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Synopsis

Since its development in the mining industry, geostatistics has emerged as the primary tool for 

spatial data analysis in various fields, ranging from earth and atmospheric sciences to agriculture, 

soil science, remote sensing, and more recently environmental exposure assessment. In the last 

few years, these tools have been tailored to the field of medical geography or spatial 

epidemiology, which is concerned with the study of spatial patterns of disease incidence and 

mortality and the identification of potential ‘causes’ of disease, such as environmental exposure, 

diet and unhealthy behaviours, economic or socio-demographic factors. On the other hand, 

medical geology is an emerging interdisciplinary scientific field studying the relationship between 

natural geological factors and their effects on human and animal health. This paper provides an 

introduction to the field of medical geology with an overview of geostatistical methods available 

for the analysis of geological and health data. Key concepts are illustrated using the mapping of 

groundwater arsenic concentration across eleven Michigan counties and the exploration of its 

relationship to the incidence of prostate cancer at the township level.
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Introduction

Etymologically, the term ‘geostatistics’ designates the statistical study of natural 

phenomena. The early developments of geostatistics in the 1950s and 1960s aimed to 

improve the evaluation of recoverable reserves in mineral deposits (Krige, 1951; Journel and 

Huijbregts, 1978). Its field of application expanded considerably to encompass nowadays 

most fields of geoscience (e.g. geology, geochemistry, geohydrology, soil science) and a 

vast array of disciplines that all deal with the analysis of space-time data, such as 

oceanography, hydrogeology, remote sensing, agriculture, and environmental sciences. The 

success of geostatistics resides in its ability to capitalize on the first law of geography, 

stating that ‘Everything is related to everything else, but near things are more related than 

distant things’ (Tobler, 1970). Indeed, one of the main characteristics of the aforementioned 

data types is their structured distribution in space and time, which reflects the impact of 

various factors (e.g. geology, weather, human activities, land cover) operating at different 
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spatial and temporal scales. Geostatistical spatio-temporal models (Kyriakidis and Journel, 

1999) provide a probabilistic framework for data analysis and predictions that build on the 

joint spatial and temporal dependence between observations.

The main steps of a typical geostatistical study are summarized in Figure 1 using the well-

known Swiss Jura data-set (Goovaerts, 1997, 1999). Analysis of spatial data typically starts 

with a ‘posting’ of data values. For example, Figure 1 (top graph) shows the location of 259 

soil samples where the concentrations of topsoil cadmium concentration were recorded. 

Most applications of geostatistics are concerned with the prediction of measured attributes at 

unsampled locations. Such interpolation or extrapolation is made possible by the existence 

of autocorrelation in the data, which can be quantified and modelled using the 

semivariogram. Various kriging techniques are then available to derive estimated attribute 

values and the corresponding prediction error variance at unsampled locations using 

information related to one or several attributes. An important contribution of geostatistics is 

the assessment of the uncertainty about the attribute values at any particular unsampled 

location (local uncertainty) as well as jointly over several locations (multiple-point or spatial 

uncertainty). Models of local uncertainty usually take the form of a map of the probability of 

exceeding critical values, such as regulatory thresholds in soil pollution. Spatial uncertainty 

is tackled through stochastic simulation that allows one to generate alternative models of the 

spatial distribution of attribute values that reproduce features of the data (e.g. histogram, 

semivariogram). Last but not least, this uncertainty assessment can be combined with expert 

knowledge for decision-making, such as delineation of contaminated areas where remedial 

measures should be taken or selection of locations for additional sampling.

Medical geography is defined as the branch of human geography concerned with the 

geographic aspects of health, disease, and health care (May, 1950). The idea that place and 

location can influence health is a very old and familiar concept in medical geography. One 

of the first demonstrations of the power of mapping and analysing health data was provided 

by Dr John Snow’s study of the cholera epidemic that ravaged London in 1854. Using maps 

showing the locations of water pumps and the homes of people who died of cholera, Snow 

was able to deduce that one public pump was the source of the cholera outbreak (McLeod, 

2000). Since then, the field of medical geography has come a long way, replacing paper 

maps with digital maps in what are now called geographic information systems (GIS). 

Similarly, descriptive speculation about disease has given place to scientific analysis of 

spatial patterns of disease, including hypothesis testing, multi-level modelling, regression, 

and multivariate analysis.

Recently, geostatistical techniques (semivariograms, kriging, stochastic simulation) have 

been tailored to the study of spatial patterns of disease incidence and mortality and the 

identification of potential ‘causes’ of disease, such as environmental exposure or socio-

demographic factor (Waller and Gotway, 2004; Goovaerts, 2007, 2009). Once again, health 

outcomes, such as cancer mortality or incidence of late-stage diagnosis, tend to follow the 

first law of geography, and maps are used by public health officials to identify areas of 

excess (e.g. cancer clusters) and to guide surveillance and control activities, including 

consideration of health service needs and resource allocation for screening and diagnostic 

testing. Data available for human health studies falls within two main categories: individual-
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level data (e.g. location of patients and controls) or aggregated data (e.g. cancer rates 

recorded at county or ZIP code level); see example in Figure 2. Although none of these data-

sets falls within the category of ‘geostatistical data’ as classically defined in the spatial 

statistics literature (Cressie, 1993), geostatistics offers a promising alternative to common 

methods for analysing spatial point processes and lattice data. One of the most challenging 

tasks in environmental epidemiology is the analysis and synthesis of data collected at 

different scales and over different spatial supports. For example, one might want to explore 

relationships between health outcomes aggregated to the ZIP code level, census-tract 

demographic covariates, and exposure data measured at a few point locations. Geostatistics 

provides a theoretical framework for performing the various types of changes of support, 

while providing a measure of the reliability of the predictions (Goovaerts, 2010, 2012).

‘Hydrobiogeochemoepidemiopathoecology’, a term coined by scientists as an alternative to 

the most common medical geology, is defined as the science dealing with the relationship 

between natural geological factors and health in humans and animal, and understanding the 

influence of ordinary environmental factors on the geographical distribution of such health 

problems (Selinus et al., 2005). Bowman et al. (2003) distinguished two branches of 

medical geology, depending on whether health problems are caused by the natural 

occurrence of elements in the geologic environment (e.g. ingestion of food grown in soils 

with element deficiency or toxicity) or the release of elements by natural hazards, such as 

earthquakes, volcanic eruptions, or landslides. Like medical geography, the first applications 

of medical geology can be traced back to the distant past. The Romans recognized potential 

health hazards related to mining, whereas the Chinese had noticed relationships between 

lung disease and rock crushing. According to Selinus (2004), one of the oldest 

documentations of medical geology was provided by Marco Polo, who reported in 1275 that 

his European horses were dying in the mountainous areas of China. The symptoms he 

described are consistent with poisoning by selenium, which is present in high natural 

concentrations in these areas.

Since then, there have been many examples of how geology impacts human and animal 

health, through both an excess (e.g. arsenic in drinking water and skin cancer, radon and 

lung cancer) or deficiency (e.g. iodine and goitre, soil minerals and poor growth of 

livestock) of naturally occurring chemical elements. In the 20th century, many map studies 

were published linking disease distribution to rock or soil types. For example, 

superimposing the map of incidence for podoconiosis (type of elephantiasis or leg swelling) 

on a geological map of East Africa revealed a correlation between this disease and the 

presence of red clays rich in alkali metals like sodium and potassium and associated with 

volcanic activity (Price, 1976). Finkelman et al. (2011) reported that lung cancer incidence 

and mortality in Ontario are highest in areas underlain by uranium-rich heavy clay and the 

Canadian Shield. The link between the fluoride geochemistry of water in an area and the 

occurrence of dental fluorosis is also a well-known relationship in medical geology 

(Dissanayake, 2005).

Because geostatistics is well established in mathematical geology and its application is 

growing in medical geography, it is natural to foresee a bright future for this discipline in the 

emerging field of medical geology. This paper provides a brief overview of geostatistical 
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methods available for the analysis of environmental and aggregated health data, with an 

application to the mapping of prostate cancer incidence in Michigan and the exploration of 

its relationship to groundwater arsenic level.

Setting the problem

Arsenic (As) is one of the most toxic elements in our environment and is listed as the third 

most toxic substance, after lead and mercury in the US Toxic Substances and Disease 

Registry. Its adverse impact on human health can take many forms, including skin lesions, 

cardiovascular disease, hypertension, reproductive and neurological disorders, respiratory 

problems, and various types of cancer (e.g. skin, lung, liver, bladder, prostate, kidney). 

Sources of arsenic exposure vary from burning of arsenic-rich coal (China) and mining 

activities (Malaysia, Japan) to the ingestion of tainted food (e.g. rice) or water contaminated 

by natural sources such as bedrock containing arsenic (e.g. Bangladesh, India, Taiwan, 

Philippines, Mexico, Chile). Arsenic in drinking water is a major problem and has received 

much attention because of the large human population exposed and the extremely high 

concentrations (e.g. 600 to 700 µg/L) recorded in many instances. Few studies have, 

however, assessed the risks associated with exposure to low levels of arsenic (say < 50 µg/L) 

most commonly found in drinking water in the USA.

Elevated levels of naturally-occurring arsenic have been identified in regional patterns 

within the USA and are attributed to geochemistry, geology, climate, and glacial history 

(Welch et al., 2000). In the Michigan Thumb region, arsenopyrite (up to 7% As by weight) 

has been identified in the bedrock of the Marshall Sandstone aquifer, one of the region’s 

most productive aquifers (Westjohn et al., 1998). The present case study explores the 

association between the incidence of prostate cancer and groundwater arsenic level for 

eleven Michigan counties displayed in Figure 3. Epidemiologic studies have suggested a 

possible association between exposure to inorganic arsenic and prostate cancer mortality, 

including a study of populations residing in Utah (Lewis et al., 1999). Unlike the Utah study 

no individuallevel data is available here, which prohibits any exposure reconstruction (i.e. 

length of exposure is unknown in the absence of information on residential history) and the 

incorporation of important covariates, such as age, smoking, diet, heredity, or socio-

economic status. Note that the objective of the case study is to illustrate the application of 

geostatistics in medical geology, and a thorough epidemiological study is beyond the scope 

of this paper.

The information available for this so-called ecological study (i.e. analysis of aggregated 

health outcomes) consist of: (1) 9 188 arsenic concentrations measured at 8 212 different 

private wells that were sampled between 1993 and 2002, (2) prostate cancer incidence 

recorded at the township level over the period 1985–2002, and (3) block-group population 

density that served as proxy for urbanization and use of regulated public water supply versus 

use of potentially contaminated private wells in rural areas. Figure 4A shows a close-up of 

these three data-sets in the northern part of the study area. This case study illustrates a 

common challenge in environmental epidemiology – that is, the analysis and synthesis of 

spatial data collected at different spatial scales and over different spatial supports. Exploring 

the relationships between these incompatible data-sets will require the estimation of all three 
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variables over the same set of geographical units (i.e. townships here); see Figure 4B. 

Following the terminology in Gotway and Young (2007), this change of support (COS) will 

involve upscaling (spatial aggregation) for arsenic data and side-scaling, a term used to refer 

to the prediction of values on one set of spatial units from data on another set of overlapping 

spatial units, for population density.

Mapping arsenic content

This study will use the geostatistical model of the spatial distribution of groundwater arsenic 

concentrations that was described in details in Goovaerts et al. (2005). Only the most salient 

features will be presented here. The modelling was based on all 9 188 well data. The small 

magnitude of temporal variation relative to the variability in space or arising from 

measurement error, as well as the absence of temporal trend or seasonality, led us to ignore 

the temporal dimension in this study. Since this database contains arsenic measurements 

requested by homeowners, sampling is denser in areas where higher pollutant concentrations 

were initially reported. This preferential sampling was corrected using the cell-declustering 

technique (Deutsch and Journel, 1998), which calls for dividing the study area into 

rectangular cells; then each observation within a cell is assigned a weight inversely 

proportional to the number of data within that cell. These declustering weights were used, 

instead of equal weights, in the computation of summary statistics, leading to a mean and 

standard deviation of 10.97 and 15.22 µg/L, respectively.

Arsenic concentration was estimated at the nodes of a 500 m spacing grid using soft 

indicator kriging (Goovaerts, 1997) and 22 threshold values. Soft information was derived 

by a calibration of geological data, such as type of bedrock and unconsolidated deposits, and 

proximity of wells to the Marshall Sandstone suboutcrop, where the highest concentrations 

of arsenic were found. The choice of a nonparametric approach over lognormal or 

multigaussian kriging was motivated by:

1. The presence of 737 measurements below the detection limit. Unlike other 

techniques, indicator kriging does not require assigning a subjective value (e.g. half 

the detection limit) to this data since the first threshold can simply be identified 

with the limit

2. The change in the spatial connectivity of different classes of observations. Indicator 

semivariograms in Figure 5 measure the transition frequency between two classes 

of arsenic values as a function of the separation distance. The greater the indicator 

semivariogram value, the less connected in space are the small or large values. As 

the threshold increases, the short-range variability becomes more important, which 

indicates that high arsenic concentrations are less connected in space than low 

concentrations.

3. The results of a cross-validation study using 9 188 well data and a validation study 

using 73 new wells. In both cases, soft indicator kriging provided the smallest mean 

absolute error of prediction.

Figure 6 (top graph) shows the mean of the local distributions of probability modelled using 

soft indicator kriging (E-type estimate). This map closely reproduces the spatial pattern of 
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bedrock formation (Figure 3), yielding smaller estimates in the southern part of the study 

area and larger estimates at the location of Marshall Sandstone. Concentrations were 

averaged within each of the 342 townships to yield a map suited for linkage with health data 

(Figure 6, bottom graph).

Mapping population density

Township-level population density was derived from census tract data using areal weighting 

or proportional allocation (Gotway and Young, 2002). In other words, census tract male 

population was allocated to each township based on the relative area of the census tract 

included in that township. The implicit assumption was that population was uniformly 

distributed within the census tract. Population data were then divided by the township area 

to compute the population density. The final map (Figure 7) illustrates the low population 

density in the northern part of the study area and highlights urban centres, such as Detroit, 

Flint, Ann Arbor, or Lansing.

Mapping prostate cancer incidence

Figure 8A shows the map of prostate cancer incidence rates computed at the township level. 

The analysis was restricted to white males aged 65 years and over to minimize the impact of 

disparities in age distribution across the area and to attenuate the impact of variability in 

health coverage since all cases were covered by Medicare. In addition, 146 rates based on 

less than 10 cases were considered as unreliable and assigned a missing value. Even in 

townships with more than 10 cases rates can still be unstable, in particular in sparsely 

populated rural areas. This issue, known as the ‘small number problem’ in epidemiology, 

can be addressed geostatistically using a form of kriging with non-systematic measurement 

errors, called Poisson kriging (Goovaerts, 2009). The basic idea is to filter the noise attached 

to each rate using rates recorded in adjacent geographical units. Rates based on small 

population, hence less stable, receive less weight than rates recorded in densely populated 

areas in the kriging estimator. A major benefit of Poisson kriging over traditional statistical 

smoothers is that it allows the estimation of missing rates in addition to the filtering of noisy 

rates.

As for arsenic concentrations, this mapping technique requires the computation and 

modelling of a semivariogram. Two major differences are: (1) observations are rates and so 

are composed of a numerator (number of cancer cases) and a denominator (male 

population), and (2) the spatial supports of the observations are not points (areal data) and 

are not uniform (townships have different sizes and shapes). The first problem is tackled by 

using a population-weighted semivariogram estimator to attenuate the impact of less stables 

rates in the modelling of the spatial variability. On the other hand, the spatial support of the 

data is accounted for using a form of block kriging, called area-to-area (ATA) kriging 

(Kyriakidis, 2004). The last issue is the fact that ATA kriging requires a point-support 

semivariogram model, whereas only a block-support semivariogram model is available since 

all observations are areal data. The derivation of a point-support semivariogram model from 

a block-support model is called deconvolution in geostatistics and is a well-known problem 

in the mining industry. Mining blocks tend, however, to be all squares of the same size, a 
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situation very different from the administrative units that are manipulated in medical 

geography. A special iterative deconvolution procedure was recently developed for the case 

of irregular units (Goovaerts, 2008, 2011).

The map of noise-filtered rates (Figure 8B), called risks, displays much less variability than 

the original rate maps. In particular, some of the extreme incidence rates recorded in rural 

counties are no longer present. Higher incidences are observed in the northern area that is 

more rural (Figure 7) as well as in the cities of Detroit and Flint, which are less affluent than 

the college towns of Ann Arbor and Lansing. The map of the kriging variance (Figure 8C) 

looks similar to the map of population density (Figure 7) and reflects the greater reliability 

of rates estimated in densely populated areas compared to rates that were missing or 

estimated in rural areas. Following Goovaerts (2006), the probability distribution of the 

unknown risk can be modeled using a Gaussian distribution that has the Poisson kriging 

estimate and kriging variance as mean and variance. The probability of exceeding specific 

thresholds can thus be computed fairly easily and incorporates both the magnitude of the 

risk estimate and the associated uncertainty. For example, Figure 8D shows the probability 

that the area-wide incidence rate of 1709 cases per 100 000 habitants is exceeded.

Correlation analysis

The relationship between the health outcome and putative covariates (arsenic level and 

population density) was analysed using logistic regression. The dependent variable is an 

indicator variable that takes a value of 1 if the probability of exceeding the area-wide 

incidence rate is above 0.5, and zero otherwise. The main predictor is the township-level 

concentration of arsenic displayed at the bottom of Figure 6. Given that rural townships are 

less likely to have access to regulated public water supply, one should expect the potential 

relationship between groundwater arsenic level and incidence of prostate cancer to be 

stronger where population density is low. This hypothesis was tested by using the following 

interaction term in the regression model: arsenic concentration × density class, where eight 

equally probable classes of population density (i.e. including similar number of townships) 

were created from Figure 7.

Regression results are reported in Table I. An odds ratio is a relative measure of association 

between an exposure (e.g. arsenic in groundwater) and an outcome (e.g. area-wide incidence 

rate for prostate cancer is exceeded with probability above 0.5). More precisely, the odds 

ratio represents the odds that the outcome will occur given a particular exposure, compared 

to the odds of the outcome occurring in the absence of that exposure. In the present case 

where the predictor is a continuous variable, the odds ratio can be interpreted as the change 

in odds if the arsenic concentration increases by 1 ppm. Table I shows that the risk for a 

township to exceed the area-wide incidence rate for prostate cancer increases significantly 

(odds ratio with 95% confidence interval larger than 1) for the first two classes of population 

density, that is in rural townships where habitants are more likely to rely on private wells for 

drinking water. The odds ratio is lower for all other classes that include townships that are 

more densely populated. The significant odds ratio recorded for the most urbanized 

townships is likely linked to the largest prevalence of chronic disease in neighborhoods of 

lower socio-economic status. A more detailed analysis is, however, warranted to tease out 
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the impact of other contextual (e.g. poverty level, access to screening) and individual-level 

(e.g. smoking, groundwater consumption) covariates. Thus, the results of this analysis of 

aggregated data should be used mainly to design future case-control studies including cancer 

patients and healthy individuals with similar demographic characteristics.

Conclusions

The assessment of the health risk associated with environmental exposure has become the 

subject of considerable interest in our societies. This renew attention has led to the 

development of overlapping disciplines, such as geohealth; geoscience and public health; 

medical geology; epidemioecology; medical geography; medical ecology; clinical ecology; 

environmental medical epidemiology; geomedicine; geoepidemiology; geology and health; 

geology, environment, and health; medical geography; and pathoecology, to name a few. All 

these fields of study are complex and require a multidisciplinary approach that relies on a 

wide variety of specialists from geologists, geochemists, and medical doctors to biologists 

and veterinarians. A common thread is the recognition of the critical influence that place and 

location exert on the occurrence of health outcomes and environmental processes. To quote 

the Dutch philosopher Baruch Spinoza (1632–1677), ‘Nothing in Nature is random…. A 

thing appears random only through the incompleteness of our knowledge.’ Interactive 

mapping of epidemiological data with geographic and environmental features is a critical 

tool that facilitates the formulation of hypotheses and the identification of relationships 

regarding the spatial patterns of disease. Geostatistical methodology is likely to play a major 

role in this endeavour because of its ability to take into account the double aspect of 

randomness and spatial structure in the characterization of regionalized variables.

The application of geostatistics to the promising field of environmental epidemiology 

presents several methodological challenges that arise from the facts that: (1) data is very 

diverse and typically recorded over overlapping geographies (e.g. ZIP codes, census tracts), 

and (2) health outcomes are often aggregated over irregular spatial supports and consist of a 

numerator and a denominator (i.e. population size). Everyday geostatistical tools, such as 

semivariograms or kriging, thus cannot be implemented blindly. The last decade has 

witnessed the emergence of tools and techniques tailored to this new type of data. Irregular 

spatial supports can now be tackled thanks to area-to-area kriging and iterative 

deconvolution procedures. Similarly, Poisson and binomial kriging combined with 

population-weighted semivariogram estimators allow the incorporation of both the 

numerator and denominator in the processing of rate data. It is noteworthy that the general 

formulation of kriging introduced half a century ago could already accommodate different 

spatial supports for both the data and the predicted unit. The development of geographical 

information systems and dramatic increase in computational power finally made possible the 

implementation of these theoretical concepts.

The field of environmental health geostatistics is still in its infancy. Its growth cannot be 

sustained, or at least is meaningless, if it does not involve the end-users who are the 

epidemiologists, geologists, and GIS specialists working in health departments, geological 

surveys, and cancer registries. Critical components to its success include the publication of 

applied studies illustrating the merits of geostatistics over current empirical mapping 
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methods, training through short courses, and updating of existing curricula, as well as the 

development of user-friendly software. The success of mining and environmental 

geostatistics, as we experience it today, can be traced back to its development outside the 

realm of spatial statistics, through the close collaboration of mathematically minded 

individuals and practitioners. Environmental health geostatistics will prove to be no 

different.
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Figure 1. 
Flow chart of a typical geostatistical study of soil cadmium contamination that involves 

successively: display of location of 259 soil samples, computation and modelling of the 

semivariogram, interpolation of concentrations using kriging, modelling of local uncertainty 

(probability map) and spatial uncertainty (simulated maps), and decision-making such as 

delineation of areas where the concentration likely exceeds the regulatory threshold of 0.8 

ppm
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Figure 2. 
Example of health data available for spatial analysis. Individual data are the locations of 

patients diagnosed with cancer, as well as their stage at diagnosis. For confidentiality 

reasons these sensitive data are often aggregated, resulting in rate data computed for 

geographical units of varying size and shape (e.g. census tracts here)
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Figure 3. 
Groundwater arsenic data-set: the 8 212 well data observations (µg/L) available for 

modelling, and the map of bedrock with the location of the Marshall Sandstone suboutcrop 

where the highest concentrations of arsenic were found. The outlines of townships are 

displayed in background and the study area is located within the state of Michigan
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Figure 4. 
Example of change of support where kriging is used to estimate groundwater arsenic 

concentration and population density at the township level using private well arsenic 

concentrations (upscaling) and block-group census data (side scaling). This change of 

support allows the analysis of relationship between drinking of groundwater with high level 

of arsenic and the incidence of prostate cancer
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Figure 5. 
Experimental indicator semivariograms computed from arsenic well data using five 

threshold values. The solid line is the model fitted using least-squares regression. Note how 

the short-range variability increases for the upper quartile and ninth decile of the sample 

histogram, which reflects the smaller spatial connectivity of high arsenic concentrations
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Figure 6. 
Maps of groundwater arsenic concentrations (µg/L) estimated at the nodes of a 500 m 

spacing grid using soft indicator kriging and at the township level by linear aggregation
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Figure 7. 
Map of township-level population density obtained by areal weighting of census tract data
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Figure 8. 
Maps of prostate cancer incidence rates (number of cases per 100 000 habitants) before (A) 

and after noise-filtering using Poisson kriging (B). The map of kriging variance (C) 

indicates larger uncertainty in sparsely populated townships. The kriging estimate and 

variance are used to compute the probability that the area-wide incidence rate of 1 709 cases 

per 100 000 habitants is exceeded at the township level (D)
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Table I

Results of logistic regression analysis: odds ratio and corresponding 95% confidence intervals for eight 

equally-probable classes of township population density. Each odds ratio measures the impact of groundwater 

arsenic content on the probability of exceeding the area-wide incidence rate for prostate cancer. Odds ratios 

are significantly different from 1 if their confidence intervals do not include 1 (red numbers)

Population density (hab./ sq. mile) Odds ratio 95% confidence interval

13.5–36.8 1.616 1.231–2.122

36.9–57.2 1.116 1.033–1.207

57.3–86.5 0.987 0.906–1.075

86.9–137.5 0.972 0.916–1.033

137.8–200 0.815 0.702–0.946

201–451 0.999 0.941–1.062

455–1,336 1.000 0.943–1.061

1,364–6,718 1.124 1.007–1.254
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