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Abstract

Humans’ ability to rapidly and accurately detect, identify, and classify faces under variable 

conditions derives from a network of brain regions highly tuned to face information. The fusiform 

face area (FFA) is thought to be a computational hub for face processing, however temporal 

dynamics of face information processing in FFA remains unclear. Here we use multivariate 

pattern classification to decode the temporal dynamics of expression-invariant face information 

processing using electrodes placed directly upon FFA in humans. Early FFA activity (50-75 ms) 

contained information regarding whether participants were viewing a face. Activity between 

200-500 ms contained expression-invariant information about which of 70 faces participants were 

viewing along with the individual differences in facial features and their configurations. Long-

lasting (500+ ms) broadband gamma frequency activity predicted task performance. These results 

elucidate the dynamic computational role FFA plays in multiple face processing stages and 

indicate what information is used in performing these visual analyses.

Face perception relies on a distributed network of interconnected and interactive regions that 

are strongly tuned to face information 1. One of the most face selective regions in the brain 

is located in fusiform gyrus (the fusiform face area, FFA). Damage to FFA results in 

profound impairments in face recognition 2 and the FFA is thought to be a processing hub 
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for face perception 3. Recent studies have demonstrated that the FFA activity contains 

information about individual faces invariant across facial expression 3 and gaze/viewpoint 4 

and have started to describe some of the organizing principles of individual-level face 

representations 5-7. However, due to the use of low temporal resolution analyses or imaging 

modalities, little is known regarding the relative timing of when FFA becomes sensitive to 

different aspects of face-related information. Specifically, face processing is thought to 

occur through a set of partially distinct stages 8 and it remains unclear in which of these 

stages FFA participates and, more generally, when they occur in the brain.

Evidence from FFA in humans and the putative analog to FFA in non-human primates has 

demonstrated that FFA shows strong selectivity for faces versus non-face objects 9-14. There 

is disagreement about when exactly the FFA, and the human brain in general, first responds 

selectively to faces 15-17. In particular, it is unknown when FFA becomes face selective 

relative to areas in lateral occipital cortex 15,16,18, relative to single neurons in the cortex of 

non-human primates 12-14,19, and relative to rapid behavioral face detection 20. A recent 

study using intracranial electrocorticography (ECoG) showed that fusiform becomes 

sensitive to the category of a visual object around 100 ms after stimulus onset 21. However, 

the brain network highly tuned to face information 1 may allow faces to be processed more 

rapidly than other categories of objects. Therefore it remains unclear how early FFA 

becomes face selective and whether it contributes to face detection.

Regarding face individuation, ensembles of single neurons responsive to individual faces 

have been identified in face sensitive cortical regions of the non-human primate 

brain 13,14,22,23. Studies with humans also show that FFA encodes information about 

individual faces 3,6. However, little is known regarding the temporal dynamics of individual 

face processing in FFA, particularly relative to other processing stages.

Furthermore, it remains unknown whether FFA is sensitive to the key facial features used 

for face recognition, particularly the eyes, mouth, and configural face information. Single 

neurons of middle face patch in the non-human primate (a putative homolog of FFA) show 

sensitivity to external facial features (face aspect ratio, direction, hair length, etc.) and 

properties of the eyes 22. A recent ECoG study showed that FFA is sensitive to global and 

external features of the face and head (face area, hair area, etc.) 6. Behavioral studies have 

shown that the eyes are the most important facial feature used for face recognition, followed 

by the mouth 24 and that configural and holistic processing of faces is correlated with face 

recognition ability 25. It remains unknown whether FFA is sensitive to individual differences 

in these featural and configural properties critical to face recognition, particularly when 

changeable aspects of the face (e.g. expression) are taken into account.

Finally, how FFA contributes to task-related stages of face processing is undetermined. 

Specifically, previous studies have described a late, long-lasting (lasting many hundreds of 

milliseconds) face specific broadband gamma frequency (40+ Hz) activity 6,26,27. 

Broadband gamma activity is closely related to the underlying population firing rates 28,29, 

both of which are face selective for many hundreds of milliseconds after seeing a 

face 14,26,27, extending well beyond the timeframe of face individuation seen in non-human 

primates 14. It is unknown what role this long-lasting activity plays in face processing. Here 
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we examine whether this long-lasting gamma band activity reflects the maintenance of face 

information in support of perceptual decision-making and working memory processes 30,31. 

We used intracranial ECoG in humans and multivariate machine learning methods to 

document the temporal dynamics of face information processing in the FFA from the 

moment a face is first viewed through response-related processing. Multivariate pattern 

classification was used to decode the contents and timecourse of information processing in 

FFA in order to elucidate the dynamics and computational role of this area in face 

perception. Electrophysiological activity (specifically the timecourse of the single-trial 

voltage potentials and broadband gamma frequency power) from the epileptically unaffected 

FFA was assessed while each of four patients (P1-4) participated in two face processing 

experiments (see Fig. 1 for electrode locations; all face sensitive electrodes appear to be in 

mid-fusiform, lateral to the mid-fusiform sulcus, see Weiner et al. [2014] for a detailed 

description regarding the face sensitive regions of the fusiform). Experiment 1 was adopted 

to examine the temporal dynamics of face sensitivity and specificity in FFA (e.g. face 

detection) and experiment 2 was employed to examine the temporal dynamics of face 

individuation and categorization invariant with respect to facial expression. The results of 

these experiments demonstrate that within 75 ms of presentation, FFA activity encodes the 

presence of a face (face detection), between 200-450 ms FFA activity encodes which face it 

is (face individuation), and late (500+ ms) broadband gamma FFA activity encodes task-

related information about faces. These results demonstrate the dynamic contribution of FFA 

to multiple, temporally distinct face processing stages.

Results

Timecourse and magnitude of face sensitivity in FFA

To assess the face sensitivity and specificity of FFA (experiment 1), we used a k-nearest 

neighbors algorithm to decode the neural activity while participants viewed 6 different 

categories of visual images: faces, human bodies, houses, hammers, shoes, and phase-

scrambled faces (30 images per category, each repeated once, presented in random order; 

faces, bodies, and shoes were balanced for gender; see Fig. 2A for examples). Participants 

pressed a button if an image was repeated in consecutive trials (20% of trials, repeated 

images were excluded from analysis). Each individual participated in two sessions of 

experiment 1; one session from P4 was not used due to evidence of an ictal event during the 

recording (a total of 7 sessions across 4 participants). We classified single trial voltage 

potentials between 100-250 ms after stimulus presentation into one of the six categories 

described above and examined the decoding accuracy using the signal recorded from face 

sensitive electrodes (see methods for details on electrode selection and Fig. 1 for locations). 

This time range was selected for the initial analysis because it includes most of the 

previously described face sensitive electrophysiological responses 9,15,26 (also see Fig. 2A & 

B). We were able to identify the category of a stimulus presented on a given trial with 54 - 

93% accuracy across the 7 sessions if the stimulus was a face (6-way classification, chance 

= 16.7%). Neural activity for non-face images was misclassified as a face in 0-8% across the 

sessions (P1 = 93%/0%, 82%/1%; P2= 88%/8%, 54%/8%; P3= 73%/6%, 77%/1%; P4= 

67%/8%; true positive rate/false positive rate; chance = 16.7%/16.7%; p < 10−5 in each of 

the eight sessions). Little consistency in classification accuracy was seen across sessions and 
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participants for the five other object categories (Supplementary Table 1). In addition, in all 

participants electrodes 1-2 cm away from the electrodes of interest showed little face-

sensitive (peak sensitivity index [d’] <1, Fig. 1 and Supplementary Fig. 1), suggesting that 

face sensitivity was constrained within 1-2 cm. The high sensitivity and specificity for face 

classification reported here demonstrates that human FFA regions are strongly face 

selective 14,19.

Fig. 2C shows the temporal dynamics of single trial face classification averaged across 

participants in FFA using the sensitivity index (d’), which takes into account both the true 

and false positive rate for face detection. Face sensitivity was seen in FFA between 

approximately 50 - 350 ms after stimulus onset. To determine the onset of face selective 

activity in FFA, we examined the d’ for face classification from 0-100 ms in 25 ms moving 

windows shifted by 12.5 ms. All windows between 50-100ms showed significant face 

sensitivity (Fig. 2D, 50-75 ms: mean d’=.200, t(3)=3.13, p=.0260; 62.5- 87.5 ms: mean d’=.

368, t(3)=3.72, p=.0169; 75-100 ms: mean d’=.551, t(3)=5.91, p=.0048), earlier time 

windows did not reach statistical significance. None of the other five categories, including 

phase scrambled faces, showed significant classification in these time windows. This 

suggests that this rapid face processing was not driven by spatial frequency information 17 as 

phase scrambled faces contain the same spatial frequency content as intact faces. The 50-75 

ms time window is earlier than human fusiform becomes sensitive to other visual object 

categories 21. However, this time window is consistent with the reports of the earliest face 

sensitivity in single cortical neurons in non-human primates 12-14,19 and rapid behavioral 

face detection 20 suggesting that FFA is involved in face detection.

Timecourse of individual-level face processing in FFA

In each of two sessions recorded on separate days, P1-P4 were shown 70 different faces, 

each repeated 5 times with different facial expressions each time (happy, sad, angry, fearful, 

and neutral expressions) for a total of 350 unique images. The participants’ task was to 

report the gender of each face they saw (50% male, 50% female faces). We used a nearest 

neighbor classification algorithm to determine how accurately we could predict which face 

(given two drawn from the set of faces) a participant was viewing at a particular moment in 

session 1 based on a model trained on the timecourse of the single-trial voltage potentials 

from session 2. Session 2 was used as the training set and session 1 as the test set for this 

analysis to test classification on previously unseen faces. In each of the four participants in 

experiment 2, above chance intra-session classification of the neural response to individual 

faces was observed (Fig. 3A, p<0.05 using a permutation test, corrected for multiple time 

comparisons). Classification accuracy peaked in P1 at 65% and was significant in the 

210-390 ms time window, in P2 at 59% and was significant in the 280-460 ms time window, 

in P3 at 63% and was significant in the 270-490 ms time window, and in P4 at 60% and was 

significant in the 350-540 ms time window (chance = 50%; 57% corresponds to p=0.05 

corrected for multiple comparisons). In addition, we examined whether individual-level face 

classification was invariant over expression by training the classifier on four of the five 

expressions and testing the other, then repeating this with different expressions in the 

training and test set until each expression (leave-one-expression-out cross-validation). In 

each participant, above chance across-expression classification of the neural response to 
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individual faces was observed (Fig. 3B, p<0.05 using a permutation test, corrected for 

multiple time comparisons). This across-expression classification had a similar timecourse 

as the across-session classification in fig. 3A suggesting that the coding for individual faces 

in FFA is not driven by low-level differences between images and is at least partially 

invariant over expression. Indeed, classification of expression failed to reach statistical 

significance at any point between 0 and 500 ms (Supplementary Fig. 5). In addition, 

classification accuracy across face genders was similar to classification within face gender 

(Supplementary Fig. 6), suggesting that classification of individual faces in FFA was not 

driven by task demands. Also, training with the data from session 1 and classifying the data 

from session 2 changed the peak classification accuracy by less than .5%, the peak time by 

less than 15 ms, and the significant time window by less than 25 ms. Furthermore, 

individual faces could not be classified above chance in the adjacent or nearby electrodes 

(Supplementary Fig. 7). These results suggest that the 200-500 ms time window is critical 

for expression-invariant face individuation in FFA.

Facial information used in service of face individuation

To investigate what specific face information FFA encodes in the service of face 

individuation we mapped anatomical landmarks on each of the faces presented in 

experiment 2 and projected each face into an 18-dimensional “feature space” that applied to 

all faces (e.g. eye area, nose length, mouth width, skin tone, etc.; see Fig. 4 for a full list of 

the features used) 32. The multivariate canonical correlation between these facial feature 

dimensions and the voltage potentials between 200-500 ms post-stimulus onset was then 

calculated to evaluate the shared relationship between these variable sets. The full canonical 

model between the neural activity and the face feature space was significant in P1, P3, and 

P4 and approached significance in P2 (P1: Χ2(171)=211.33, Wilks’ λ=.021, p=.019; P2: 

Χ2(152)=181.21, Wilks’ λ=.045, p=.053; P3: Χ2(171)=230.93, Wilks’ λ<.001, p=.001; P4: 

Χ2(152)=194.06, Wilks’ λ=.03, p=.012) demonstrating that FFA activity is sensitive to 

individual differences in these facial feature dimensions. Only the full model was significant 

as none of the other hierarchical statistical tests reached significance. Fig. 4 presents the 

normalized function weights for the full canonical model demonstrating that the most 

relevant facial variables were related to the eyes, the mouth, and the ratio between eye and 

mouth dimensions. There are also notable differences across participants, with P1 showing 

strong sensitivity to eye information and almost no sensitivity to mouths and P4 showing 

strong sensitivity to mouth information and less to eyes. It is unclear if these differences are 

due to different electrode locations (see Fig. 1), random variation (as we do not have the 

power with only 4 participants to statistically quantify these individual differences), or 

different face processing strategies among participants. More generally, we did not track eye 

movements and therefore cannot relate our results to particular face processing strategies or 

preclude FFA sensitivity to other internal or external facial features 6,22. Rather our results 

show that, under free viewing conditions, FFA is tuned to natural variations in eye and 

mouth feature dimensions and configural information relating the eyes to the mouth in 

service of face individuation.
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Broadband gamma activity predicts task performance

Finally, we examined the role of the slowly decaying broadband gamma power (40-90 Hz) 

activity that has been shown to be face sensitive 6,26,27. The results from experiment 1 

confirm that this gamma activity shows strong selectivity for faces and also showed that it 

lasts for the entire trial (Fig. 5A and Supplementary Fig. 8). Experiment 1 was a working 

memory task and one possible role for face-specific activity that persists for the entire trial is 

task-related maintenance of face information that is manipulated by frontal and/or parietal 

regions involved in working memory and decision making 30,31,33. In support of this 

hypothesis, in repeated trials face activity decayed more rapidly than in first presentations, 

potentially due to the release of task demands once detection was accomplished. However, 

the relative paucity of repeated face trials and decreased face activity due to repetition 

suppression makes interpreting these results difficult. Thus, to test the hypothesis that 

broadband gamma frequency activity was related to maintaining the face representation in 

support of task-related processing, we examined the relationship between long-lasting 

gamma activity and behavioral reaction time in experiment 2. In support of a role in task-

related processing, the decay time of the gamma activity from 500-1000 ms after stimulus 

presentation predicted reaction time in experiment 2. Specifically, longer lasting gamma 

activity was significantly correlated with slower response times (p<0.05) in the gender 

identification task for each participant (Fig. 5B and 6A). The amplitude of this gamma band 

activity 100-300 ms prior to the response significantly predicted reaction time for each 

participant and this activity returned to baseline only once the participants had responded 

and task demands had waned (Fig. 5C and 6B). While this gamma frequency power 

significantly predicted reaction time, we were unable to decode the gender decision of the 

participant from this activity. In summary, greater than baseline, face-specific broadband 

gamma power was seen until the point of behavioral response, and a larger gamma peak and 

more rapid decay predicted more rapid decisions of face gender, but this gamma activity did 

not predict behavioral responses (i.e. “male” or “female”).

Discussion

Our results establish the timecourse of information processing in human FFA and elucidate 

the specific computations FFA performs on faces from the moment a face is first viewed 

through decision-related processing. These results demonstrate that FFA activity first 

contains face specific information approximately 50-75 ms after subjects viewed a face. 

FFA displays sharp face sensitivity between 100-250 ms, with little evidence for selectivity 

for four other categories of non-face objects or phase scrambled faces. Individual-level face 

information invariant over facial expression could be decoded for previously unseen faces 

between 200-500 ms. During this same time window, the neural activity from FFA 

contained information about individual differences in eye and mouth features and the 

relative size of eyes versus mouths, suggesting that the FFA uses this information to 

individuate faces. Finally, late, long-lasting (500+ ms) gamma frequency band activity 

(40-90 Hz) predicted participants’ trial-by-trial reaction times in a gender categorization 

task. Taken together, these results reveal the highly dynamic role that FFA plays in multiple 

distinct stages of face processing.
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One caveat of the current work is that the input to all of our analyses was the timecourse of 

FFA activity recorded from single electrodes in each participant. The significant decoding 

demonstrated in this analysis suggests that FFA displays at least a degree of temporal 

encoding of face information 34. However, the data we report are only weakly sensitive to 

information that is primarily coded spatially. Specifically, the data are differentially 

sensitive to neural populations with different proximity or different orientations relative to 

the electrodes. That said information primarily encoded spatially is far less likely to be 

detected by our analyses than information encoded temporally. Thus, lack of significant 

classification (for example for expression or the gender decision) does not necessarily imply 

that FFA is not sensitive to this information, but rather it is not coded temporally.

FFA is face sensitive in the 50-75 ms time window. This time window is as early (or earlier) 

as face sensitivity in lateral occipital face sensitive regions 15,18 and is consistent with onset 

of face sensitivity reported for single cortical neurons in non-human primates 12-14,19. 

Behaviorally, it has been shown that humans can saccade towards a face within 100-150 

ms 20. The decoding of face information in the 50-75 ms time window reported here is 

consistent with FFA playing a role in this rapid face detection. The early face sensitivity of 

FFA reported here provides strong evidence that this area is involved in face detection.

A recent human ECoG study showed that category selective activity is first observed in 

temporal cortex around 100 ms after stimulus onset 21. Our results show that human FFA 

becomes face sensitive in the 50-75 ms window, suggesting that faces are processed more 

rapidly in temporal cortex than other object categories. Indeed, studies of single neuron 

firing latencies in non-human primates have reported that face sensitivity first arises around 

the 50-75 ms window 12-14,19. This more rapid processing of face information may be a 

result of the network of areas highly tuned to face properties 1. Future studies will be 

required to determine if non-face categories with highly tuned perceptual networks (e.g. 

words 35 and bodies 36) are also processed more rapidly than other categories of objects. 

One caveat is that the ECoG study by Liu et al. (2009) reported that the 100 ms object 

category response in temporal cortex shows invariance to viewpoint and scale changes and 

future studies will be required to determine if the 50-75 ms FFA face sensitive response is 

invariant over these transformations as well.

The time window critical for individual level classification occurred between 200-500 ms, 

after face sensitivity observed in experiment 1 had mostly waned. One potential explanation 

why face individuation occurred during a period where face-specific activity is relatively 

weak is that individual level face information may be represented by relatively few neurons 

(sparse coding) 37. Sparse coding would imply that relatively few face sensitive neurons 

were active and that the summed face-related activity in this time period therefore would be 

weak. However, the neurons that were active encode for individual level face information, 

which would explain the significant decoding of identity we report here. One point to note is 

that while face-specific voltage potentials had waned in this time period, significant face-

specific broadband gamma activity was observed in the same time period as individual level 

face classification, though it too was declining. To the extent that this broadband gamma 

activity reflects single neuron firing 28,29, the decrease in this activity potentially also 

supports a sparse coding hypothesis. One caveat being that further studies are required to 
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determine if the decrease in broadband gamma is due less neurons being active in this time 

period (sparse coding) or a decrease in the firing rate.

Neuroimaging studies and lesion studies in patients have implicated parts of anterior 

temporal cortex strongly connected to the FFA 38,39 as important to face 

individuation 3,40,41. Furthermore, a recent study suggested that FFA might act as a hub of 

face identity processing and act in concert with these anterior temporal face sensitive 

regions 3. The timewindow in which we found individual-level face coding (200-500 ms) is 

generally consistent with the idea that recurrent top-down and bottom-up interactions are 

likely to be critical to face individuation. Note that in P3 and perhaps in P1 there are two 

peaks of individual-level face classification. More data will be required to statistically 

substantiate these two peaks, however the dual peaks suggest the possibility of a feedback 

loop involved in face individuation.

Neural activity in FFA during the same time window when significant individual-face 

decoding was observed (200-500 ms) displayed significant multivariate correlation to 

variation in the eyes, mouth, and eye-mouth ratio. Behavioral studies have shown that the 

eyes are the most important facial feature used for face recognition, followed by the 

mouth 24 and that holistic and configural face processing ability is correlated with face 

recognition 25. A recent study revealed that electrical stimulation of FFA distorts the 

perception of facial features 42. Furthermore, previous studies have demonstrated the 

importance of the presence of the eyes for face perception in general, and FFA activity in 

particular 43. Our results lend strong evidence to the hypothesis that FFA uses individual 

differences in these facial features in service of face individuation and recognition.

We show that FFA shows face specific gamma frequency power that lasts until task 

demands wane and that the amplitude of this power predicts participants’ reaction times. 

Recent studies demonstrate that long-lasting FFA gamma activity is modulated by task-

related attention to faces and facial expression 26,27, in support of the hypothesis that this 

activity is integral to task-performance. While this activity did predict reaction time, it did 

not predict the gender decision. This suggests that FFA supports task-related processing, 

potentially by keeping face information on-line, but decision-specific processing occurs 

elsewhere, likely in frontal and parietal regions using the information from FFA 30,31. 

Indeed, a recent study challenged the view that frontal areas store working-memory and 

task-relevant information and suggested that these areas instead control and manipulate 

information that is stored elsewhere 33. In the case of faces our results suggest that at least 

some of this information is stored in FFA.

In summary, our results provide strong evidence that the FFA is involved in three temporally 

distinct, but partially overlapping processing stages: face detection, expression-independent 

individuation using facial features and their configuration, and task-related gender 

classification. Information about these processing stages was present in the recordings from 

electrodes within a 1 cm radius in each participant suggesting that the same, or at least very 

nearby, neural populations are involved in these multiple information processing stages. A 

key open question is how processing transitions between stages in these local neural 

populations. One hypothesis is that the dynamics of these processing stages are governed by 
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interactions between multiple regions of the face processing network. Taken together with 

previous findings, the current results suggest a model in which FFA contributes to the entire 

face processing sequence through computational analysis of multiple aspects of face 

information at different temporal intervals.

Methods

Subjects

The experimental protocols were approved by the Institutional Review Board of the 

University of Pittsburgh. Written informed consent was obtained from all participants.

Four human subjects underwent surgical placement of subdural electrode grids and ventral 

temporal electrode strips as standard of care for surgical epilepsy localization. P1 was male, 

age 26, and had seizure onset in the hippocampus. P2 was female, age 30, and had seizure 

onset in the frontal lobe. P3 was female, age 30, and had seizure onset in premotor cortex. 

P4 was male, age 65, and had seizure onset in the hippocampus. None of the participants 

showed evidence of epileptic activity on the FG electrode used in this study. The order of 

the participants (P1-P4) is chronological based on their recording dates.

Stimuli

In experiment 1, 30 images of faces (50% male), 30 images of bodies (50% male), 30 

images of shoes (50% men's shoes), 30 images of hammers, 30 images of houses, and 30 

images of phase scrambled faces were used. Phase scrambled images were created in Matlab 

by taking the 2-dimensional spatial Fourier spectrum of the image, extracting the phase, 

adding random phases, recombining the phase and amplitude, and taking the inverse 2-

dimensional spatial Fourier spectrum. Each image was presented in pseudorandom order and 

repeated once in each session.

Faces in experiment 2 were taken from the Karolinska Directed Emotional Faces stimulus 

set 44. Frontal views and 5 different facial expressions (happy, sad, angry, fearful, and 

neutral) from all 70 faces (50% male) in the database were used for a total of 350 face 

images, each presented once in random order during a session. Due to time and clinical 

considerations, P3 was shown 40 faces (50% male) from the database for a total of 200 faces 

each presented once in random order during a session.

All stimuli were presented on an LCD computer screen placed approximately 2 meters from 

participants’ heads.

Experimental paradigms

In experiment 1, each image was presented for 900 ms with 900 ms inter-trial interval 

during which a fixation cross was presented at the center of the screen (~ 10° × 10° of visual 

angle). At random, 20% of the time an image would be repeated. Participants were 

instructed to press a button on a button box when an image was repeated (1-back). Only the 

first presentations of repeated images were used in the analysis.
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In experiment 2, each face was presented for 1500 ms with 500 ms inter-trial interval during 

which a fixation cross was presented at the center of the screen. Subjects were instructed to 

report whether the face was male or female via button press on a button box. Each individual 

participated in two sessions of experiment 2 on different days.

Paradigms were programmed in MatlabTM using Psychtoolbox and custom written code.

Data preprocessing

Data were collected at 2000 Hz. They were subsequently bandpass filtered offline from 

1-115 Hz using a second order Butterworth filter to remove slow and linear drift, the 120 Hz 

harmonic of the line noise, and high frequency noise. Data were also notch filtered from 

55-65 Hz using a second order Butterworth filter to remove line noise. To reduce potential 

artifacts in the data, trials with maximum amplitude 5 standard deviations above the mean 

across the rest of the trials were eliminated. In addition, trials with a change of more than 25 

μV between consecutive sampling points were eliminated. These criteria resulted in the 

elimination of less than 6% of trials in each subject.

Electrode localization

Coregistration of iEEG electrodes used the method of Hermes et al 45. High resolution CT 

scans of patients with implanted electrodes are combined with anatomical MRI scans before 

neurosurgery and electrode implantation. The Hermes method accounts for shifts in 

electrode location due to the deformation of the cortex by utilizing reconstructions of the 

cortical surface with FreeSurfer™ software and co-registering these reconstructions with a 

high-resolution post-operative CT scan. It should be noted that electrodes on the ventral 

surface typically suffer minimal shift as compared to those located near the craniotomy. A 

cortical surface reconstruction was not possible in P4 due to the lack of a high-resolution 

MRI. Instead the high-resolution post-operative CT scan was transformed into MNI space 

using a low resolution T1 MRI and the electrode locations manually determined.

Electrode selection

Electrodes were chosen based on anatomical and functional considerations. Electrodes of 

interest were restricted to those that were located on the fusiform gyrus. In addition, 

electrodes were selected such that their peak 6-way face classification d’ score (see below 

for how this was calculated) exceeded 1.5 and the ERP for faces was larger than the ERP for 

other the other object categories. To avoid concerns about circularity with regards to 

electrode selection, only the data from the training set (odd trials, see below) for the 

classification results reported were used for electrode selection. Thus, all statistical values 

and classification accuracies reported for 6-way face classification are derived from data 

independent of those used for electrode selection and classifier training.

This procedure yielded 1 electrode per participant, except for P1 where it yielded 3 nearby 

electrodes (see Supplementary Fig. 1). In the case of P1, we averaged the signal from the 

three face sensitive electrodes (all three electrodes are shown in Fig. 1). For P2 the third 

electrode displayed a peak d’ greater than 1.5, however, in examining the ERP it was 

evident that face classification accuracy in the third electrode on the strip was due to lesser 
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face activity relative to the other conditions (see Supplementary Fig. 4). Face classification 

on the fourth electrode for P2 was also above threshold and the activity in this electrode 

followed the pattern from other subjects (e.g. greater face activity relative to other 

conditions), thus we chose this electrode. It should be noted that even if the anatomical 

restriction was lifted and all electrodes were used, no additional electrodes would have been 

chosen in any participant.

In addition to the 4 participants included in the study, 6 other individuals participated in the 

experimental paradigm during the study period. None of these individuals had any 

electrodes that met the selection criteria and thus were not included in the analysis. In 2 of 

these individuals, there were no electrodes on ventral temporal cortex. The electrode 

locations from the 4 excluded participants with ventral temporal cortex electrodes are shown 

in Supplementary Fig. 2. In 1 of these individuals, data quality was poor (excessive noise) 

for unknown reasons (EP2, none of the electrodes showed any visual response and were 

anterior to FFA). In 3 of these individuals, data quality was reasonable and there were 

electrodes on ventral temporal cortex, yet none met the selection criteria (see Supplementary 

Fig. 3). In one of the non-included participants one electrode exceeded the d’ threshold (see 

Supplementary Fig. 3), but this was due to lesser face activity relative to the other conditions 

(see Supplementary Fig. 4). Considering the ventral electrode strips are placed without 

functional or anatomical/visual guidance, a yield of 4/7 individuals with ventral strip 

electrodes having electrodes placed over highly face selective regions is a substantial yield.

Experiment 1 classification analysis and statistics

For classification, single-trial potentials were first split into odd trials used as the training set 

and even trials used as the test set. The Euclidean distance between the time windowed data 

from each of the test and each of the training trials was then calculated. The single-trial 

potentials from the test trial were assigned to the stimulus condition with k-nearest 

neighbors classifier. Alternatively, using the correlation (instead of Euclidean distance) 

between the test and training sets and the results did not yield substantively different results. 

The selection of k was determined by finding the greatest d’ for k-nearest neighbors 

classification based on random sub-sampling validation with 50 repeats using only the 

training set. True positive and false alarm rates were calculated across all of the test trials.

d’ was calculated as Z(true positive rate) – Z(false alarm rate) where Z is the inverse of the 

Gaussian cumulative distribution function.

Because training and test data were separated (rather than cross validation) and not reversed 

(e.g. the training and test sets were not switched), there is no statistical dependence between 

the training and test sets and classification accuracy follows the binomial distribution. The 

null hypothesis for statistical testing was that the true positive rate was equal to the false 

positive rate under the binomial distribution (this justifies the use of a one tailed t-test).

Experiment 2 classification analysis and statistics

To determine if information regarding individual faces was present in the timecourse of the 

single-trial potentials, we used across sessions binary nearest neighbors classification (e.g. 

k=1). Specifically, the neural responses for the five presentations (each with a different 
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facial expression) of two faces in the second session were used as the training set. The test 

set was the average signal across the five presentations of one of those faces in the first 

session. The Euclidean distance between the single-trial potentials from the test face and 

each training face in a 100 ms window was calculated. The test neural activity was classified 

as belonging to the face that corresponded to the neural activity in the training set that was 

closest to the neural activity from the test trial. This procedure was then repeated for all 

possible pairs of faces and all time windows slid with 5 ms steps between 0-500 ms after the 

presentation of the face. It should be noted that single trial classification was also examined 

and while classification accuracy was lower, it was still as statistically significant in each 

participant as when using the average activity across expressions for the 70 face identities 

(statistical significance was higher due to the use of 350 individual trials instead of 70 

averaged trials, which increased statistical power, 40 faces and 200 trials in P3).

In addition, cross-expression classification was also calculated using the same classifier and 

time windows as above. In this case the neural response for the eight presentations of four of 

the expressions (4 expressions x 2 sessions) of two faces were used as the training set. The 

test set was the average signal across the two presentations of the remaining expressions for 

one of those faces in the first session. This procedure was repeated for each pair of faces and 

with each expression left out as the test set (e.g. leave-one-expression-out cross-validation). 

Note that using cross-validation, instead of holdout validation as in the cross-session 

classification, and analyzing the 5 expressions separately, lowered the statistical threshold 

for this analysis.

Permutation testing was used for statistical testing of classification accuracy in experiment 

2. Specifically, the labels of the faces in each session were randomly permuted. The same 

procedure as above was performed on these permuted trials. The maximum classification 

accuracy across the 0-500 ms time window was then extracted. Using the maximum 

classification accuracy across the time window implies a global null hypothesis over the 

entire window, which corrects for multiple time comparisons 46. The labels were randomly 

permuted again and this procedure was repeated 500 times. Using this procedure, p = 0.05, 

corrected for multiple comparisons, corresponded to a classification accuracy of 

approximately 57% (+/- .2% across the 4 individuals).

Classification of the 5 facial expressions (Supplementary Fig. 5) was done using k-nearest 

neighbors as in experiment 1.

Classification accuracy when the two training faces were the same gender or when they 

were different gender was also compared in Supplementary Fig. 6. This was done because 

participants’ task was gender classification and we wanted to address the potential concern 

that neural classification for individual faces could have been driven by task demands.

Facial feature analysis

Facial features were determined based on anatomical landmarks found by IntraFace 32. This 

toolbox marks 49 points on the face along the eyebrows, down the bridge of the nose, along 

the base of the nose, and outlining the eyes and mouth. Based on these landmarks we 

calculated the first 12 facial feature dimensions listed in Fig. 3B. Red, green, and blue 
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intensities were calculated by taking the average intensity for these colors in two 20x20 

pixel squares, one on each cheek, the bottom of which was defined to align with the bottom 

of the nose and the middle to horizontally align with the middle of the eye. High, middle and 

low spatial frequencies were determined by calculating the mean power at different levels of 

a Laplacian pyramid 47. The image was iteratively low-pass filtered and subtracted from the 

original image to generate a 6 level Laplacian pyramid (from level 0 to level 5), similar to 2-

dimensional wavelet decomposition. The level with smaller index contained higher 

frequency components. By adding up in pairs, e.g. level 0&1, level 2&3, level 4&5, we get 3 

images that corresponding to the high, mid and low frequency components of the original 

image (note that if we add all 6 levels together we will get the original image). We then 

performed a 2-dimensional Fast Fourier Transform for these three images to calculate the 

mean power for each of them.

The values for these 18 feature dimensions were averaged across the five facial expressions 

for each of the 70 faces (40 for P3). Finally, the values for each variable were normalized by 

subtract the mean and dividing by the standard deviation across the 70 faces so that none 

would unduly influence the canonical correlation analysis.

Canonical correlation analysis

Canonical correlation analysis (CCA) finds the maximally correlated linear combinations of 

two multidimensional variables 48, in this case variable one was the 18 facial feature 

dimensions and variable two was the single-trial potentials between 200 and 500 ms after 

stimulus onset. Briefly, the first canonical coefficients (a1m and b1n) of the face and neural 

variables (x1, x2, ..., xm and y1, y2, ..., yn) respectively are found by maximizing the 

correlation between the canonical variables (W1 and V1) defined by:

(1)

(2)

This procedure is then repeated for W2 and V2 to Wp and Vp where p = min(m,n) and all Ws 

are uncorrelated to one another and all Vs are uncorrelated to find subsequent canonical 

coefficients and functions. Significance of Wilks’ λ (the multivariate generalization of the 

inverse of R2) was based on the chi-squared statistic.

In the presence of noise, CCA is prone to overfit the data unless the number of samples 

substantially exceeds the dimensionality of the data. To reduce the dimensionality of the 

neural data, we performed a principal components analysis (PCA) on the faces x timepoints 

data (70 faces x 300 time points) and used the first N eigenvalues as the neural dimensions 

in the CCA. The number of eigenvalues (N) was chosen such that they accounted for 90% of 

the variance in the neural data. This yielded 9 eigenvalues for P1, 8 for P2, 9 for P3, and 8 

for P4.
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Gamma band analysis and statistics

Time-frequency power spectra were calculated using a Fourier transform with a Hanning 

window taper calculated with a 200 ms sliding window and 2 Hz frequency step for each 

trial. The peak frequency in the gamma range for all trials in experiment 1 collapsed across 

conditions and subjects was found to be 65 Hz and a window of +/− 25 Hz around this peak 

was used as the frequency window of interest. Trials in experiment 2 were ranked by 

reaction time (RT) and split into fastest, middle, and slowest thirds according to RT. In 

addition, Spearman's rho between RT and gamma power across trials was calculated. 

Spearman's rho was used to minimize the potential for outliers skewing the correlation, 

though it should be noted that Pearson's correlation and Spearman's rho did not substantially 

differ in any participants and both were significant in all runs and participants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Locations of electrodes used in the study and their neighboring electrodes on subjects’ 
native pial surface reconstruction
Electrodes in red denote the ones used in the experiment and electrodes in white denote the 

other contacts on the same electrode strip. A high resolution MRI was not available for pial 

surface reconstruction of P4 and thus the electrode is visualized on a low resolution T1 MRI 

slice. MNI coordinates of electrodes are as follows: P1 - (35, -59, −22), (33, −53, −22), (42, 

−56, −26); P2 - (40, −57, −23); P3 - (−33, −44, −31); P4 - (−38, −36, −30). All electrodes 

are over the fusiform gyrus.
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Figure 2. Dynamics of face selectivity in human FFA
(A) Example of stimuli from each condition and event related potential (ERP) waveforms 

from session 1 of P1. Across trial means are plotted and standard errors are shaded in light 

colors.

(B) Average ERP waveforms across the four participants. In each participant a positive 

going face sensitive peak between 100-140 ms and a negative going face sensitive peak 

between 160-200 ms could be identified. The timing of these peaks is consistent with 

previous ERP studies of face processing 9,15,26.

(C) Face classification accuracy over time as measured by d’ (n=4, mean d’ plotted against 

the beginning of the 100 ms sliding window), which takes into account both the true and 

false positive rate. Classification is based on single trial voltage potentials. See 

Supplementary Fig. 1 for individual subject d’ time courses for these electrodes and 

neighboring electrodes. Standard deviations are shaded grey. (D) Face classification 

accuracy in the first 100 ms after stimulus onset with 25 ms windows. Classification is based 

on single trial voltage potentials. D’ scores in panels C and D differ due to the different 

window sizes used for the respective analyses. Standard deviations are shaded grey.
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Figure 3. Face individuation in human FFA
(A) Time course of individual level face classification accuracy based on single trial voltage 

potentials in each participant. This shows, given two faces, how accurately we could predict 

which one the participant was viewing based on the neural data, plotted against the 

beginning of the 100 ms sliding window. Red line at 57% indicates p = .05, corrected for 

multiple time comparisons based on the permutation test, grey line indicates chance 

accuracy (50%).

(B) Across-expression, individual level face classification accuracy. This shows, given two 

faces with a particular expression, how accurately we could predict which one the 

participant was viewing based on the neural data from the other four expressions used in the 

study. Red line at 55.5% indicates p = .05, corrected for multiple time comparisons based on 

the permutation test, grey line indicates chance accuracy (50%).
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Figure 4. Facial feature sensitivity of FFA electrodes
Multivariate canonical correlation coefficients between the single trial voltage potentials and 

facial features for the individual faces. Canonical coefficients have a similar interpretation as 

beta coefficients in multiple regression. Coefficients were normalized by first taking the 

absolute value and then dividing by the sum of all coefficients across the 18 facial feature 

variables.
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Figure 5. Long-lasting task-related broadband gamma activity
(A) Mean and standard error of gamma band (40 - 90 Hz) power for face and non-face trials 

across all participants in experiment 1 (n=4). Grey bar indicates p<.05 for face versus non-

face objects based on the Wilcoxon rank-sum test. See Supplementary Fig. 8 for face and 

non-face gamma band power for each individual participant.

(B) Mean and standard error of gamma band power split into thirds by reaction time for 

gender discrimination in experiment 2 (n=4; mean reaction time = P1: 788 ms; SD = 269 

ms; P2: 870 ms; SD = 221 ms; P3: 1065 ms; SD = 299 ms; P4: 872 ms; SD = 216 ms). 

Significant correlation was seen in each individual participant between 500-1000 ms gamma 

band power and reaction time (Fig. 5A).

(C) Same as for (B) but with trials aligned to the behavioral response (time 0 = response 

onset) for the 4 participants in experiment 2. A significant correlation between pre-response 

gamma band power (−300 ms to −100 ms) and reaction time was seen in each individual 

participant (Fig. 5B).
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Figure 6. Gamma power predicts reaction time in each participant
(A) Scatter plots of mean gamma power over the 500 to 1000 ms post stimulus window 

versus reaction time.

(B) Scatter plots of mean gamma power over the −100 to −300 ms pre response window 

versus reaction time.
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