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Abstract

Atlas-building from population data is widely used in medical imaging. However, the emphasis of 

atlas-building approaches is typically to compute a mean/median shape or image based on 

population data. In this work, we focus on the statistical characterization of the population data, 

once spatial alignment has been achieved. We introduce and propose the use of the weighted 

functional boxplot. This allows the generalization of concepts such as the median, percentiles, or 

outliers to spaces where the data objects are functions, shapes, or images, and allows spatio-

temporal atlas-building based on kernel regression. In our experiments, we demonstrate the utility 

of the approach to construct statistical atlases for pediatric upper airways and corpora callosa 

revealing their growth patterns. Furthermore, we show how such atlas information can be used to 

assess the effect of airway surgery in children.

1 Introduction

Atlas-building from population data has become an important task in medical imaging to 

provide templates for data analysis. Numerous methods for atlas-building exist, ranging 

from methods designed for cross-sectional, longitudinal, and random design data. These 

approaches typically estimate a representative data object (e.g., shape, surface, image) for 

the population; e.g., a population mean [7] or median [3] with respect to spatial 

deformations and appearance. This is a restrictive representation, as much of the population 

data is discarded. In the literature, this has been acknowledged, e.g., by multi-atlas 

approaches [1] or manifold learning approaches [5] which retain population information by 

using sets of representative objects or by identifying a low-dimensional data representation.

An alternative strategy to retain population information is to represent additional aspects of 

the full data distribution, such as percentiles, the robust minimum and maximum, variance, 

confidence regions and outliers as captured by a boxplot for scalar-valued data. The 

functional boxplot [12] allows just this for functions. Similarly, we can use it to treat shapes 

and images (see Fig. 1) and therefore as a simple method to augment atlases with additional 

population information while avoiding restrictive point-wise analyses of data-objects. Note 

that we focus in this paper on augmenting atlases with statistical information and assume a 

given spatial alignment of data objects. However, the method could be extended to build 
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order statistics from low-dimensional manifold embeddings where point-wise analysis 

becomes meaningful as each point then represent a full data object.

As subject data typically has associated individual characteristics (e.g., age, weight, gender) 

we want to be able to compute the statistical information continuously parameterized by 

these characteristics. For example, given a subject at a particular age we want to compute 

subject age-specific confidence regions to assess similarity with respect to the full data 

population.

We make the following contributions in this paper:

• We develop a weighted variant of the functional boxplot in Sec. 2. This allows us 

for example to use kernel-regression to build spatio-temporal atlases.

• We show the effectiveness of the method in comparison to point-wise analysis in 

Sec. 3 highlighting the importance of object-oriented data analysis.

• We show applicability of the method to functions, shapes, and images in Sec. 4 and 

demonstrate how an atlas can robustly be augmented with statistical data for two 

applications: capturing changes in pediatric airway development and changes of the 

corpus callosum over time. We also briefly sketch how our method could be used 

to build order-statistics on manifolds.

• We show the use of our method for airway surgery assessment in children in Sec. 5, 

where an age-adapted atlas can be used to quantify how “normal” a child suffering 

from airway obstruction is before and after surgery.

2 Weighted functional boxplots and atlas-building

The population of data-objects for atlas building could be functions, shapes, and images with 

associated to subjects characteristics. As an example, we consider subject age and 

demonstrate spatio-temporal atlas-building as a combination of weighted functional boxplots 

and kernel smoothing.

2.1 Atlas building with kernel regression

Given spatially aligned data objects we want to capture population changes for example with 

respect to age. This can be achieved through kernel regression which essentially assigns 

weights to data-objects with respect to the regressor (say a desired age ā). We can use for 

example a Gaussian weighting function wi(ai; σ, ā) = ce(ai−ā)2/2σ2
, where ai is the age for the 

observation i, σ is the standard deviation for the Gaussian distribution and c a normalization 

constant to assure that the weights sum up to one. For scalar-valued data the weights can 

simply be used to define a weighted mean. When deformations are of concern they can be 

used as weights in an atlas-building procedure for images [2]. Here, we are interested in 

augmenting an atlas with functional statistical information and hence need to develop a 

weighted functional boxplot to obtain a regressed median (which is an actual data-object 

from the population), α central region, maximum non-outlying envelop, and outliers.
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2.2 Weighted functional boxplots

To define a weighted functional boxplot consistent with the functional boxplot introduced 

by Sun et. al. [12] requires the definition of a consistent weighted band depth for functional 

data. This imposes an ordering of the weighted observations (data-objects) with respect to 

the (to be determined) central data-object.

Weighted band-depth—The functional boxplot is defined through the concept of band-

depth [9, 12]. Since each observation has a different weight, we need to define a weighted 

band-depth. Such a definition immediately defines the weighted functional boxplot. To 

motivate our choice, assume we want to compute a standard weighted median of scalar 

values, which is given by , where μ is the sought-for median, 

{xi} are the measurements, and wi > 0 are weights for the individual measurements. Assume 

that all weights are natural numbers, i.e., wi ∈ ℕ+. This can be achieved exactly for arbitrary 

rational wi and approximately in general by multiplying the energy with a suitable constant 

and does not change the minimizer. Hence, we replace the weighted problem with the 

equivalent unweighted minimization problem , where the 

individual measurements are simply repeated based on their multiplicities, mi = wi. 

Similarly, repeating observations (according to weight), the sampled band-depth can be 

written as

(1)

(2)

where C is a normalization constant (i.e., contains the number of admissible permutations), I 

denotes the indicator function, G(y) is the graph of the function y(x), and B is the band 

delimited by the observations given as its arguments. We made use of the fact that, 

according to our definition, we only want to consider unique observations for the depth 

measure; the {ȳi} contain the original observations {yi}, but according to their respective 

multiplicity given by the weights. Rewriting the sampled band-depth as

(3)

defines the weighted band-depth and generalizes to non-natural-numbered weights wi ∈ ℝ+. 

In fact, this is a “natural ” way to define a weighted band-depth and, in further consequence, 

a weighted functional boxplot. Computing the weighted band-depth in this way is intuitive, 

as only bands with large weights for all its individual observations have a large impact. 

Furthermore, this weighted version can be also adapted to the modified band-depth proposed 

in [12], i.e.,
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(4)

where Aj (y) ≡ A(y; yi1, …, yij) ≡ {x ∈ ℝm : minr=i1, …, ij yr (x) ≤ y(x) ≤ maxr=i1, …, ij yr 

(x)}, m is the observation’s dimension, λm(y) = λ(Aj(y))/λ(ℝm) and λ is the Lebesgue 

measure on ℝm.

With the above definitions, the band depths of all the sampled observations can be 

calculated and ranked in descending order, y[1](x) ≥ … ≥ y[n](x). y[1](x) is the deepest 

observation and regarded as the median of the population, whereas y[n](x) is the most 

outlying observation which is a potential outlier.

α central region—The concept of central region was introduced in [8]. We define the α 

central region for the weighted functional boxplot based on the weights of observations. The 

band of the α central region is delimited by the α proportion of all weights, i.e., the 

accumulated weights of the first p deepest observations

(5)

where w[r] corresponds to the weight for the r-th deepest observation. When α = 0.5, (5) 

corresponds to the 50% central region WCR0.5. In practice, the 50% central region is 

commonly chosen as the confidence region for analysis because it 1) is a robust range for 

interpretation and 2) enables visualization of the data spread which is less affected by 

outliers or extreme-values.

Outlier detection—In classical boxplots, the outliers can be detected by the 1.5 IQR 

(interquartile range). This is comparable to 1.5 times the height of the 50% central region for 

the weighted functional boxplot. Besides, the weights of the observations also need to be 

taken into consideration during outlier detection. According to the probability density 

function for a boxplot based on a normal distribution, the IQR is equal to the 50% 

distribution and the 1.5 IQR covers the 99.3% distribution. Hence, we define fences by 

combining the one of the 1.5 IQR with the accumulated weights consistent with the 1.5 IQR 

of the normal distribution, and any objects outside the fences will be flagged as outliers:

(6)

3 Comparisons of boxplots for analysis

We compare atlases built by 1) weighted point-wise boxplots and 2) functional boxplots, 

using synthetic observations defined by
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where x ∈ [0, 1], i is the curve index and agei its age. Fig. 2 shows the curves colored by 

age.

Fig. 3(a) shows an atlas built with the weighted point-wise boxplot including four typical 

percentiles and the point-wise median. While the median curve follows the overall 

population trend, it is not close to any of the observations because weighted boxplots applied 

in a point-wise manner to a population of functions disregard the spatial aspect of the 

functional data. In contrast, our method 1) provides a median curve which corresponds to a 

curve in the data set, and 2) allows for the computation of functional outliers (gray dashed 

lines) which results in a more robust statistical description for the atlas.

To construct an atlas at a particular age using standard functional boxplots, we use a uniform 

window to pick curves centered around the age of interest. As shown in Fig. 3(b), only two 

curves are available in the uniform window for atlas-building with functional boxplots, and 

one of them is flagged as an outlier. This atlas includes little information about the 

population. The atlas built using the weighted functional boxplot (with a Gaussian window 

size that is comparable to the uniform one according to [10]) captures the population data 

much better as it does not suffer from the local data sparsity and makes use of all the data.

4 Applications

4.1 Data

The data objects for the weighted functional boxplot can for example be functions, shapes 

and images (with shapes and images converted to long vectors).

Functions—Our first application is the construction of a pediatric airway atlas for normal 

subjects to assess airway malformations (subglottic stenosis (SGS)). The observations are a 

population of 1D functions describing airway cross-sectional areas parameterized along the 

centerline of the airway. Functions are generated from 3D CT data for 44 normal subjects 

using the approach in [6] followed by landmark based spatial alignment [11]. We focus the 

analysis on the region between the true vocal cord and the trachea carina, where SGS 

locates.

Shapes—The second application is to build a corpus callosum atlas and to explore shape 

changes with age. The observations are a collection of 32 corpus callosum shapes of varying 

ages from [4]. Each shape is represented by 64 2D boundary points. We perform affine 

alignment before atlas constructions.

Images—The third application is to understand age-related changes of the corpus callosum 

using binary images of the corpus callosum segmentations. The images are converted from 

the aligned corpus callosum shapes.
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4.2 Comparison with point-wise boxplots

We compare the functional boxplot to the point-wise approach on above real datasets to 

further demonstrate the advantages of our method. Fig. 4 shows the median (the black 

curve) and the confidence region (the 50% central region, magenta) for both point-wise and 

functional boxplots. We count the number of data objects inside the confidence region: for 

the point-wise boxplots only 5 (of 44) functions and none of the shapes or images are fully 

within the confidence region. However, the functional boxplots by construction achieves a 

confidence region containing 50% of the data objects. Hence it is a more intuitive 

representation of true data-object variation. To construct the point-wise confidence regions 

for shapes we locally compute distances with respect to the median point which establishes 

an (unsigned) ordering. The confidence region is then the convex hull of the closest half of 

the points. This strategy would extend to constructing approximate confidence regions with 

respect to manifold embedding coordinates.

4.3 Atlas Construction with weighted functional boxplots

The weighted functional boxplot is used to build a pediatric airway atlas with variance σ = 

30 months for the weighting function, Fig. 5(a), and the corpus callosum shape/image 

atlases with σ = 10 years, Fig. 5(b). The pediatric airway atlases capture increases in cross-

sectional airway area with age which is consistent with the growth pattern for pediatric 

airways and indicates the necessity of building an age-adapted atlas as a reference. The 

corpus callosum atlases reveal the thinning trend in the shape and the decreasing volume in 

the image with age, especially at the anterior and posterior parts consistent with [4].

5 Assessment with Statistical Atlas

To test the utility of the statistical atlas built by weighted functional boxplots we show (Fig. 

6) airway changes of a SGS subject before (at 9 months) and after (at 20 months) surgery 

compared to the age-matched normal control airway atlas. Before treatment, there is a 

constricted region outside the atlas; after treatment, the airway size increases and the 

corresponding curve is almost entirely within the maximal non-outlying envelope, indicating 

a successful surgery.

6 Discussion and Conclusions

We proposed a method to compute weighted functional boxplots and use it for spatio-

temporal atlas building. We applied it to construct a pediatric airway atlas to assess children 

with subglottic stenosis and a corpus callo-sum atlas capturing aging. The proposed method 

is general, easy to compute, and allows robust statistical description of functional, shape, 

and image data.
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Fig. 1. 
Illustration of boxplots for points, functions, shapes and images. Median (middle black line), 

confidence region (magenta) and the maximum non-outlying envelope (two outward blue 

lines). The gray dash lines are the outliers.
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Fig. 2. 
Observations.
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Fig. 3. 
Comparisons of boxplots on the synthetic data.
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Fig. 4. 
Comparison between point-wise (top) and functional (bottom) boxplots on functions, shapes 

and images (from left to right).
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Fig. 5. 
Age-adapted atlases for functions, shapes, and images.
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Fig. 6. 
Airway changes for a subject pre- and post-surgery (green lines) compared to the age-

matched atlas. The stenosis of the airway is marked by the red ellipse on the pre-surgery 

geometry and no stenosis exists in the post-surgery geometry.
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