Skip to main content
. Author manuscript; available in PMC: 2015 Feb 24.
Published in final edited form as: Med Image Comput Comput Assist Interv. 2013;16(0 1):259–266. doi: 10.1007/978-3-642-40811-3_33

Algorithm 1.

EM algorithm for Multimodal Dictionary Learning

Input: Training multimodal image patches: {i}; i ∈ 1,…,N;
Initialize multimodal dictionary = 0, 0 is trained on all of the i;
Output: Refined dictionary D^
1: (E-step) compute δp (p(h=0| i, θ)), where
δp(p)={1,ifp0.5,0,otherwise. (5)
p(h=0xi,θ)=p(xih=0,θ)p(h=0)p(xih=1,θ)p(h=1)+p(xih=0,θ)p(h=0). (6)
update θ1 and θ0 in (3) based on δp (p(h=0|i, θ)).
2: (M-step) update and α as follows1,
D(t)=argminDi=1Nδp(p(h=0xi,θ))(12xi-Dαi22+λαi1),s.t.Dj221,j=1,2,,k.αi(t)=argminαiδp(p(h=0xi,θ))(12xi-D(t)αi22+λαi1). (7)
3: Iterate E and M steps until convergence reached.