducibility of retention time, even within the same run.
The introduction of ultraperformance LC, which uses smaller

Table 1—Comparison of targeted and untargeted
metabolomics platforms

Feature Targeted Untargeted

Number of
metabolites
detected

Specific subset
(usually

,25 per run)

Typically ;500
reproducible known

compounds and ;2,500
unknown compounds
in human plasma

Identification Individual
isotope-labeled

standards
or authentic
compounds

Library and
software based

Quantitative Yes No

Data
analysis
time

Minimal (a typical
experiment with
two groups of

n = 10/group and
20 analytes takes

2–3 days)

Significant
(a typical experiment
with two groups of
n = 10/group takes

4–6 weeks)

Orthogonal
technique
required for
confirmation

No Yes
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particle sizes, has led to enhanced peak capacity and
allows for greater resolution and higher throughput due
to reduced run times per sample. With LC, polarity of the
solvent used to drive the sample through the column affects
sample retention, as does solvent pH.

Sample ionization needs to occur, after which the mass
of the analyte is determined by the mass analyzer as mass-
to-charge ratio (m/z). Electrospray ionization is widely used
as it works well with most metabolites and provides
no matrix interference to the mass analyzer. Atmospheric
pressure chemical ionization is slightly less sensitive but
works well with nonpolar compounds such as lipids. Matrix-
assisted laser desorption/ionization is very useful for com-
plex samples and is highly sensitive. Matrix-assisted laser
desorption/ionization is preferred for higher mass com-
pounds, although this is generally not an issue for metabo-
lites. The primary disadvantage is background interference,
particularly with lower molecular weight compounds.

Several mass analyzers can be coupled to LC and
optimized for the analytical strategy used. The most

common mass analyzers are the quadrupole, time of flight
(TOF), and ion trap analyzers. Due to their relatively low
cost, quadrupole analyzers are widely used. Triple quad-
rupole (QQQ) analyzers, in which three quadropoles are
combined in succession, allow for MS/MS, or further
fragmentation, of ions during analysis. QQQs are capable
of multiple reaction monitoring for specific detection and
quantification of selected metabolites. TOF analyzers
accelerate ions and then measure the velocity, or the
time it takes to travel down a flight tube, to determine the
m/z. TOF analyzers have high mass accuracy, are highly
sensitive, and acquire data quickly. TOF analyzers can be
coupled with a quadrupole (Q-TOF). Q-TOFs are well
suited for metabolomics experiments. They have very
high mass accuracy and sensitivity and can analyze
a wide array of metabolites. Ion trap analyzers are similar
to quadrupoles in that they can also focus on particular
ions and are relatively low cost. They can trap ions of
interest and accumulate them for better sensitivity, or
they can trap and fragment a specific ion multiple times,

Figure 2—MFA of isotope tracers into glyceraldehyde 3-phosphate (G3P). A: Schematic depicting isotope incorporation into G3P using
either U-[13C6]glucose or U-[13C3]lactate. With each isotope-labeled substance, G3P derived from glycolysis or gluconeogenesis, respec-
tively, would have a mass shift of +3 due to all three carbons incorporating the 13C label. Comparison of percent incorporation following
addition of U-[13C6]glucose or U-[13C3]lactate would allow for the determination of how much G3P is derived from each pathway. Char-
acterization of each metabolite in the pathway (G6P, F6P, FBP, TCA cycle metabolites, etc.) could help identify blockages in each
metabolic pathway. B: MS/MS spectrum of [12C]G3P (top panel) and [13C3]G3P (bottom panel) in the liver following treatment with
U-[13C6]glucose. The area of G3P m+3 (bottom panel) divided by the sum of the total, following correction for naturally occurring 13C isotopes,
gives the percent of G3P derived from glycolysis following the addition of U-[13C6]glucose.
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which is referred to as MSn. One main limitation of ion
traps is their inability to do multiple reaction monitoring
measurements. Newer techniques such as Fourier trans-
form ion cyclotron resonance have the highest degree of
mass accuracy of 100,000, the best accuracy (,1 ppm
mass error), and have MS/MS and MSn capabilities but
are limited by expense.

Data Processing

Peak Processing and Inclusion
Most MS data must be initially processed with proprietary
software from the manufacturer of the analyzer. Freely
available programs are capable of peak detection and
integration, although they may lack the ability to read all
file types. Regardless of software, data processing depends
upon the type of analysis used. For targeted analyses,
processing is generally straightforward as there are often
isotope-labeled or authentic standards used for validation.
For untargeted metabolomics, however, the software needs

to be capable of peak selection, evaluation, and relative
quantification. For identifying peaks, several libraries exist
for searching against generated MS and MS/MS spectra (18–
21). Before any data preprocessing occurs, the instrument
operator will need to examine the instrument-associated
quality assurance/quality control (QA/QC) using data ac-
quisition and visualization tools associated with the
instrument. This assessment should include tuning
parameters, evaluating the calibration curves both in
matrix-containing and matrix-free samples, examining for
retention time shifts, and comparing the ratio of quanti-
fier to qualifier ions in the analyte with those obtained
using standards. Ideally, the available laboratory informa-
tion management system should integrate these QA/QC
parameters and serve as an automated filter before pass-
ing the data for subsequent analysis.

The downstream data analysis should be further
examined for reproducibility using different plots (box-
plots, histograms, or heat maps) that will check for outlier

Table 2—MS methods of detection for metabolites of interest in diabetes research

Metabolites/pathways Method Conditions/comments References

Acyl-carnitines LC-MS + ion mode, C18 column, QQQ (112,113)

Acyl-CoAs LC-MS + ion mode, C18 column, QQQ (114,115)

Acyl-glycerols LC-MS + ion mode, silica column, QTrap (116,117)

Amino acids GC-MS SIM, EZ:faast Kit (Phenomenex Inc., Torrance, CA) (118)

Bile acids LC-MS 2 ion mode, C18 column, QQQ (119)

Cholesterol esters LC-MS + ion mode, silica column, QTrap (120)

Eicosanoids LC-MS 2 ion mode, chiral column, QQQ (121,122)

Fatty acids GC-MS Derivatize with FAME or PFB bromide (123)

Glycerophospholipids LC-MS + and – ion mode, silica column, QQQ or QTrap (124)

Glycolysis LC-MS + ion mode, C18 column, QQQ (125)
2 ion mode, HILIC column, TOF (16)

Lipid profiling LC-MS + and – ion mode, QQQ or TripleTOF (126)
QTrap (127)

Lipidmaps.org/protocols

Nucleotides LC-MS 2 ion mode, ODS column, QQQ or Ion Trap (128)

Organic acids LC-MS + ion mode, C18 column, QQQ (125)
GC-MS 2 ion mode, HILIC column, TOF (16)

SIM, derivatize with MTBSTFA (129)

Organic cofactors LC-MS + ion mode, HILIC column, QQQ (130)
2 ion mode, HILIC column, TOF (16)

Oxidized amino acids LC-MS + ion mode, C18 column, QQQ (131)

Oxidized lipids LC-MS 2 ion mode, C18 column, QQQ or QTrap (132,133)

Pentose phosphate LC-MS + ion mode, C18 column, QQQ (130)

Sphingolipids LC-MS + ion mode, C18, amino and silica columns, QQQ or QTrap (134)

Steroid hormones LC-MS + ion mode, C18 column, QQQ (135)

Sterols LC-MS + ion mode, C18 column, QTrap (136)

Urea cycle GC-MS Derivatize with BSTFA/TMCS (137)
GC-MS and LC-MS Review of methods (138)

Uremic solutes LC-MS + ion mode, C18 column, QQQ (8)

BSTFA/TMCS, N,O-bis(trimethylsilyl)trifluoroacetamide/trimethylchlorosilane; FAME, fatty acid methyl ester; MTBSTFA, N-(tert-
butyldimethylsilyl)-N-methyltrifluoroacetamide; ODS, octadecylsilyl; PFB, pentafluorobenzyl; QTrap, quadrupole ion trap; SIM,
selected ion monitoring.
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samples, samples with high degree of missingness, and
data points with low signal-to-noise ratio. Only those
samples that pass these stringent QA/QC criteria should
be further processed.

For MS data, the mode of acquisition (targeted vs.
untargeted) will impact the imputation procedure used.
For targeted acquisition, it is not usually the case that the
data will have missing values, but for untargeted acqui-
sition, missing values are a common feature (8). In that
case, a predefined threshold level is appropriate. The em-
pirical threshold for missing values is mostly based on
sample size, and the goal is to diminish false-positive
identification for differentially expressed metabolites
based on skewness caused by imputation. For example,
for cell line studies, the number of replicates is usually
small per experimental condition (,10). Hence, the
threshold needs to be stringent (;20%). On the other
hand, a large study could have .200 samples per condi-
tion of interest (e.g., clinical study with healthy vs. di-
abetic plasma). In this scenario, one could consider
imputing ;50% given the large number of data that are
available. For studies with dozens of samples but not
hundreds, the threshold should be calibrated between
20 and 50%. Missing values can be imputed either at
the minimum detection level or through imputation using
a nearest neighbor (KNN) procedure, where the number
of nearest neighbors should be selected judiciously
depending upon the number of samples available in the
study (pamr package in the R programming language)
(22). Depending on the study design, several different
approaches are available, ranging from simple median

centering, to centering and scaling based on the values
of internally spiked standards, to using more advanced
fixed-effects ANOVA procedures that use factors, data
platform, batch information, and ionization mode. The
best strategy is to use different thresholds and different
imputation strategies and assess the sensitivity of the
results obtained; the downside is that this is a labor-
intensive process. To demonstrate the importance of
selecting the correct imputation method, four different
imputation strategies were applied to a data set of control
and diabetic urine samples for amino acid analysis, of
which 5 out of 27 samples had missing values for methi-
onine (K.M. Sas and S. Pennathur, unpublished data; Fig.
3). The first strategy is KNN with three nearest neighbors,
the second with five nearest neighbors, the third imputa-
tion by the mean of the metabolite, and the fourth by the
median of the metabolite. As shown, due to the presence
of outliers, mean imputation alters the distribution of
data, median imputation slightly compresses the variance,
KNN 5 impacts the overall median of the metabolite, and
KNN 3 preserves the distributional characteristics ob-
served in the original data (with the missing values).
Hence, KNN 3 is the one that does not “perturb” the
data architecture in this example. If the missing values
threshold is set low (e.g., 20%), different strategies may
produce approximately similar results (Table 3). But as
the threshold increases, the results would be different.
Importantly, even if one resorts to robust nonparametric
tests to assess differentials (e.g., rank sum test), the dis-
tribution of the data matters, as shown in Table 3. There-
fore, careful assessment of all of these factors needs to be

Figure 3—Comparison of imputation methods for missing values. Methionine concentrations in urine were determined by GC-MS, and 5
out of 27 control subjects had values below the limit of detection. Data were log2 transformed and analyzed using different imputation
methods for the missing values (three nearest neighbors [KNN 3], five nearest neighbors [KNN 5], metabolite mean value [Mean Imp], or
metabolite median value [Median Imp]). The median and variance for each imputation method is shown. KNN 3 had the smallest effect on
data distribution. +, outlier.
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considered in consultation with the statistician with ex-
pertise in metabolomics before choosing the appropriate
procedure for normalization.

Midlevel Analyses
These types of analysis involve identification of differen-
tially expressed metabolites, model building for classifi-
catory or survival analysis purposes, dimension reduction
for extracting broad patterns from the data, and identi-
fication of groups of samples and/or metabolites.

Specifically, differentially abundant compounds across
two classes can be identified using parametric (Student t
tests) and nonparametric (rank sum) tests, whereas for
multiple classes, ANOVA models can be used. The latter
models in addition to the key treatment factors being
tested also allow for the incorporation of key covariate
information, such as clinical (stage of the disease and in-
dices of physiological impairments), as well as demo-
graphic and health habits of the subjects (e.g., age, race,
sex, education, smoking, and alcohol consumption in the
case of humans, and strain, sex, and housing conditions in
the case of mice).

Given the large number of markers that are likely to be
identified as significantly different between groups, as
well as the number of conditions and differences in any
given experiment, the possibility of type I error (false
positives) can occur due to multiple comparisons. Hence,
family-wise error rate methods (23,24) and false discovery
rate (FDR) methods (23–25) should be used as a first filter
to reduce or eliminate false positives. Following this, ad-
ditional filters (e.g., fold change) can be used based on the
platform (targeted vs. untargeted) and other biological
considerations. As we have previously shown, untargeted
data are more variable and therefore less reliable, owing
to a greater need for additional filters, and ultimately,
follow-up using a targeted approach is required (8). It is
important to keep in mind that as the sample size
increases, metabolites with even small fold changes may
be considered differentially expressed. Therefore, it would
be important to adjust the FDR threshold before other
criteria are introduced.

In many studies, classificatory and/or prognostic
models have to be built. Such models are important for
delineating metabolomic signatures associated with clinical

outcomes, including disease/normal status, and clinical
characteristics. For categorical outcomes (e.g., disease/
normal status), there are several standard models in the
machine learning literature that can be used, including
logistic regression, random forests, and support vector
machines (26), whereas for outcomes capturing event
times (e.g., disease recurrence or survival), Cox propor-
tional hazards models can be used (27). An important as-
pect of this modeling is to enforce sparsity through
penalization (e.g., lasso or group lasso penalties) that leads
to more parsimonious models that exhibit good theoretical
properties in terms of inference and predictive ability (26).
In the case of structured penalties (e.g., group lasso), one
can impose a priori biological information, such as pathway
structure. The performance of these classificatory and
prognostic models can be assessed through K-fold cross-
validated error rates, and through receiver-operator char-
acteristic curve, and the area under the curve can be used
as an overall measure of model fit. The significance of the
area under the curve metric for each fitted model can be
assessed through the Mann-Whitney U test and it can also
be used to select between competing models (24).

Finally, depending on project needs, other analyses to
gain insight into global properties of the available data
need to be undertaken. These include dimension re-
duction techniques, such as principal components analysis
and penalized (for sparsity) variants for obtaining more
robust low-dimensional representations of the samples
and/or the metabolites (see Guo et al. [28] and references
therein), clustering of samples and/or metabolites into
groups using a wide range of algorithms (hierarchical,
model-based, partition such as k-means and robust variants
and graph-based ones such as normalized cuts) (26). In addi-
tion, enhanced visualization capabilities by mapping results
into pathways have proved a useful task (see PATHWAYS

MAPPING AND ENRICHMENT-BASED METHODS).

Methods and Tools for Bioinformatics Analysis
of Metabolomics Data

Pathways Mapping and Enrichment-Based Methods
As the metabolomics data sets generated by the analytical
methods described above are becoming increasingly large
and complex, there is a growing need for the computa-
tional data analysis and visualization tools that would
help interpret experimentally observed changes and put
them in relevant biological or disease context. One widely
used approach to interpreting metabolomics data relies on
mapping them onto metabolic pathways. Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) (29) and BioCyc
(30,31) are the most widely used databases of this kind
and contain information about metabolic pathways, metab-
olites, metabolic reactions, and enzymes and the genes that
encode them. The data contained in these databases were
generated via genome-based metabolic reconstructions com-
bined with extensive literature searches and expert curation.
Subsequently, a number of more detailed organism-specific

Table 3—Comparison of imputation methods for missing
values

Imputation
method

Student t test
FDR P value

Fold
change

Rank sum
FDR P value

KNN 3 0.2400 1.7702 0.0203

KNN 5 0.3164 1.7777 0.0241

Mean 0.9733 2.1206 0.4234

Median 0.2393 1.7348 0.0037

Comparison of imputation methods for log2-transformed methi-
onine concentrations in urine of control and diabetic patients.
Missing values present for 5 out of 27 control samples.
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metabolic reconstructions have been developed (32–36). In
addition to detailed information about metabolic pathway
topology and individual components of pathways, some of
these include information about subcellular compartments
where the metabolic reactions occur (36) and describe met-
abolic enzyme complexes and transporters (33).

There are a number of bioinformatics tools for pathway
mapping and visualization that make use of these data sets.
Some of these tools use the static pathways charts (37,38),
whereas others make them interactive (39,40). One such
tool, Paintomics, can load metabolite and gene expression
measurements and visualize them over KEGG pathway
maps (38). A more interactive tool, Visualization and
Analysis of Networks containing Experimental Data
(VANTED), has been developed for exploration of exper-
imental metabolomics data in the context of metabolic
pathways, originally from plants (39,40). However, it can
be used for any data set; users can load KEGG maps
or build their own pathways. Another metabolomics
pathways analysis tool, Metabolomics Pathway Analysis
(MetPA) (41), that is now part of the comprehensive
data analysis package MetaboAnalyst (42), in addition
to pathway mapping, calculates pathway impact based
on a normalized centrality measure of a given compound
relative to the other compounds.

One of the limitations of visualizing data over pathway
charts stems from the fact that metabolites are often
involved in multiple pathways. In order to understand the
overall effect of the altered level of a given metabolite, the
user has to go through multiple pathways and understand
the connections between them. An alternative to this
approach is building a network of genes/metabolites
where each node is unique and nodes from multiple

pathways can be linked together. Such networks provide
an easy way to connect multiple pathways and build gene/
compound centric maps enabling quick data exploration
and logical, well-informed hypothesis generation. Met-
Scape (43) is an example of a tool that uses this approach.
MetScape is a plugin for the widely used network visual-
ization program Cytoscape (44). It allows users to upload
a list of metabolites with experimentally determined con-
centrations and map them to reactions, genes, and path-
ways. It also supports identification of enriched biological
pathways from expression profiling data, building the net-
works of genes and metabolites involved in these path-
ways, and allows users to visualize the changes in the
gene/metabolite data over time/experimental conditions.
MetScape uses human metabolic pathways, although it can
also map mouse and rat genes to their human homologs.

To illustrate the utility of MetScape for mapping
metabolomics data and merging them with other omics
data, we loaded the list of metabolites detected in plasma
samples of individuals with and without incident type 2
diabetes from the Framingham Heart Study, reported by
Wang et al. (45). Among the most significant metabolites
that had higher concentrations at baseline between case
and control subjects were three branched-chain amino acids
(BCAAs), leucine (P = 0.0005), isoleucine (P = 0.0001), and
valine (P = 0.001), and three aromatic amino acids, phenyl-
alanine (P , 0.0001), tyrosine (P , 0.0001), and trypto-
phan (P = 0.003). Figure 4 shows the MetScape network for
the valine, leucine, and isoleucine degradation pathway. To
complement the metabolomics data, we also loaded gene
expression data and the list of pathways that are differen-
tially expressed in human diabetic muscle compared with
healthy controls (46). This tool supports simultaneous

Figure 4—MetScape network for valine, leucine, and isoleucine degradation pathway. A: The metabolites are shown as pink hexagons. The
metabolites that were experimentally measured by Wang et al. (45) are shown in red. Green border shows significant metabolites. Gene
expression data from Mootha et al. (46) were superimposed on the metabolic network. Gene nodes are blue; the size of the node represents
the direction of the change. Dark blue color is reserved for genes from enriched pathways. Gray nodes represent the reactions, and green
nodes are enzymes. B: A zoomed in view of the same network, where MetDisease was used to annotate the metabolites with MeSH
disease terms. The lower part of the figure shows the portion of MeSH tree. When diabetes mellitus is selected, the related metabolites (in
this case valine) are selected. Additional information can be obtained by right-clicking on metabolite node. The insert on the right shows the
list of publications that support the connection between the metabolite and the MeSH term.
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analysis of gene expression and metabolomics data that can
facilitate generating new hypotheses and prioritization of
genes/compounds for targeted follow-up studies. It is worth
pointing out that MetScape networks tend to get large,
especially when gene expression data are included, introduc-
ing the so called “hairball” effect and making it difficult to
comprehend the underlying perturbed pathways. MetScape
has built in powerful filtering mechanisms that allow users to
focus on the relevant parts of networks. When a network is
built, the tool displays the list of the pathways that involve
the nodes in that network. Users can select one or more
pathways and respective nodes will be highlighted. MetScape
also provides an easy way to create manageable subnetworks
that can be interrogated further. Additional options for in-
terrogating large networks include Concept filter (if a file
containing the list of concepts enriched based on gene ex-
pression data have been supplied by the user) as well as built-
in Cytoscape features, such as Group Attributes layout.

Thus pathway mapping and network analysis tools can
help shed light on the molecular mechanisms underlying
many complex diseases, including diabetes, especially
when linked with other omics data. Experience with other
omics data (especially expression profiling) shows that it
is also very important to have a measure of significance
for the pathways that are involved in the observed
changes. A large number of methods and tools have
been developed for performing what is often called an
enrichment analysis on gene expression data (recently
reviewed in Khatri et al. [47]). The goal of enrichment
analysis is to evaluate what predefined sets of genes
(e.g., pathways) are enriched with differentially expressed
genes from a given experiment (e.g., microarray). Several
recently published tools (Metabolites Biological Role
[MBRole] [48], Metabolite Set Enrichment Analysis
[MSEA] [49,50], and 3Omics [51]) attempted to extend
this approach to metabolomics data. Although these tools
can certainly be quite useful in some situations, it is im-
portant to keep in mind that one of the reasons why these
methods perform well in analysis of gene expression data
is that each transcriptomic experiment can measure tens
of thousands of genes. In contrast, current metabolomics
techniques at best can identify a few hundred metabolites.
As a result, metabolite set enrichment testing has consid-
erably lower statistical power, which is further compli-
cated by metabolites appearing in multiple metabolic
pathways. One way to address this issue is to incorporate
network topology information (e.g., from KEGG) into the
pathway enrichment procedure that leads to higher statis-
tical power (52,53). Further, the advantages of network-
based methods pathway enrichment methods are discussed
in Mitrea et al. (54). Scarcity of metabolite annotations
further compounds this problem. More recent efforts in-
clude attempts to incorporate the unknown spectral fea-
tures into enrichment analysis and network building (55).
The advantage of this approach is twofold: it has the po-
tential to identify the unknown compounds and boost the
statistical power at the same time.

Going Beyond Pathways
Pathways analysis and visualization have become an
integral part of biological interpretation of metabolomics
experiments. Although the pathway databases provide
carefully curated, high-quality data that cover the majority
of primary metabolites, the coverage of lipids, secondary,
and volatile metabolites is significantly lower (56), resulting
in relatively low overall coverage of experimentally identi-
fied metabolites. Additional factors contributing to this
problem include the presence of metabolites from different
organisms (e.g., presence of bacterial metabolites in human
samples originating from microbiome), drug metabolites,
and compounds of environmental origin.

MetaMapp tool attempts to overcome this problem by
combining the biochemical reactions from KEGG with
Tanimoto chemical and National Institute of Standards
and Technology mass spectral similarity scores (56). Efforts
have been made to extend metabolite annotation coverage
beyond pathways using Medical Subject Headings (MeSH)
to link them to publications (http://metab2mesh.ncibi.org)
(57). Figure 4B shows the annotations generated by the
Cytoscape plugin MetDisease (http://apps.cytoscape.org/
apps/metdisease) that uses the Metab2MeSH data set for
the BCAA degradation network (58).

In summary, the development of methods and tools for
analysis and visualization of metabolomics data remains an
active area of research.

METABOLOMICS AND DIABETES RESEARCH

Identification of Putative Biomarkers
Lifestyle alterations such as diet and exercise can reduce the
incidence of diabetes (59,60). Therefore, it is increasingly
important to identify early biomarkers that predict risk of
development. Recent metabolomics studies have identified
two main classes of metabolites that have shown promise as
biomarkers of diabetes risk, namely, amino acids and lipids.

Alterations in amino acid levels with obesity have been
known for decades (61). However, recent studies have
identified amino acids as potent predictors of diabetes
and validated them in large, well-characterized cohorts.
Using the Framingham Heart Study Offspring Cohort,
Wang et al. (45) used a targeted LC-MS/MS approach to
examine small metabolites such as amino acids, urea cycle
metabolites, and nucleotide metabolites. Elevated levels of
the BCAAs (isoleucine, leucine, and valine) as well as some
aromatic amino acids (tyrosine and phenylalanine) were
able to predict risk up to 12 years prior to onset of di-
abetes, particularly when three of the metabolites (isoleu-
cine, phenylalanine, and tyrosine) were incorporated into
a model together. Other groups have also identified
BCAAs and aromatic amino acids as predictors of type 2
diabetes in both humans and animal models (62–65).
Further work with the Framingham cohort identified 2-
aminoadipic acid (2-AAA) as an independent biomarker
for risk development and highlighted the role of 2-AAA
as an insulin secretagogue (66). 2-AAA is an intermediary
metabolite of lysine degradation and has previously been
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shown to be increased by diabetes and renal failure
(67,68) and has been suggested to be a biomarker of
oxidative stress (69,70). In addition to the Framingham
Study, metabolites were identified in plasma from
patients in the Cooperative Health Research in the Region
of Augsburg (KORA) cohort, followed by validation in the
European Prospective Investigation into Cancer and Nutri-
tion (EPIC)-Potsdam cohort in an attempt to identify bio-
markers of prediabetes (71). Using a targeted LC-MS/MS
approach with a commercially available kit that measures
metabolites across five compound classes, two metabolites
(glycine and lysophosphatidylcholine [18:2]) were identi-
fied as biomarkers of impaired glucose tolerance and type
2 diabetes. Reduced concentrations of glycine as a predictor
of type 2 diabetes has been found in additional studies as
well (62,72).

Zhang et al. (73) used untargeted metabolomics to
explore underlying mechanisms of disease progression
and treatment response in order to identify novel metab-
olite biomarkers of progressive murine diabetic nephrop-
athy. In total, 56 features showed up- or downregulation
by more than twofold in the diabetic animals. Of the 56
molecular features, 32 were identified by database search-
ing. Rosiglitazone treatment reversed 9 of these 32 com-
pounds (including indoxyl sulfate) back to baseline, and
these may therefore serve as potential biomarkers for re-
sponse to treatment and reversal of rodent diabetic ne-
phropathy phenotype. Interestingly, a study from Barreto
et al. (74) reported that serum indoxyl sulfate correlates
inversely with renal function and might have a direct re-
lationship with aortic calcification and pulse wave velocity
in patients with chronic kidney disease. Niewczas et al. (8)
studied plasma metabolomics profiles as determinants of
progression to end-stage renal disease (ESRD) in patients
with type 2 diabetes. This nested case-control study eval-
uated 40 case subjects that progressed to ESRD during
8–12 years of follow-up and 40 control subjects who
remained alive without ESRD from the Joslin Kidney
Study cohort. The metabolomics platform identified 16
uremic solutes that were already elevated in the baseline
plasma of case subjects years before ESRD developed. Es-
sential amino acids and their derivatives were significantly
depleted in the case subjects, whereas certain amino acid–
derived acylcarnitines were increased.

Dyslipidemia is an independent risk factor for type 2
diabetes (75,76). However, this includes total lipid or lipid
class (i.e., triacylglycerols or HDL) levels. Several recent
studies have identified signatures of particular lipids or
patterns in lipid classes to be predictive of diabetes onset.
Rhee et al. (77) used a targeted LC-MS/MS approach with
plasma from the Framingham Heart Study cohort to iden-
tify that saturated or monounsaturated fatty acids of
lower carbon number were associated with an increased
risk of type 2 diabetes, whereas longer carbon chains with
increased double bond content (polyunsaturated fatty
acids) conveyed a decreased risk of type 2 diabetes. Although
concerned primarily with triacylglycerols, this association

was true across several lipid classes. Exercise- and diet-
induced weight loss (78), which are known to decrease risk
of type 2 diabetes, resulted in a change in triacylglycerol
pattern to support this finding; that is, triacylglycerol com-
position changed to be enriched in unsaturated, long-
carbon side chains. Findings from targeted LC-MS/MS
studies with the KORA and EPIC-Potsdam cohorts also
support this result, particularly in regards to degree of
saturation (62,71). In addition to predicting risk of devel-
oping diabetes, the degree of lipid saturation has been
linked to diabetes complications. NMR metabonomics
with baseline serum from subjects in the Finnish Diabetic
Nephropathy (FinnDiane) Study linked high levels of sat-
urated fatty acids in serum to accelerated progression of
kidney disease in patients with type 1 diabetes (79).

One important limitation of many of the current
studies is the depiction of metabolite levels by quartiles.
Although appropriate for categorizing patients for bio-
marker analysis, actual metabolite concentrations or
thresholds need to be set that predict risk before these
metabolites can be used clinically. An alternative to setting
threshold values may be to determine metabolic pheno-
type by assessing metabolic responses in an individual
before and after an oral glucose tolerance test (80). Al-
though this is an exciting, personalized alternative, the
potential use of this concept needs further testing.

Determining Pathogenesis
The biomarker identification studies discussed earlier
provide insight into the pathogenesis of diabetes, as these
early changes highlight pathways such as amino acid
metabolism, specifically catabolism of BCAAs. The in-
crease in BCAAs has been suggested to impact insulin
sensitivity through the mammalian target of rapamycin
complex (mTORC), as BCAAs activate mTORC1 and the
downstream target ribosomal protein S6 kinase 1 (S6K1)
(81). S6K1 can then impact insulin sensitivity through its
repression of signaling through insulin receptor substrate
1 (82). Additionally, catabolism of BCAAs can provide
intermediates for the TCA cycle, potentially driving en-
ergy production (81). The idea that TCA cycle flux is altered
in diabetes has been supported in other metabolomics
studies in rats and mice (83,84).

To determine the effect of insulin treatment on
diabetes-associated metabolic changes, Dutta et al. (85)
examined differences in the plasma metabolome of con-
trols, type 1 diabetic patients treated with insulin, and the
same type 1 diabetic patients following 8-h insulin with-
drawal. Untargeted metabolomics identified that whereas
many of the metabolites associated with insulin deficiency
were normalized with insulin treatment, not all metabo-
lites were restored to control levels. This suggests that the
diabetes-mediated metabolic alterations are not due to
substrate availability alone but an underlying mechanism
such as metabolic reprogramming. Additionally, pathway
enrichment analysis and integration of metabolomics
data with transcriptomics data in this study identified
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new pathways affected by insulin secretion, including
several that lead to vascular complications. Although
still in the early stages, identification of these pathways
will allow for further investigation into the pathogenesis
of one of the most life-threatening complications of
diabetes.

A recent study by Sharma et al. (86) established that
diabetic kidney disease is characterized by mitochondrial
dysfunction. In this study, the urine metabolome from
healthy and diabetic patients, with and without diabetic
kidney disease, was assessed using targeted GC-MS. The
comparison of results between subsets of diabetic patients
based upon progression to kidney disease allows for
greater in-depth determination of pathways involved in
disease progression. Several of the metabolites linked to
kidney disease were water-soluble organic anions, leading
the authors to investigate expression of several organic
anion transporters (OATs). OAT1 and OAT3 were reduced
in renal biopsies from patients with diabetic kidney dis-
ease. Improper transport due to diminished OAT expres-
sion could result in increased intermediates of the TCA
cycle, a finding that has previously been reported (83,84).
Additionally, these transporters are important for energy
metabolism (87,88). Nearly all of the metabolites (12 of
13) separating the diabetic groups based on kidney dis-
ease were associated with mitochondria, leading the
authors to further examine mitochondrial function. Using
kidney biopsies and urinary exosomes, the authors found
evidence of reduced mitochondrial biogenesis. Confirming
this finding, reduced mitochondrial biogenesis has been
shown in a mouse model of diabetes, and this dysfunction
was rescued by augmentation of AMPK activity (89). These
studies provide insight into the mechanisms driving one of
the primary complications of diabetes.

Using metabolomics techniques, recent studies have
investigated the effects of diabetes on atherosclerotic
lesion cells such as macrophages, which may account for
increased atherosclerotic risk in diabetes. Fatty acids can
exert inflammatory effects in macrophages, which could
contribute to inflammation in the setting of diabetes-
accelerated atherosclerosis, and possibly other com-
plications (90). After entering the cell, fatty acids are
thio-esterified into their acyl-CoA derivatives, catalyzed
by long-chain acyl-CoA synthetases (ACSLs). Kanter
et al. (91) demonstrated that monocytes from humans
and mice with type 1 diabetes also exhibit increased
ACSL1. Furthermore, myeloid-selective deletion of ACSL1
protected monocytes and macrophages from the inflamma-
tory effects of diabetes. Strikingly, myeloid-selective dele-
tion of ACSL1, but not overexpression of GLUT-1 (92),
prevented accelerated atherosclerosis in diabetic mice with-
out affecting lesions in nondiabetic mice (91). These obser-
vations indicate that ACSL1-derived lipids, but not glucose,
play a critical role by promoting the inflammatory pheno-
type of macrophages associated with diabetes.

Discoveries made from biomarker studies and mecha-
nistic pathway analyses can provide new treatment targets

for therapeutic intervention (93). This idea is highlighted
by a recent study testing the AMPK activator COH-SR4
(94). Although not using metabolomics directly, Figarola
et al. (94) identified that COH-SR4 was able to rescue
many of the abnormalities associated with metabolic syn-
drome in an animal model of obesity, including reduction of
several metabolic enzymes in pathways previously found
to be altered by metabolomics. Additionally, recent exciting
discoveries link intestinal microbiota metabolism of dietary-
derived saturated fats to cardiovascular disease risk, high-
lighting these as attractive potential therapeutic targets for
complications of obesity/diabetes (95–97).

Systems Genetics: Linking Genetic Variance to Clinical
Outcomes via Metabolomics
Genetics of complex traits has been very effective in
defining statistically significant risk loci by mapping
genome-wide genetic variance in large cohorts onto clinical
traits. However, this approach is agnostic concerning the
molecular mechanism and intermediate regulatory cascades
responsible for clinical disease manifestation. To close the
molecular knowledge gap, systems genetics uses as a key
tool linkage and association methods of genotype in-
formation with an intermediary molecular trait of interest,
e.g., metabolite level (metabolic quantitative trait locus),
to determine the impact of genetic variance on the trait in
question (98–100). Subsequent mapping of metabolic
quantitative trait loci onto association studies with clinical
outcomes aids to identify the molecular impact of genetic
variance associated with a disease phenotype. Recent stud-
ies identified gene-metabolite dependencies by integrating
genome-wide association studies (GWAS) with metabolo-
mics data sets (mGWAS) supporting the cross-omics strat-
egy (101–104). Combining these studies in a systems
approach (mGWAS reviewed in Adamski [105] and Adamski
and Suhre [106]) synergistically expands insight into disease
pathogenesis and strengthens the associations with disease
phenotype. One such study applied targeted metabolomics,
transcriptome analysis, and whole genome sequencing to
liver samples from a diabetes-resistant C57BL/6 leptinob/ob

and diabetes-susceptible BTBR leptinob/ob mouse strain
(101). The authors showed that groups of liver metabo-
lites significantly associate with distinct chromosomal
regions. Suhre et al. (107) reported on the genetic asso-
ciation of urinary metabolites of 862 male participants
from the epidemiological Study of Health in Pomerania
(SHIP). Independent validation in an additional 2,031
samples (1,039 independent SHIP and 992 samples
from the KORA study) revealed consistent genome-wide
significant loci tagging SLC7A9 and NAT2, which have
been already associated with CKD and drug-induced liver
toxicity, respectively (108–110). Kettunen et al. (111)
used NMR spectroscopy–based detection of serum metab-
olites of over 8,000 genotyped Finnish individuals and
were able to ascertain a high degree of heritability for
metabolic phenotypes, ranging from 40% up to 60%.
Although these represent early-stage discovery, further
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cross-omics data integration would be even more in-
formative and a rich discovery platform for future
research.

CONCLUSIONS AND FUTURE PERSPECTIVES

Metabolomics is an integral part for understanding disease
processes as it measures functional outputs of a cell, tissue,
or organ. Although still a relatively new field, significant
strides in data collection and interpretation tools have
allowed for a rapid expansion of metabolomics in the past
few years. Several limitations in these areas still exist, such
as lack of a platform that detects all metabolites simulta-
neously, an incomplete metabolome, lack of metabolite
annotations in search databases, and low statistical power
for enrichment analyses. Despite these limitations, metab-
olomics is being widely used in the field of diabetes and its
complications, particularly in the identification of disease
biomarkers and novel therapeutic interventions. Using the
information garnered in the biomarker investigations,
future research should shed more light on disease patho-
genesis and explore new treatment options. As the ana-
lytical and bioinformatics tools continue to become more
developed, integration of metabolomics data with other
omics data sets will allow for a greater understanding of
disease processes and ultimately allow for personalized
medicine to become the mainstream standard of care.
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