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Abstract

We propose a robust multimodal dictionary learning method for multimodal images. Joint 

dictionary learning for both modalities may be impaired by lack of correspondence between image 

modalities in training data, for example due to areas of low quality in one of the modalities. 

Dictionaries learned with such non-corresponding data will induce uncertainty about image 

representation. In this paper, we propose a probabilistic model that accounts for image areas that 

are poorly corresponding between the image modalities. We cast the problem of learning a 

dictionary in presence of problematic image patches as a likelihood maximization problem and 

solve it with a variant of the EM algorithm. Our algorithm iterates identification of poorly 

corresponding patches and re-finements of the dictionary. We tested our method on synthetic and 

real data. We show improvements in image prediction quality and alignment accuracy when using 

the method for multimodal image registration.

1 Introduction

Sparse representation model represents a signal with sparse combinations of items in a 

dictionary and shows its power in numerous low-level image processing applications such as 

denoising and inpainting [4] as well as discriminative tasks such as face and object 

recognition [10]. Dictionary learning plays a key role in applications using sparse models. 

Hence, many dictionary learning methods have been introduced [1, 11, 6, 7]. In [1], a 

dictionary is learned for image denoising, while in [6], supervised learning is performed for 

classification and recognition tasks. In [7], a multimodal dictionary is learned from audio-

visual data. Mutltimodal dictionaries can be applied to super-resolution [11], multimodal 

image registration [3] and tissue synthesis [9].

However, multimodal dictionary learning is challenging: it may fail or provide inferior 

dictionary quality without sufficient correspondences between modalities in the training 

data. This problem has so far not been addressed in the literature. For example, a low quality 

image deteriorated by noise in one modality can hardly match a high quality image in 
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another modality. Furthermore, training images are pre-registered. Resulting registration 

error may harm image correspondence and hence dictionary learning. Such noise- and 

correspondence-corrupted dictionaries will consequentially produce inferior results for 

image reconstruction or prediction. Fig. 1 shows an example of multimodal dictionary 

learning for both perfect and imperfect corresponding image pairs.

In this paper, instead of directly learning a multimodal dictionary from training data [3], we 

distinguish between image regions with and without good correspondence in the learning 

process. Our main contributions are as follows

• We propose a probabilistic model for dictionary learning which discriminates 

between corresponding and non-corresponding patches. This model is generally 

applicable to multimodal dictionary learning.

• We provide a method robust to noise and mis-correspondences. We demonstrate 

this using real and synthetic data and obtain “cleaner” dictionaries.

• We demonstrate consistency of performance for a wide range of parameter 

settings. This indicates the practicality of our approach.

The paper is organized as follows: Sec. 2 describes the multimodal dictionary learning 

method and its probabilistic model. Sec. 3 provides an interpretation of the proposed model. 

We apply the model to synthetic and real data in Sec 4. The paper concludes with a 

summary of results and an outlook on future work.

2 Dictionary Learning Method

Let I1 and I2 be two different training images acquired from different modalities for the 

same area or object. Assume the two images have been registered already.

2.1 Sparse Multimodal Dictionary Learning

To learn a multimodal dictionary D̃ using a sparse representation, one solves

(1)

where ||·||1 is the ℓ1 norm of a vector and the ℓ1 regularization induces sparsity in α, N is the 

number of training samples, D̃ = [D1, D2]T is the corresponding multimodal dictionary 

(dictionaries are stacked for the two modalities) and x̃i = Ri[I1, I2]T (Ri is an operator to 

select the ith image patch). Note that there is only one set of coefficients αi per patch, which 

relates the two dictionaries.

2.2 Confidence Measure for Image Patch

The confidence can be defined as a conditional probability p(h|xi). Given image patches 

 we want to reconstruct them with our learned multimodal dictionary. Here, h is the 

hypothesis of whether the reconstruction of xi uses some ‘noise’ dictionary items (i.e. non-
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corresponding dictionary items); h = 1 indicates that the reconstruction xi uses ‘noise’ 

dictionary elements.

Applying Bayes Rule [8, 2], p(h = 1|xi) can be represented as,

(2)

Assuming the independence of each image patch xi and that the pixels in each patch follow a 

Gaussian distribution, for p(xi|h) we assume

(3)

The parameters we need to estimate are θ1 = {μ1, σ1} and θ0 = σ0, as well as the prior 

probability p(h), where p(h = 1) = π and p(h = 0) = 1 − π.

Based on the assumption of conditional independence of the random variable xi given h and 

θ [8], we can use either maximum likelihood (ML) or maximum a posteriori (MAP) 

estimation for these parameters [8].

2.3 Robust Multimodal Dictionary Learning based on EM

For robust multimodal dictionary learning, we want to estimate θ= {D̃, α} considering the 

latent variable h. Based on the probabilistic framework of dictionary learning [1], we have 

p(x̃|θ) = Σhp(x̃,h|θ). The ML estimation for θ is as follows

(4)

Instead of directly maximizing ℓ(θ), we maximize the lower bound Q(θ) =Σhp(h| x̃, θ) log 

p(x̃, h| θ) [8]. p(h| x̃, θ) is the confidence in section 2.2. We can apply the following EM 

algorithm to maximize Q(θ),

In the E-step we compute p(hi| x̃, θ), hi, ∈{1,0}, which provides a confidence level for each 

training patch given D̃ and α. In the M-step p(hi| x̃, θ) is a weight for each image patch for 

updating θ. We use a variant of the EM algorithm for multimodal dictionary learning. We 

replace p(hi|x̃, θ) by δp (p(hi| x̃, θ)). Here, δp (p) is an indicator function and δp (p) = 1, p ≥ 

0.5, δp (p) = 0, otherwise. Thus in each iteration we rule out the image patches which have 

high confidence that they are noise patches. We then refine the multimodal dictionary using 

the corresponding training samples. The detailed algorithm is shown in Alg. 1.
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Algorithm 1

EM algorithm for Multimodal Dictionary Learning

Input: Training multimodal image patches: {x̃i}; i ∈ 1,…,N;
Initialize multimodal dictionary D̃ = D̃0, D̃0 is trained on all of the x̃i;

Output: Refined dictionary 

1: (E-step) compute δp (p(h=0| x̃i, θ)), where

δp(p) = {1, if p ≥ 0.5,

0, otherwise.
(5)

p(h = 0 ∣ x
∼

i, θ) =
p( x
∼

i ∣ h = 0, θ)p(h = 0)

p( x
∼

i ∣ h = 1, θ)p(h = 1) + p( x
∼

i ∣ h = 0, θ)p(h = 0)
. (6)

update θ1 and θ0 in (3) based on δp (p(h=0|x̃i, θ)).

2: (M-step) update D̃ and α as follows1,

D
∼(t)

= arg min

D
∼

∑
i=1

N
δp(p(h = 0 ∣ x

∼
i, θ))(

1
2

x
∼

i - D
∼
αi 2

2
+ λ αi 1

),

s.t. D
∼

j 2
2

≤ 1, j = 1, 2, … , k .

αi
(t) = arg min

αi

δp(p(h = 0 ∣ x
∼

i, θ))(
1
2

x
∼

i - D
∼(t)

αi 2

2
+ λ αi 1

).

(7)

3: Iterate E and M steps until convergence reached.

3 Interpreting the Model

If there is no prior information about p(h), we assume p(h = 1) = p(h = 0) = 0.5. If p(h=0|x̃i, 

θ) > 0.5, based on (3), (5), (6), we have

(8)

Here  is the sum of squares of reconstruction residuals of image patch x̃i, and 

 is the sum of squares of centered intensity values (with mean μi1 removed) in x̃i.

Thus equation (8) defines the criterion for corresponding multimodal image patches as those 

patches which can be explained by the multimodal dictionary D̃ better than the patch’s mean 

intensity, i.e. the sum of squared residuals should be smaller than a threshold T, and T is 

dependent on the variance of x̃i, , and the variance of the reconstruction residual, .

1We use SPAMS (http://spams-devel.gforge.inria.fr) for dictionary learning and sparse coding[5].
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Intuitively, a small σ1 favors more corresponding image patches and a large σ1 considers 

more image patches as non-corresponding.

4 Experimental Validation

We consider the image prediction problem (for a known dictionary D̃) solving

(9)

Unlike for eq. 1, where x̃i = Ri[I1, I2]T, here  where u2 is the prediction of I2. 

Since I2 is not measured, we can effectively set Riu2 = D2αi or equivalently remove it from 

the optimization. Given {α̂i} we can then compute the predicted image. Most applications 

using multimodal dictionary are concerned about the prediction residuals, such as super-

resolution and multimodal registration [11, 3]. We therefore first validate our algorithm 

based on the resulting sum of squares of prediction residuals (SSR).

We test our proposed multimodal dictionary learning method on synthetic and real data. For 

the synthetic data, we generate non-corresponding multimodal image patches using the 

following generative model. We choose p(h = 1) which defines the noise level in the training 

set, i.e. the percentage of non-corresponding multimodal image patches in the training set. 

For each non-corresponding patch  we generate μi1 as the mean of all training patches and 

add Gaussian noise εμ. We generate a noise patch by adding Gaussian noise  to the mean 

μi1.

4.1 Synthetic Experiment on Textures

We create multimodal textures by smoothing a given texture with a Gaussian kernel and 

inverting the intensity of the smoothed image. Fig. 2 shows an example of our generated 

multimodal textures. We generate both training and testing multimodal textures from Fig. 2, 

i.e. use half of the multimodal textures for training (add noise as non-correspondence 

regions) and the other half of the multimodal textures for testing. We extract 10×10 image 

patches in both training images, and add ‘noise’ with non-corresponding image patches to 

replace corresponding patches. The σ for the Gaussian noise is set to 0.2.

We test how σ1 influences our dictionary learning method at a fixed noise level p(h = 1) = 

0.5. Fig. 2 shows the result. In practice, we can either learn σ1 with an EM algorithm or 

manually choose it. When σ1 is close to 0.2 (the σ for the noise), to be specific, σ1 ∈ (0.15, 

0.4), we get consistently lower SSRs. This indicates that our algorithm is robust for a wide 

range of σ1 values and noise. For σ1 < 0.15, all the patches are considered as corresponding 

patches while for σ1 > 0.4, all the patches are classified as non-corresponding patches. Our 

method has the same performance as the standard method in [3] in these two cases. The 

learned multimodal dictionaries are illustrated in Fig. 2 showing that our algorithm 

successfully removes non-corresponding patches.
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4.2 Synthetic Experiment on Multimodal Microscope Images

We also test the proposed algorithm on correlative microscope images. We have 8 pairs of 

Scanning Electron Microscopy (SEM) and confocal images. Image pairs have been aligned 

with fiducials. Fig. 3 (a) illustrates an example of SEM/confocal images. We add non-

corresponding patches using the same method as in sec. 4.1. Fig 3 (a) shows the results. The 

dictionary learned with our method shows better structure and less noise compared with the 

standard dictionary learning method. Fig. 3 (b) shows the interaction between σ1 and SSR 

with fixed p(h = 1) = 0.5. For σ1 < 0.16, all the image patches are categorized as 

corresponding patches while for σ1 > 0.6, all the patches are classified as non-corresponding 

patches. Our method has the same performance as the standard method under these 

conditions. We observe a large range of σ1 values resulting in improved reconstruction 

results indicating robustness.

4.3 Multimodal Registration on Correlative Microscopy

We use the proposed multimodal dictionary learning algorithm for multimodal registration 

[3]. The multimodal image registration problem simplifies to a monomodal one using the 

multimodal dictionary in a sparse representation framework. The test data is Transmission 

Electron Microscopy (TEM) and confocal microscopy. We have six pairs of TEM/confocal 

images. We train the multimodal dictionary using leave-one-out cross-validation. Fig. 4 

shows an example of our test data. We first registered the training images with manually 

chosen landmarks (no ground truth available), then learned the multimodal dictionary and 

applied it to predict the corresponding image for a given source image. We resampled the 

predicted images with up to ± 2.07μm (30 pixels) in translation in the x and y directions (at 

steps of 10 pixels) and ± 20° in rotation (at steps of 10 degrees). Then we registered the 

resampled predicted image to the corresponding target using a rigid transformation model. 

σ1 is chosen as 0.15 based on cross-validation for the prediction errors in this experiment. 

Tab. 1 shows a comparison of our method with the method in [3]. The result shows about 

15% improvement in prediction error and a statistically significant improvement in 

registration errors.

5 Conclusion

In this paper, we proposed a robust multimodal dictionary learning method based on a 

probabilistic formulation. We directly model corresponding and non-corresponding 

multimodal training patches. Our method is based on a variant of the EM algorithm which 

classifies the non-corresponding image patches and updates the multimodal dictionary 

iteratively. We validated our method using synthetic and real data. Our algorithm 

demonstrated its robustness to noise (non-corresponding image patches). We also applied 

our method to multimodal registration showing an improvement in alignment accuracy 

compared with the traditional dictionary learning method. The proposed method is expected 

to be of general use for multimodal dictionary learning. While our method is based on a 

Gaussian noise model, it can easily be adapted to other noise model such as Poisson noise. 

Future work will address multimodal dictionary learning in the context of deformable image 

registration.
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Fig. 1. 
An illustration of perfect (left) and imperfect (right) correspondence between multimodal 

images and their learned dictionaries. The imperfect correspondence (gray part in right 

images) could result in learning an imperfect dictionary (gray dictionary words) which is not 

desirable. Our goal is to robustly recover a compact dictionary of corresponding elements.

Cao et al. Page 8

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2015 February 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2. 
D̃ is learned from training images with Gaussian noise (left). Standard method cannot 

distinguish corresponding patches and non-corresponding patches while our proposed 

method can remove non-corresponding patches in the dictionary learning process. The curve 

(right) shows the robustness with respect to σ1. The vertical green dashed line indicates the 

learned σ1.
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Fig. 3. 
D̃ is learned from training SEM/confocal images with Gaussian noise (left). The curve 

(right) shows the robustness with respect to σ1. The vertical green dashed line indicates the 

learned σ1.
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Fig. 4. 
TEM/Confocal images
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