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Abstract

Multiple sclerosis (MS) is a common disease of the central nervous system characterized by 

inflammation, myelin loss, gliosis, varying degrees of axonal pathology, and progressive 

neurological dysfunction. Multiple sclerosis exhibits many of the characteristics that distinguish 

complex genetic disorders including polygenic inheritance and environmental exposure risks. 

Here, we used a highly efficient multilocus genotyping assay representing variation in 34 genes 

associated with inflammatory pathways to explore gene–gene interactions and disease 

susceptibility in a well-characterized African-American case–control MS data set. We applied the 

multifactor dimensionality reduction (MDR) test to detect epistasis, and identified single-

IL4R(Q576R)- and three-IL4R(Q576R), IL5RA(-80), CD14(-260)- locus association models that 

predict MS risk with 75–76% accuracy (P < 0.01). These results demonstrate the importance of 

exploring both main effects and gene–gene interactions in the study of complex diseases.

Introduction

Multiple sclerosis (MS) is a chronic disease of the central nervous system that affects nearly 

two and a half million people worldwide. Histologically, it is characterized by extensive 

perivascular inflammation and the presence of areas of demyelination, axonal loss and 

gliosis. Clinical manifestations vary from a benign illness to a rapidly evolving and 

incapacitating disease. The exact etiology is unknown, but MS reveals the general 
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characteristics of an autoimmune disorder, including immune dysregulation, polygenic 

inheritance and environmental exposure risks.1 The genetic component in MS is indicated 

primarily by an increased relative risk to siblings compared to the general population, an 

increased concordance rate in monozygotic compared to dizygotic twins, and an increased 

prevalence in certain ethnic groups independent of geographic location.2

The genetics of MS has been extensively investigated although with modest replication of 

results. The one consistent finding is the partial susceptibility conferred by human leukocyte 

antigen (HLA) genes located within the major histocompatibility complex (MHC) on 

chromosome 6p21. This region has shown both linkage and association in multiple genomic 

screens and candidate gene studies.3–5 The majority of evidence for this effect has been 

found in high-prevalence white populations of northern European descent, but association 

has also been shown in African-Americans (AA),6 who develop MS less frequently.7 In fact, 

the unique patterns of linkage disequilibrium (LD) in the AA genome have proven to be a 

remarkable resource in this disease for the fine mapping of regions of interest, 

characterization of allelic and clinical heterogeneity, and identification of new susceptibility 

loci.6,8–11

It is estimated that the HLA region accounts for 10–50% of genetic susceptibility in MS.12 

Even at the upper bound of this estimate, much of the complex inheritance of MS remains 

unexplained. However, the traditional search for main effects by individual genes has been 

largely unsuccessful, suggesting the need to test for epistatic interactions. To this end, a 

candidate gene approach was applied to a case–control study design. Several candidate 

genes were chosen based on the current understanding of inflammatory pathways involved 

in autoimmunity, and gene–gene interactions were evaluated. The dimensionality involved 

in the evaluation of combinations of many such variables (candidate genes) quickly 

diminishes the usefulness of traditional, parametric statistical methods.13 Logistic 

regression, for example, relates one or more independent variables, such as single nucleotide 

polymorphisms (SNPs), to a binary outcome event (cases or controls). When the sample size 

is small, logistic regression can result in biased estimates on the regression coefficients, 

large standard errors, and spurious associations.14,15 Logistic regression modeling fails to 

characterize epistasis models in the absence of main effects owing to the hierarchical model 

building process. This leads to an increase of type II error and decreased power, especially 

in the case of small sample sizes.16 In fact, simulation studies have demonstrated that 10 

outcome events per independent variable are required for each parameter estimate.15 Thus 

for 49 unlinked SNPs, one would need to estimate 99 main effect parameters and require at 

least 990 cases or 990 controls. The number of parameters increases exponentially as the 

number of independent variables increases and interaction terms are added to the model. 

Even if an exhaustive (and not hierarchical) approach was taken to detecting interactions, 

multiple testing limits the power of logistic regression. To test all single locus through four 

locus interactions (as performed in this study), a P-value less than 1.99 × 10 −7 would be 

required for a model to reach statistical significance.

To resolve some of these important issues, a novel computational approach for the detection 

of complex gene–gene and gene–risk factor interactions was developed. Multifactor 

dimensionality reduction (MDR) is a model-free, non-parametric data reduction method for 
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detecting multilocus genotype combinations that predict disease risk for common, complex 

disease. Empirical studies with simulated data indicate that MDR has good power to identify 

high-order gene-gene interactions,17 and has been proven to be maximally efficient at 

discriminating between clinical end points using multilocus genotype data.18 Studies with 

simulated data (with multiple models of different allele frequencies and heritability) have 

also shown that MDR has high power to identify interactions in the presence of many types 

of noise commonly found in real data sets – including missing data and genotyping error.17 

Additionally, MDR has been shown to have better power to detect interactions than 

classification and regression trees and stepwise logistic regression (unpublished results).

In this study, MDR was applied to a study of MS susceptibility in an informative and well-

characterized AA population. A significant effect of the interleukin (IL)4R(Q576R) 

polymorphism was observed. In addition, a statistically significant three-locus interaction 

between IL4R(Q576R), IL5RA(−80) and CD14(−260) was detected. The results provide 

evidence of complex genomic patterns associated with MS and demonstrate the value of 

exploring both main effects and gene–gene interactions in the context of complex disease 

etiology.

Results

A screen of 735 individuals, including 442 well-characterized MS patients, was performed 

for 48 SNPs and one deletion representing 34 genes involved in inflammatory pathways 

(Table 1). Single nucleotide polymorphisms were selected for investigation based on the 

hypothesis that variation in one or more loci mediating an inflammatory response might 

contribute to disease predisposition. Single nucleotide polymorphism selection was based on 

two pragmatic premises: (1) relative high minor allele frequencies in the population, (2) 

amenability of flanking frequencies to multiplex polymerase chain reaction (PCR) in a 

single reaction, recognizing that none of the tested genes could be definitively excluded. 

Human leukocyte antigen was not included in this list of candidates for two reasons. First, 

the role of HLA in this data set is described in detail in Oksenberg et al.6 Secondly, MDR is 

sensitive to the inclusion of genes of major effect in the analysis, so inclusion of an SNP 

with a large main effect could prevent the discovery of novel interactions.

Table 2 shows the most significant results of the MDR analysis conducted in our sample. 

We observed a statistically significant main effect of the IL4R(Q576R) polymorphism with 

an average prediction error (PE) of 24.39% (P<0.01). This indicates that the IL4R(Q576R) 

polymorphism can correctly predict disease status 75.61% of the time. In addition, a 

statistically significant three-locus interaction between IL4R(Q576R), IL5RA(-80) and 

CD14(-260) was detected, which predicts disease status correctly 76.1% of the time 

(P<0.01), slightly better than the main effect alone.

The four next best three-locus models yielded nonsignificant triples and included: UGB, 

CD14, IL4R (PE = 36.98%, P = 0.5); UGB, TGFB1, IL4R (PE = 39.08%, P = 0.69); UGB, 

TGFB1, IL1A (PE = 38.32%, P = 0.62); and IL1A, CCR5, IL4R (PE = 39.12%, P = 0.69). 

Surprisingly, the 6p21 markers in LD with the MHC (LTF and TNFA) were not included in 

any of the predictive combinations.
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Traditional statistical methods were applied to these two models to aid in interpretation, not 

for additional statistical testing. The single locus model of IL4R(Q576R) had an odds ratio of 

9.7856 (95% confidence interval (CI): 6.2498,15.3217). The χ2 value of this model was 

119.2111 (P<0.0001). The sensitivity of this model is 0.9081 and the specificity is 0.4976. 

The three-locus interaction between IL4R(Q576R), IL5RA(−80) and CD14(−260) had an 

odds ratio of 8.5585 (95% CI: 5.7318,12.7793) and a χ2 value of 124.6602 (P<0.0001). The 

sensitivity of this model is 0.8524 and the specificity is 0.5972.

Figures 1 and 2 show the MDR models for the main effect and interactive effect. The 

number of cases and controls are shown for each genotype combination, with high-risk 

status indicated by dark gray shading. Figure 1 clearly demonstrates a main effect, with one 

genotype value clearly conferring disease risk. Figure 2 again shows this main effect, as one 

entire column is high risk (for the same genotype as shown in Figure 1). Figure 2 also 

demonstrates an interactive effect, with high risk cells scattered throughout N-dimensional 

space, not demonstrating any marginal effect, as would be indicated by a solid column or 

row being all high risk.

Discussion

Multiple sclerosis clusters with the so-called complex genetic diseases, a group of disorders 

characterized by modest disease risk heritability and multifaceted gene–gene and gene–

environment interactions. In this study, we investigated the potential associations between 

candidate genes in inflammatory pathways and risk of MS using a case–control study design 

and applying novel statistics to identify epistasis. The candidate genes were chosen because 

of their biological relevance, and MDR was implemented to reduce the genes of interest to a 

number that could manageably be investigated for functional importance in the disease state. 

We detected a significant three-locus interaction among IL4R(Q576R), IL5RA(−80) and 

CD14(−260). This model was able to accurately predict disease status ∼ 76% of the time. 

The IL4R polymorphism appears to confer a main effect within the interaction. Interestingly, 

we have recently reported the transmission distortion and significant association of a 10-

SNP IL4R haplotype with MS in HLA-DR15-negative white nuclear families.19 

Transmission distortion of IL4R alleles were also reported in a Belgian trio families MS data 

set.20 Taken together, the latter and current reports provide accumulating evidence for a 

potential role for the IL4 receptor and its ligand, IL-4, in MS susceptibility and 

pathogenesis. The three-locus model reinforces the potential main effect of the IL4R along 

with demonstrating the importance of considering gene–gene interactions. In fact, the IL4R 

polymorphism is included in every n-level model produced by the analysis, further 

supporting its main effect in disease susceptibility.

The IL4R gene at 16p11–p12 encodes a subunit of the receptor heterodimer, a molecule 

critical to T helper cell differentiation and commitment.21 Both the IL4 receptor and its 

ligand localize to immune cells at the site of active MS lesions in the brain, suggesting a role 

for these molecules in disease progression.22 Changes to amino-acid residues, including the 

Gln576Arg polymorphism, are functionally important and impact the signaling cascade by 

the engaged receptor,23 and IL4R SNPs are associated with susceptibility to immune-related 

diseases including asthma, atopy and type I diabetes.24–26
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One consideration in this study is that we made no attempts to correct for multiple 

comparisons, although we conducted several tests. First, MDR itself is protected from 

multiple comparisons as permutation testing is conducted at the end of an MDR analysis, 

only on the best model at each level of interaction. This limits the number of hypothesis tests 

that were actually conducted. Therefore, when interpreting an MDR analysis, there is no 

need to perform further correction. Second, MDR is used for exploratory analysis rather than 

hypothesis testing. Although P-values are generated to compare the observed PE to the PE 

under the null hypothesis of no association, these P-values are meant to indicate interesting 

models that should be followed up in subsequent studies. With hypothesis generation as the 

goal of this study, no corrections for multiple testing were performed. Also, traditional 

statistics were only performed on the models generated by MDR to aid in interpretation, not 

with the purpose of additional statistical testing.

It is difficult to interpret from MDR results alone the possible functional effect of the IL4R 

and what role an interaction with the additional genes translates into biologically. 

Deciphering the results is part of the challenge in exploring gene–gene interactions in 

complex disease. In some ways, this challenge is even greater than the statistical limitations. 

Currently MDR methodology cannot provide further guidance in interpreting these models 

beyond indicating that they are statistically significant, and the best models detected in these 

data sets. The goal of the MDR method can be summed up as hypothesis generation, even 

though a form of hypothesis testing (permutation testing) is implemented to ascribe 

significance to the final model/hypothesis. Despite the challenges of interpretation, the 

results of this study demonstrate the ability of MDR to generate hypothesis that are 

biologically interesting.

Nevertheless, it is noteworthy that the final MDR models included genes very specific to a 

particular immune cell – dendritic cells (DCs). Dendritic cells are potent antigen-presenting 

cells, playing a crucial role in the decision between T-cell activation or anergy. They 

participate in the initiation and regulation of adaptive immunity against pathogens and in 

triggering autoimmunity. Several lines of evidence indicate an important role of DCs in MS. 

First, elevated levels of circulating dendritic cells have been associated with MS.27 Also, 

there is evidence of the unusual presence of DCs in the brain lesions of MS patients.28,29 

Dendritic cells develop from CD14+ monocyte precursor cells. This development is 

dependent on signaling through the IL4 receptor supporting the observed interactions in the 

MDR models. The expression of the IL-5 receptor on DCs also was reported as well.30

In summary, we have evaluated inflammatory candidate genes and detected an interesting 

single-locus and gene–gene interaction effects in AAs, which is an understudied population 

in MS. Previous laboratory data emphasize the potential biological relevance of the models 

generated by the MDR analysis. We have demonstrated a main effect and epistasis model 

associated with risk of MS. The sample size of the data set was modest and it would be 

beneficial to conduct these complex, high-order gene–gene interaction analyses in larger 

sample sizes, but this study is an example where MDR can reveal epistasis effects. We also 

demonstrate the utility of MDR as a hypothesis generating method, producing results with 

interesting biological plausibility. The IL4R polymorphism, as well as the IL4R(Q576R), 
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IL5RA(−80), CD14(−260) interaction, should be followed up in subsequent association 

studies, as well as investigated for potential biological and mechanistic explanations.

Subjects and methods

Sample population

The data set comprised 442 unrelated MS patients and 293 unrelated controls, including 82 

spouses. Controls were usually recruited by the patients and screened by experienced 

interviewers to assess compliance with rigorous inclusion criteria. All study participants 

were self-reported AAs, but European ancestry in patients and controls was documented 

based on genotyping results of 186 SNPs. Based upon the use of two parent populations, 

West Africans and Europeans, these SNPs have a mean 54% allele frequency difference 

between the parental populations and are spaced at least 10cM from each other across the 

genome.31 Global estimation of European ancestry in the data set indicated 21.7±2.8% (s.e.) 

average admixture in patients and 21.6±2.8% (s.e.) in controls. Further, the frequencies of 

predominantly African DRB1*03021-DQB1*0402 and DRB1*1304-DQB1*0301 and 

Northern European- DRB1*0800-DQB1*0402 haplotypes in patient and control groups 

were statistically indistinguishable (6.6–5.2% P = 0.57, 0.5–1.2%, P = 0.28, and 0.5–0.9%, 

P = 0.64, respectively). These observations, together with the SNP genotyping results 

mentioned earlier, indicate that the MS patients and controls used in this study were 

adequately matched.6 Medical records of all patients were reviewed by one of the authors 

(SLH or BACC) and in all cases diagnosis was confirmed using McDonald criteria.32 

Ascertainment protocols, and clinical and demographic characteristics are summarized 

elsewhere.6,8 IRB approval and informed consent from all study participants were obtained.

Laboratory techniques

Table 1 displays the list of candidate genes from inflammatory pathways selected for this 

study. Fortynine 5′ biotinylated primer pairs were designed and optimized for a single 

megaplex 34-cycle PCR amplification using AmpliTaq Gold (Applied Biosystems, Foster 

City, CA, USA). Two probes were designed for each biallelic site to detect and distinguish 

between the variant sequences. Probes were conjugated at their 5′ ends to bovine serum 

albumin and then applied in a linear array to sheets of backed nylon membrane using a 

linear striper and Multispense 2000 controller (IVEK, N. Springfield, VT, USA). Base-

denatured PCR products were added to the typing tray wells containing the strip and 

hybridization solution. After 15 min at 55°C in a rotating water bath, the hybridization 

solution was replaced with fresh buffer containing SA-HRP and hybridized for another 5min 

at 55°C. A stringent wash was carried out for 12min at 55°C followed by color 

development. Independent genotype interpretations were made by two investigators (DB and 

SJC) who were blind to pedigree structure and to the clinical status of the family members; 

discrepant results were reviewed and assays repeated if necessary.

Statistical techniques

Briefly, in the first step of MDR, the data are divided into a training set and an independent 

testing set for cross-validation.33,34 As is traditional with MDR, 10-fold cross-validation is 

used, so that 9/10 of the data is used for training and 1/10 of the data is used for testing. 
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Second, a set of n SNP polymorphisms are selected. These polymorphism combinations are 

divided in n-dimensional space. Then the ratio of cases to controls is calculated for each 

combination. Each combination is then labeled ‘high risk’ or ‘low risk’ (using a ratio of 1.0 

as the defining point) based on the ratio calculated, therefore reducing the n-dimensional 

space to one dimension with two levels (high risk/low risk). The combination of risk cells 

composes the MDR model. For each possible model size (one locus, two locus, etc.), a 

single MDR model is chosen that has the lowest number of misclassified individuals. To 

assess the predictive ability of the model, PE is calculated using 10-fold cross-validation. 

The result is a set of models, one for each model size considered. From these models, a final 

model is chosen based on minimization of PE and maximization of cross-validation 

consistency (number of times a particular set of factors is identified across the cross-

validation subsets). The statistical significance of the final best model is determined through 

permutation testing. Permutation testing involves creating 1000 permuted data sets by 

randomizing the disease status labels. The entire MDR procedure is repeated for each, 

generating a distribution of PEs and cross-validation consistencies that could be expected by 

chance alone. The significance of the final model is determined by comparing the PE and 

cross-validation consistency of the final model to the distribution. A P-value is extracted for 

the model by its theoretical location in the distribution.
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Figure 1. 
Best single-locus multifactor dimensionality reduction (MDR) model. Light gray cells are 

low risk, while dark gray cells are high risk. The number of cases is shown in the histogram 

on the left in each cell, whereas controls are shown by the histogram on the right for each 

genotype combination.
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Figure 2. 
Best three-locus multifactor dimensionality reduction (MDR) model. Light gray cells are 

low risk, while dark gray cells are high risk. The number of cases is shown in the histogram 

on the left in each cell, while controls are shown by the histogram on the right for each 

genotype combination.
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Table 2
Results of MDR analysis in case–control sample

Number of loci Polymorphism in model Cross validation consistency Prediction error

1 IL4R (Q576R) 10 24.39*

2 IL4R (Q576R), ICAM1 (G241R) 5 25.09

3 IL4R (Q576R), CD14 (−260), IL5RA (−80) 5 23.9*

4 IL4R (Q576R), CD14 (−260), IL5RA (−80), GC(2416D) 4 24.73

*
P ≤ 0.01.
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