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ABSTRACT The Eyring-Stover theory of survival de-
veloped in earlier papers can be readily applied to a wide
diversity of ecological phenomena, with implications for
identifying basic responses of organisms to their environ-
ment. We report several examples to demonstrate the
generality of the theory.

Over the last two decades ecology has begun to develop a
theoretical basis. The works of Holling (1), Hutchinson (2),
Levins (3), MacArthur (4, 5), Wilson (4), and others have
contributed to that framework, permitting the prediction of
some ecological phenomena. The model that follows is an at-
tempt to analyze many ecological questions with a more con-
cise theory, enhancing the ability to predict ecological events
with general confidence.

In 1970, Eyring and Stover (6-10) developed their survival
theory. Their theory was based on a 20-year study of the ef-
fects of aging, cancer, and various forms of internal irradiation
in beagles. The irradiation was administered in a manner such
that various types of irradiation could act simultaneously on
the same site through the same mechanism, through inde-
pendent mechanisms on the same site, and on independent
sites through independent mechanisms. They were able to
show that the probability of an individual surviving in a
homogeneous population is given by

S = (1 + e-(abt))-1 [l]

where S is survival, a is the organisms reserves that it can use
in resisting those forces leading to nonsurvival, and b is the
difference between the rates of damage and repair, with t
respresenting time. By using the absolute rate theory, they
were able to show that

(a - bt) =- [(AG`o- AG5oj)/(RT - lnCo

+ Z lnCoj) + (Z ki - E kj)t] [2]

AG*0j represents the free energy of activation of the damaging
process, with Coi being the concentration of ith molecule
entering into the damaging reaction; AG5oj is the free energy of
activation of the repair process, with Coj being the initial
concentration of the jth molecule used in the repair process.
R is a constant, T is temperature, and the k terms are rate
constants for destruction of the genes manufacturing the jth
molecule.
The Eyring-Stover equation [S = (1 + ea-bt)'-] can be

derived from other considerations: (a) Let r be the number of
sites available. We suppose further that (b) n sites are

occupied, and (c) the rate at which a site becomes occupied is
proportional to the product of the number of organisms seek-

ing to fill that site and the number (r - n) of empty sites. This
yields the equation

dn= k(r) dn/r = (k'r) (r n) ? [3]

Now if we let n/r = N, the fraction of sites that are filled, we
have

dN =kN( -N) [4]dt

The solution to this equation is readily found to be

N = (1 + e-k(7-t)) -1 [5]

k is a rate constant, and is equal to the algebraic sum, b,
of the processes promoting or hindering occupation (see Eq.
[1]). T represents the time of half survival, and kT is equal to
a, the reserve strength of our system. If the time of the initial
observation does not correspond to t = 0, then the equation
is

S = (1 + e(ab(t+to)))-' (1 + e-(a'-bt))-1

where a' may be positive or negative depending on whether t
starts before or after the time (r) of half survival. Note that
S = (1 + ea-b) -1 corresponds to growth, while S = (1 +
e-(a-bt)) -1 corresponds to decline.
The equation N = (1 + ea-bt) 1 was derived by Verhulst

(11) from somewhat different assumptions. We do not main-
tain, as Verhulst did, that this is the equation for population
growth unless there is only one cause affecting the growth of
the population and the population is homogeneous, in which
case the equation would be of the form described below in Case
A, otherwise it will follow a more complex form, Case B or C,
below.

Considering the generality of the Eyring-Stover theory, we

hypothesized that their mathematical formalization could be
applied to a diversity of ecological phenomena, including
population growth; growth of an individual; the number of
species colonizing an island as a function of time, distance
or area; and the dynamics of seral communities and ecosys-
tems.

Eyring and Stover described five cases of the theory, each
of which can be applied to ecological events. Those cases and
examples are described below:

Case A. "Nonsurvival of a homogeneous population from a

single cause."
Using Eq. [1] we see that

dS/dt = -bS(1 - S) . [6]
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TABLE 1. Decline in density of a population of
Ranunculus acrs in Walks. Sarukhan's population G2

Time (in weeks) Observed Predicted

0 26 24
4 23 23
5 23 23
8 23 22
10 23 22
13 23 22
15 21 22
23 20 20
26 17 20
28 17 19
32 16 18
42 15 16
50 15 14
54 15 13
56 13 13
58 12 12
59 11 12
62 11 11
66 8 10
77 5 8
81 5 7
107 4 3

a = 2.18, b = 0.04.

TABLE 2. Decline in dentity of a population of
Ranunculus bulbomu8 in Wales. Sarukhan'e population F1.

Time (in weeks) Observed Predicted

0 28 26
5 28 25
6 27 25
8 23 25

11 23 24
18 22 23
27 20 21
28 20 21
30 19 20
31 17 20
57 11 12
58 11 11
60 11 11
62 11 10
66 11 9
77 11 6
78 11 6
82 11 5
107 10 2

a = 2.44, b = 0.0489.
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FIG. 1. Growth of an individual tree, American elm, with time.
(a = 2.63, b = 0.28359).
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FIG. 2. Growth of an individual tree, hawthorn, with time.

(a = 1.0619, b = 0.159).

between DenUyl's (13) data and the predicted values lend
confidence to the theory (Figs. 1 and 2).

If there is more than one cause contributing to survival or
nonsurvival, then the survival S would follow either Case B
or Case C as described below.

Case B. "Survival with several simultaneous independent
mechanisms contributing to nonsurvival."

We have used Case A to describe decline of populations due to
aging in two species of Ranunculue (12). We assumed that
aging was the principle cause for the decline and that it was
effected principly through one mechanism. Tables 1 and 2,
based on data from Sarukhan and Harper (12), show the
success of the model based on these assumptions.
The growth of a tree under ideal conditions, i.e., no com-

petition or minerals limiting, can be treated as the result of a
single cause, the addition of cells. The high correlation

S = II Si; where St = (1 + ea-b)-
dS = dSSI

dInS E dlnSj
dt j dt

[7]

[8]

Note that the individual rates of nonsurvival are multiplied
by the probability that the organism or population has not
become extinct from the other causes.
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TABLE 3. Decline in density of Pinus taeda
in a North Carolina forest

Time (in years) Observed Predicted

11 26.8 25.2
22 18.2 20.2
31 15.1 15.8
34 12.2 14.3
42 12.5 10.7
75+ 3.4 2.3

a = 1.46, b = 0.055.

This form of the equation would be applicable where one
species was in competition with several other species, and
competing through different mechanisms with each species.
Competition with and/or predation of a species would follow
this form. The only requirement is the independence of the
mechanisms.

Case C. "More than one cause acting through the same
mechanism." The only difference between the formalization
of Case A and Case C is that the b term in Case A is replaced
by E bi.

i
So the equation is S = (1 + e(a(b)t))1
Case C would be applicable where several species are in

competition for the same resource and competing through the
same mechanism. This case would also apply where several
species of predators are preying on the same species.

Oosting's data (14) on Pinus taeda (Table 3) and oak-
hickory (Fig. 3) in North Carolina illustrate the theory for
this case. The number of species colonizing an island as a
function of time is also an example of this case; the rates of
immigration and extinction are summed to equal b. The data
in Fig. 4 are after MacArthur and Wilson (15) and demon-
strate the vigor of the model in this island biogeographical
question.

Case B and Case C are compounded frequently in ecology:
one can have several species competing for the same resource
through the same mechanism and competing for different re-
sources through another mechanism, both forms taking place
at the same time. Eyring and Stover point out (16) that "it
will be important in each case to establish whether a new cause
acts through the same mechanism as in Case C or through an
independent mechanism as in Case B or in both ways. In the
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FIG. 3. Increase in density of oak-hickory in North Carolina.

(a = 5, b = 0.034).
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FiG. 4. Increase in number of species of higher plants on the
three islands of the Krakatua group. (a = 3.08, b = 0.0606).

latter circumstance, we would have Case C with possible
changes in the cell's reserves, the aj values, and also in the
rates of change, the bi values." The last circumstance is the
case in population growth and some island biogeographical
questions. To handle this case, the cause that is acting in both
ways should be treated as a product of causes. Fig. 5 shows
the increase in numbers of species of higher plants on islands
as a function of area rather than time (17).
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FIG. 5. Relationship between number of higher plant species

and area of islands in the South Pacific. (Note that area has
replaced time in the equation and the calculated value was based
on a running average, and assuming 88 acres to be the maximum
allowable area.) (a = 1.40, b = 0.23).
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Case D. "A single mechanism of nonsurvival requiring m
like unchanged sites and n changed sites." Each site in the
Eyring-Stover theory can be considered to be the population
of a single species in a seral community. The survival (S) of
the community is given by:

n-I (m +r1) n-' (-1)`(n- 1)!Pmn~7
r- (nf- )! r=0(n 1-r)!r!(m+r) [9]

where P = (1 + e(at))-1.

Case E. "Nonsurvival due to independent action on
separate systems of sites."

s = II Si [10]

The Eyring-Stover model has far-reaching possibilities in
ecology, as demonstrated above. The single formalization is
being used to explore predation, competition, aging, com-
munity dynamics, and ecosystems.

We thank the National Science Foundation and the United
States Forest Service.
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