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Abstract

Registration of image-time series has so far been accomplished (i) by concatenating registrations 

between image pairs, (ii) by solving a joint estimation problem resulting in piecewise geodesic 

paths between image pairs, (iii) by kernel based local averaging or (iv) by augmenting the joint 

estimation with additional temporal irregularity penalties. Here, we propose a generative model 

extending least squares linear regression to the space of images by using a second-order dynamic 

formulation for image registration. Unlike previous approaches, the formulation allows for a 

compact representation of an approximation to the full spatio-temporal trajectory through its initial 

values. The method also opens up possibilities to design image-based approximation algorithms. 

The resulting optimization problem is solved using an adjoint method.

1 Introduction

The analysis of image-time series is important to study brain development, aging processes, 

or tumor growth to name but a few application areas. Being able to establish image 

correspondences and localize change is essential if global measures are insu cient for 

analysis. While image registration between image pairs has been extensively researched for 

decades, considering populations of images is more recent. Here, joint-alignment procedures 

[6] have become standard tools for cross-sectional population-based image analysis. Lately, 

methods for longitudinal data analysis have been proposed based on the extension of large-

deformation-di eomorphic-metric-mapping (LDDMM) registration to image time-series 

[4,8] or series of point clouds [9]. Here, only [9] provides a true generative model, since the 

approach is based on an initial value formulation for the registration of shapes. Initial value 

formulations have been theoretically discussed for images [7], but only recently solved as 

initial value problems [11,1].

Statistics in the LDDMM setting are most naturally performed on momenta with respect to a 

mean image [10]. If a piecewise geodesic estimation for a time-series is used, this requires 

transporting the set of momenta (for each measurement point of a time-series) to a reference 

coordinate frame (as proposed in [9] for points sets)1. Instead of reformulating [9] for 

images using the initial-value formulation for image registration, we investigate the behavior 

1All LDDMM models for image time-series so far estimate piecewise geodesic paths.
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of an approximative time-series model, which generalizes least-square linear regression to 

the image-valued case. The method (i) is generative, describing a full time-trajectory by an 

initial image and momentum, (ii) will allow for compact statistical analyses of time series 

based on sets of initial momenta (one for each time series), (iii) opens up the possibility to 

design approximative algorithms for image time-series (e.g., an approximative spline, useful 

for random-design data), and (iv) handles non-uniform sampling in time. We use a second 

order image-based formulation and minimize the sum of squared distances of a set of 

measured images to a geodesic (Fig. 1). Once a distance measure is defined, we only need to 

estimate the change of the sum of squared distances with respect to the initial conditions of 

the dynamical system. This is accomplished by an adjoint solution method (Sec. 4) 

motivated by a scalar-valued formulation (Sec. 2) and generalized to the image-valued case 

(Sec. 3). Sec. 5 presents results, Sec. 6 conclusions.

2 Dynamic Formulation of Least-Squares Line Fitting

Consider least-squares linear regression from an optimal control viewpoint: Let {yi} be a set 

of M measurements at time points {ti} not necessarily distinct and ;  be the 

dynamical system where the states denote y-intercept and slope respectively. The goal is to 

find initial conditions x1(t0), x2(t0) s.t.

(1)

is minimized, where the Lagrangian multipliers λ1 and λ2 may be discontinuous. The 

variation yields the state equation and a boundary value problem for λ1, λ2

with jump conditions . The gradients of the energy with 

respect to the initial conditions are , −λ2 = ∇ x2(t0)E. We can explicitly 

solve the equations and obtain the conditions

The first condition is a force balance (of model residuals) and the second a moment balance. 

The dynamic formulation extends to the space of images (Sec. 3). We obtain the mechanical 

interpretation that λ1 is the (backward in time) running sum of forces and λ2 is the 

(backward in time) running sum of moments. Both need to vanish at optimality. The second-

order constraint  is necessary to obtain a straight line. Relaxing this constraint, the 

method falls back to a piecewise geodesic model as currently used in the LDDMM 

framework.
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3 Geodesic Regression on the Space of Images

The LDDMM framework provides a convenient Riemannian setting where geodesics 

corresponds to straight lines in the scalar case. Geodesics on the space of the deformed 

images are obtained by minimizing the functional

(2)

where v is a time-dependent velocity field in V , a Reproducing Kernel Hilbert Space 

(RKHS) of smooth velocity fields; d2 denotes a general squared-distance(-like) term. 

Extending (2) to multiple timepoints leads to piecewise geodesic interpolation. For a single 

timepoint however, it gives the geodesicity that needs to be enforced for our least squares 

generalization. The Euler-Lagrange equation for  is a special case of the EPDiff equation 

and parametrizes a geodesic in image space given an initial image I(t0) and an initial 

momentum p(t0) [11]:

(3)

where K is the (translation invariant) smoothing kernel of the RKHS and * the convolution 

operator. Weighted (wi ≥ 0) geodesic regression is to minimize

(4)

wrt. the initial conditions (I(t0), p(t0)) subject to the EPDi equation (3) that replaces the 

dynamic line model ,  in Sec. 2. More importantly, the first term (not present in 

the scalar case) ensures the well-posedness of the model by preventing high frequencies in 

the time-dependent velocity field.

3.1 Optimality Conditions

Evolution equations for the adjoints are valid piece-wise with jump conditions at 

measurement instants. Jumps depend on how much a measured image “pulls” at the 

geodesic. Weights wi for the measurements allow for the equivalent of locally linear 

regression [5] on the space of images2. We obtain the state equations and the optimality 

conditions for the adjoints λI, λp

subject to the compatibility conditions

2This can be seen as an alternative to kernel based methods (as proposed in [3]) and is expected to have improved performance at the 
boundaries of the time interval.
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For notational convenience define , 

. We obtain the gradients

Note that both initial momentum and the initial image are unknowns. To fully define the 

problem we need to specify the distance measure d2 and its gradient.

3.2 Choices for d2

Selecting d2 is a design choice. The gradients (wrt. I(ti)) can be viewed as forces pulling on 

the geodesic. We discuss the gradients for distances based on the L2 metric and LDDMM 

registration; a metamorphosis approach could also be used.

L2, Interpolation-based image-match term—The squared L2 distance between images 

and its (infinite-dimensional) derivative is

Note that other similarity measure such as cross-correlation or mutual-information could 

also be used. This definition simplifies computations. It is only meaningful if the geodesic is 

close to the measured images. If large distances are admissible the squared distances can be 

defined by registration themselves.

Approximation-based inexact image-match term—We use the same second order 

model as for the regression line for image-to-image registration to define:

(5)

subject to the EPDi equation with initial image given by I(0) = J. This is a special case of the 

geodesic regression problem with two images with an L2 distance measure. For an optimal 

set {I* , p* , v, λI* , λp* , λv*}) the gradient of the squared distance measure with respect to 

J is hence given by
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Note the slight abuse of notation, since here λI is not the Lagrangian multiplier for geodesic 

regression, but for the geodesic of the registration problem.

3.3 Mechanical Interpretation

A similar mechanical interpretation as for the scalar-valued case holds. Since the state and 

the adjoint equations are more involved, we can no longer explicitly solve the optimality 

conditions. However, the Lagrangian multipliers λI can be considered as the generalized 

running sum of forces and λp as the generalized running sum for the moment. The gradients 

of the squared distance measures with respect to the respective source images can be 

considered generalized forces. The additional terms appearing in the energy gradients with 

respect to the initial conditions result from penalizing the length of the geodesic.

4 Numerical Solution

To obtain a solution fulfilling the optimality conditions, we compute the gradients with 

respect to I(t0) and p(t0) through the adjoints. We use a multi-scale approach to speed up 

convergence. The algorithm proceeds as follows

0 Specify an initial (I(t0), p(t0)).

1. Solve the state equation forward, while saving computed values I(t) and p(t).

2. Solve the adjoint equations backward while applying jump conditions at every 

time-point with an available measured image.

3. Compute ∇ I(t0)E and ∇ p(t0)E from λI(t0), λp(t0), I(t0) and p(t0).

4. Use the gradients to update I(t0) and p(t0) through a line search.

5. Repeat from step 1 until converged.

We solve the advection equation for I and the scalar conservation law for p using a map-

based approach as proposed in [2] to minimize numerical dissipation. We use a similar 

approach to solve for the adjoints λI and λp, but treat all terms which cannot be explained by 

advection or scalar conservation as source terms which are added to the solutions at each 

time step as in [11,8]. If it is desired to obtain a least squares fit such that I(t0) = I0 (where I0 

is a given fixed initial image) the gradient with respect to I(t0) can simply be disregarded. In 

the scalar case this amounts to fixing the y intercept at t0 and searching for the best slope.

5 Experimental Results

We tested the geodesic regression model using synthetic and real images. Note that this 

paper focuses on the formulation and solution of the geodesic regression model. Validation 

in the context of population studies will be future work.

5.1 Synthetic Images

We applied the method to a translating circle with wi = 0.1 and a Gaussian kernel K with σ = 

4 pixels. Fig. 2 shows the original images and the geodesic regression results when updating 

initial momentum and the initial image. Since the displacements between consecutive 

images is small we used the L2 distance. The geodesic regression captures the translation 
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well. As expected for a fluid registration non-uniform compressions and dilations occur. Fig. 

3 shows an example geodesic regression trajectory for a fixed initial template through three 

distinct geometric objects. Since this is an approximative algorithm, the shapes are not 

perfectly recovered, but instead an intermediate solution is obtained, which approximates the 

square as a shape in-between the circle and the diamond-shape. The size of all synthetic 

images is 64×64 pixels.

5.2 Real Images: Brain Slices from the OASIS Database

To illustrate the behavior for real images, we took 5 brain slices (176×208 pixels) from 5 

subjects at different ages from the OASIS database and applied geodesic regression with wi 

= 10 and a Gaussian kernel with σ = 5 pixels using the L2 distance. Cases were selected to 

exhibit an expansion of the ventricles. Since the ventricle topology is different for the 

subjects, perfect matching cannot be achieved. Even though large scale deformations were 

present, geodesic regression approximates the temporal evolution of the ventricles. This 

experiment illustrates that reasonable approximations can be obtained. Computing the 

geodesic from young to old is numerically challenging, because of the large expansions 

occurring, which need to be represented by relatively few grid cells in the image. Fig. 5 

therefore also shows the estimation results when the geodesic is represented in the space of 

the oldest subject. Computed deformations are better behaved, because they are easier to 

represent numerically. In comparison to time-series approaches estimating piece-wise 

geodesics [8,4], geodesic regression results in a smooth temporal evolution. This is shown in 

Fig. 4 which compares a coronal cross section (through the ventricles) for the slices over 

time. Kinks are visible for the piece-wise geodesic, but not for the geodesic regression 

approach.

Much smaller changes are expected for longitudinal data. Fig. 6 shows four slices (128×161 

pixels) for a longitudinal dataset from the OASIS database. Changes are subtle and most 

easily seen around the ventricles. The top row shows overlays with respect to the youngest 

image and illustrates the increase in ventricle size. The ventricle expansion is well captured 

by geodesic regression.

6 Discussion and Conclusions

We proposed a generative model for image time-series, where trajectories are fully 

parametrized by their initial conditions. To measure distances from the regression geodesic 

we proposed an L2 and a registration-based distance and integrated them into an adjoint 

solution method. Geodesic regression is an approximative estimation method, which opens 

possibilities for other approximation methods on the space of images (e.g., approximating 

splines). We addressed how to estimate an individual trajectory. To perform statistical 

analysis for populations requires comparing the initial momenta in a common coordinate 

system, which can be achieved by transporting the initial momenta to a common atlas-space 

[12]. Geodesic regression simplifies statistical analysis, because of its compact 

representation of image time-series. It generalizes to piecewise geodesic approximations by 

concatenating geodesic regressions at specified time-points. This allows standardized 

representations to compare time-series data with non uniform temporal sampling.
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Fig. 1. 
Principle of geodesic regression on the space of images. The interpolation path is 

determined by the blue and the red images. This geodesic path is maximally close to the 

dashed images.
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Fig. 2. 
Translation experiment and results for geodesic regression with initial image and momentum 

free. The translation is well captured.
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Fig. 3. 
Geodesic regression result with initial image fixed. The resulting trajectory is a compromise 

between the shapes. A perfect match of the square and the circle would require a local 

contraction (with respect to the diamond shape) followed by an expansion, which cannot be 

expressed by the approximative model.
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Fig. 4. 
Coronal cross sections through ventricles for piecewise-geodesic approach (top) and for 

geodesic regression (bottom) with fixed initial image.
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Fig. 5. 
Brain slices of subjects with increasing age (left to right, 38, 52, 58, 73, 81 [years]) and 

geodesic regression results. Results with initial conditions in the space of the 38 year old 

(middle row) and the 81 year old (bottom row) subject.
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Fig. 6. 
Brain slices for longitudinal subject data (left to right, age: 67, 68, 71, 73 [years]). Top: 

original images overlaid with image at age 67. Bottom: geodesic regression results overlaid 

with original images. Yellow indicates agreement. Zoom in to view.
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