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ABSTRACT It is shown that three and -only three
parameters are sufficient to generate a function A (c;
AO, KA, R) which reproduces observed equivalent con-
ductance A as a function of concentration c within experi-
mental error up to concentrations of about 2 X 10-7D' eq/
liter (D = dielectric constant). The three parameters are:
Ao, the limit of A(c) at zero concentration; KA, the associa-
tion constant; and R, a distance. Realization that con-
ductance data can provide only one distance parameter
suggests a model for electrolytic solutions in which R is
defined as the radius of the sphere inside of which a unique
partner can be found for a paired ion, and outside of which
continuum theory may be applied. All system-specific
effects (ion-ion and ion-solvent interactions, and the in-
herent spatial discontinuity of real solutions) appear
within the spheres of radius R centered at the cations of
the ion pairs. The association constant therefore depends
not only on electrostatic attraction but also on the multi.
plicity of molecular parameters that are needed to describe
short range interactions,

Determination of association constants from conductance
data is, strictly speaking, a matter of curve-fitting: given
precise data for a given system and a reasonable equation
(such as the Ostwald dilution law, or any of the modern im-
provements on it), the computer will lprint a number in the
output box labeled "ASSOCN CONS1 = " but that
number obviously depends on the mathematical form of the
equation used. The equation is a theoretical one, of necessity
based on a- model because real electrolytic solutions are far too
complicated to be amenable to rigorous theoretical treatment.
A frequently used model is the so-called primitive model:
rigid charged spheres moving in a continuum described by its
dielectric constant and viscosity. This model is adequate for
prediction of the long range electrostatic interactions. But if
the behavior of a given electrolyte paralleled that of the primi-
tive model, it would have the same association constant in
isodielectric solvents. Many violations of the isodielectric rule
are known: striking examples are the much higher association
in acetonitrile-dioxane mixtures than in isodielectric mixtures
of p-nitroaniline with dioxane (1), and the contrast between
association in ethylidene chloride and the nearly isodielectric
1,2-dichloroethylene (2). In both cases, the association con-
stant in the first-named solvent is over an order of magnitude
greater than in the second. A recent systematic study (3)
of four quaternary electrolytes in mixtures of i-butyronitrile
with five different polar solvents showed poor correlation be-
tween association constant and dielectric constant. These ex-
amples show that more than simple electrostatic anion-cation
attraction must be involved in ion pair formation. The primi-
tive model is too restrictive: it admits only one parameter (the
contact distance) characteristics of the electrolyte. The fre-
quently observed variation of this parameter (especially for
small ions) for a given electrolyte from solvent to solvent or
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with solvent composition iii mixed solvents demonstrates that
the primitive model is oversimplified; we need a model that
has more than one degree of freedom that can thereby allow
for short range systen)-specific interactions.

Electrochemists are in general agreement that the concept
of ion association is useful, indeed necessary, in the description
of electrolytes but no model for pairs so far proposed has
achieved general acceptance. B3jerrum's (4) original model
[and the statistically improved version of Fuoss (5) ], in which
ions whose center-to-center distance r lies between r = a
(contact) and r = E'/2DkT = (3/2 are counted as pairs, calls
for abrupt cessation of association when the dielectric con-
stant D is such that fl/2 becomes less than a. This predicts a
physically unrealistic situation: for example, in water with
D = 78.35, (/2 = 3.57 A, which is less than the sum of the
lattice radii for many salts for which non-zero association
constants have been determined. For the contact pair model,
the association constant is

KA = (47rNa3/3000) exp (C2/DkT) [1]

as shown thermodynamically by Denison and Ramsey (2),
statistically by Fuoss (5), and kinetically by Debye (6) and
Eigen (7). According to Eq. [1], a plot of the logarithm of the
association constant against reciprocal dielectric constant of
the solvent should be linear for a given electrolyte; il general,
these plots are concave down.
The purpose of this communication is to make a pragmatic

approach to the problem of the determination of association
constants from conductance data. It will first be shown that
three parameters are necessary and sufficient to construct a
function A(c) that reproduces the observed equivalent con-
ductance A as a function of concentration c within experi-
mental error. One of these must be the limiting conductance,
A0 = lim A(c), c -- 0; by hypothesis, the second must be the
association constant KA. A dimensional argument shows that
the third must be a distance, R. This observation leads to a
model of minimal restraints in which R replaces the ,(/2 of the
Bjerrum-Fuoss model and the a of the model for Eq. [1 ]; ions
that have no other unpaired ions within a distance R are. de-
fined as free ions while those that find a unique partner at dis-
tances a < r < R are defined as statistically paired or as-
sociated ions. This approach brings in ion pairing ab initio
(instead of grafting the mass action onto a theory for the
conductance of "completely dissociated electrolytes") and
demands a theory for relaxation and electrophoresis that is
based on general boundary conditions that are independent of
the molecular parameters that describe short range inter-
actions. The latter development will be summarized in the
Appendix.
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The decrease of equivalent conductance with increasing
concentration is the consequence of the retarding relaxation
field, the electrophoretic countercurrent and the postulated
zero contribution of paired ions to charge transport; symbol-
ically,

A = y [Ao(1 - AX/X) - AAe] [2]

where AX/X is the ratio of the relaxation field to the external
field and AAe is the electrophoretic term. The association con-
stant is defined by the equation

(1 - -y)/c'y2f = KA [3]

where cy is the concentration of unpaired ions and f is their
activity coefficient, given by

f = exp[-fl3c/2(1 + r.R)] = exp(-Cc11') + O(c) [4]

Substitution of Sy from [3] into [2] gives the implicit equation

A = Ao(l - AX/X) - AAe - KAcyf2A [5]

The limiting behavior at extreme dilutions can be predicted
exactly using point charges to represent the ions. The result is

AoAX/X + Ae = (aAo + fl)c'/2 - (El - 2E2Ao)c ln c [6]
where the coefficients a, g8o, El, and E2 are known. Then an
extrapolation function

A' = [A(obs) + #OC-/2-Ec In c]/(1- ac1'2 + 2E2c In c) [7]

can be constructed which approaches A0 linearly in concentra-
tions at low concentrations. Assume that Ao has been deter-
mined in this way for a given electrolyte; then [2] can be re-
written

A = Ao-Sc1±2+ Ec Inc + HT [8]

where HT is an abbreviation for terms of order c and higher.
Now let us examine these higher terms by plotting

Y = [A(obs) - Ao + Sc1/2 Ec In c]/c [9]

against square root of concentration. Several examples are
shown in Fig. 1. The plots are all linear, four (8-10) with nega-
tive slope and positive intercept, and one, for thallous nitrate
(11), with positive slope and negative intercept. We thus
establish the empirical result

A = A0o-Sc'° + Eclnc + Ac + Bc'1' [10]
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FIG. 1. Function of Eq. [9]. 1, Cesium bromide (8); 2, sodium
chloride, Y - 20 (9); 3, potassium nitrate (10); 4, silver nitrate
(10); 5, (Y-scale left) thallous nitrate (11).

that a *3-parameter equation is both necessary and sufficient to
reproduce conductance curves up to concentrations of the
order of 0.1 N in water. Comparison of [5] and [10] shows that
A and B contain KA and Ao. They also contain theoretically
predictable contributions from relaxation and electrophoresis,
which must, however, contain a third parameter which orig-
inates in the derivation of the higher terms. The independent
variable in the differential equations that determine these is
rji, the distance from a given i-ion to a reference j-ion; these
equations simplify when the independent variable is changed
to the dimensionless icr where 1/K is the Debye distance, de-
fined here by the relation

K2 = 8Twnye2/DkT = rNcyE2/125 DkT [II]

for 1-1 electrolytes. This in turn shows that the origin of the c
In c terms of [10] must be terms of the form c In KR where R is
a distance, because only dimensionless numbers may have
logarithms.
The conductance function [5] now takes the form

A = AO Sc-'l/2 + Ec In c + [p(R) - KAAo]c

+ [-q(R) + 2CKtAO]c'/2 + O(c2) [12]

where p(R) and q(R) are the higher terms from relaxation and
electrophoresis. The constants in [10] are seen to be

A = p(R) - KAAO [13]

B = -q(R) + 2CKAAO [14]

The slope and intercept of Fig. 1 are B and A; for small as-
sociation constants where p(R) > KAAO and q(R) > 2CKAAO,
the intercept is positive and the slope is negative. As KA
increases, both slope and intercept go through zero and reverse
sign. This is the sequence observed in Fig. 1: cesium bromide
(8) and sodium chloride (9) have association constants a little
less than unity; for potassium and silver nitrates (10), KA
2; and for thallous nitrate (11), KA 3.
To summarize, consideration of typical data for a variety of

electrolytes shows that the conductance function must be

A = A(c; AO, KA, R) [15]

The next problem is to find the form of the functions p(R) and
q(R); to this end, it is necessary to construct a model char-
acterized by a distance parameter R. In the model to be pro-
posed, R is a distance such that, if rij > R, ions i and j are
considered unpaired ("free" ions, atmosphere ions) and paired
if rij < R. Unlike the Bjerrum-Fuoss model in which R was
fixed at E2/2DkT = fl/2, in this model R is a disposable param-
eter, to be determined along with A0 and KA from the data.

Represent the ions by charged particles, not necessarily
rigid or spherical, that can be enclosed in a sphere of diameter
a. Represent the solvent by particles of finite volume such
that the sum of the volumes of all the particles is less than the
volume of the system; all particles are in Brownian motion,
thanks to the free volume available. Surround each cation by a

sphere of diameter a, and let all the spheres expand simul-
taneously at such a rate that their radii increase by distances
of the order of a in times of the order of that involved in
molecular motion. When

r r

4xr pj(r) r2dr = - ej [161
a
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for a given cation with a charge e?, count the cation as paired
with that anion that furnished the countercharge. The charge
density pj(r) is a discontinuous function for distances from a
to perhaps ten times a, depending on concentration. (If un-
charged, the average center-to-center distance of ions in a 0.1
N solution would be about 2 nm.) The density pj is zero until
r = rij where rij locates the center of the nearest previously
uncounted anion i to the j. If the system had been frozen before
starting the count, a unique partner could have been assigned
to every cation. In our model, however, the ions are in thermal
motion; therefore, assignment of unique partners becomes
blurred as r increases. The integral for some of the ions from a
to some larger value R of r is zero, and it is the integral from R
to infinity that provides the balancing charge

4Tf pj(r) rklr = -ejR" [17]

Eq. [17] is simply the statement that the neutralizing charge
for the central cation cannot be located on any one particular
anion; as a consequence of the thermal motion of the ions and
their relatively large mutual distances, the set of discrete
charges on all the other ions may be replaced by their time
average (the Debye ionic atmosphere), which integrates pre-
cisely to (- es). The paired ions in the volume surrounding the
reference ion contribute mutually cancelling terms to this
average space charge. Now for any cation,

rO
4rJ pJ(r) r2dr =-[[18]

Divide the range of integration into two segments: a < r < R
and R < r < co . Ion pairs are now defined as those for which

rR
4Trf pJ(r) r2dr = j-. [19]

and unpaired ions as all others; for the latter

pj (r) = Zinjej exp (-ej4',/kT) [20]

where 4,j(r) is the potential of average force at a distance r

from the reference ion. Since, by the above definition, there are

no nearby ions to the unpaired ones, Iei,tj/kTI < 1 and the
quadratic expansion of the Boltzmann factor is a completely
adequate approximation.
For the unpaired ions, the model reduces to the primitive

model; the discrete structure of the solvent and short range

interactions play no role; both, however, are determinative
for a description of the paired ions. The paired ions include
contact pairs, solvent separated pairs, and pairs even farther
apart, which are statistically paired by the counting process.

Let us begin by considering a system in which the volume
4Tra3/3 is much larger than the average volume available per

solvent molecule and for which e2/aD >> kT; here the ionic
distribution should closely approximate that for the primitive
model. The distribution curve (6) is the solid curve in Fig. 2A,
where G(r) is the probability that an anion can be found at a

distance r from a given cation, subject to the condition that
no other unpaired anion is located inside the sphere of radius
r drawn around the cation. The function

G(r) = 4irnr2 exp[,1/r - 4rn x2 exp(#/x)dx] [21]

FIG. 2. Pair distribution functions. Solid curves, G(r); broken
curves, P(r).

where n is the number of anions per unit volume, has an ex-

ponential peak at r = a, a minimum near the Bjerrum dis-
tance P/2, and a maximum at a distance of the order n-/-
after which is very rapidly decreases to zero. Based on this
distribution function, ion pairs are defined as those for which
a < r < d; the corresponding association constant is

rd
KA = (4-rNI100) Jr2 exp(B8/r)dr [22]

For d = fl/2, [22] gives the Bjerrum association constant; it
quite satisfactorily describes the behavior of salts with large
ions in solvents of lower dielectric constant.
Now consider salts with volumes comparable to those of the

solvent molecules. Then the continuity implied in [21] is no

longer a realistic approximation: the anion and cation of a pair
will either be in contact, or will have one or more solvent
molecules between them; the distribution becomes something
like that shown schematically by the broken curve of Fig. 2A.
For r >> a, the distribution approaches continuity, of course,
but for distances up to several times a, the probability func-
tion must peak for certain distances, which, moreover, must be
system-specific. (Here certainly is at least part of the ex-

planation for the violations of the isodielectric rule mentioned
in the introduction, and for the variation, for a given electro-
lyte in different solvents, of a's calculated from association
constants by [22] with d = i3/2.) With our model the associa-
tion constant is given by

r

K-A = (4grN11000)) P(r)dr [23]

where P(r) is a system-specific distribution function; note that
the integrand is proportional to the integrand in [18], where
discontinuity is inherent. If a's are calculated by [22] using d
= R, the result is the contact distance for the equivalent primi-
tive model electrolyte; as solvent is changed, and with it free
volume and ion-solvent interactions, one should expect a to
change.
Next consider a solution of an electrolyte with bulky ions in

a solvent of high dielectric constant. Here the distribution
curve (Fig. 2B, solid curve) has no minimum; nevertheless,
non-zero association constants have been found for such sys-

tems. Even for uncharged particles, the probability of finding
pairs is not zero, simply as the consequence of chance collision;

A

R

Proc. Nat. A cad. Sci. USA 71 (1974)



Proc. Nat. Acad. Sci. USA 71 (1974)

the half-life of ion pairs is, of course, increased by short range
electrostatic attraction. Furthermore, in real solvents, as con-
trasted to continua, the dwell time of a pair is increased by the
caging effect of the surrounding solvent molecules. The pair
distribution function will therefore peak around r = a; the
corresponding association constant will be given by the integral

r d
KA = (4,xNIIOOO) P(r)dr [24]

where P(r) is the probability of finding a unique pairing anion
at a distance r < R. If the dimensions of the ions and solvent
molecules are comparable, we would expect to find a second
peak at r = a + d., where d, is the diameter of a solvent
molecule, and possibly a third further out. Such a distribution
is shown as the broken curve of Fig. 2B. While the primitive
model predicts zero association, the stochastic distribution
function restores a minimum in probability between paired
and unpaired ions and leads to a nonvanishing association
constant.
The contrast between the distribution function for the

primitive model and that for pairs in real solvents gives physi-
cal significance to the distance parameter R: it is the distance
beyond which the continuum approximations become valid,
and within which short range spatial and energetic inter-
actions (both ion-ion and ion-solvent) must be considered.
The following function has the properties required for the
distribution in the range a < r < R:

P(r)dr = 4 rr2dr exp[#/r - 2u(r)/kT]
X E wj exp[-aj(r - a -jd)2] [25]

where the sum of the weighting factors wj is unity. Here fl/r is
the Coulomb term and lu(r) symbolizes all the other inter-
actions which must be considered for a given system. A repul-
sion term here will give a steep cut-off for r < a. The function
postulates a Gaussian distribution around the sites of peak
probability; the number of such terms is limited by the con-
dition jd, < R. Alternatively, the Gaussians might be re-
placed by Dirac functions, 3(r - a - jd8). Since by definition
u(r) sums all the short range forces, e-u-must quickly approach
unity as r increases from r = a: therefore, to a good approxi-
mation, u(r) may be replaced by u(a) in [25]. For rigid spheres,
u(r < a) = t. For r > R, P(r) = G(r). The above distribution
provides in a natural way places for the insertion of system-
specific parameters which experiment tells us must be present
in any formulation of the association constant. This virtue is,
of course, simultaneously a drawback, in that quantitative
comparison with experiment is ambiguous, because KA must
contain all the system-specific molecular parameters appearing
in P(r). The formula should, however, be useful in qualitative
comparisons of the association constants for a family of electro-
lytes in a given solvent, or for a given electrolyte in a series of
solvents or mixtures.

Conductance data of high precision for a large number of
systems have been analyzed by the 3-parameter Eq. [15],
which usually reproduces the observed conductance to about
0.02%. Results for a typical system, potassium nitrate in
dioxane-water mixtures in the range 78.35 < D < 14.56 (10),
are shown in Fig. 3, where R and log KA are plotted against
(3/2 (proportional to 1/D). In the water-rich mixtures, R is
about 4 i greater than (3/2; in this range, G(r) has no mini-
mum (compare Fig. 2B), but KA is not zero. With decreasing

0)
0

//2
FIG. 3. Parameters for potassium nitrate in dioxane-water
mixtures (10). Top curve, log KA; bottom curve, R; distance
scales in Angstrom units.

dielectric constant, R increases, but less rapidly than (3/2
(R = fl/2 on the 450 line in Fig. 3). At (/2 - 15, R -- (/2,
and then increases very slowly. For b = #/a > 2, a minimum
appears near (3/2 in G(r); G(a) is twice as large as G((3/2)
for b = 4.156. If values of A0 and KA that minimize 2X [A(calc.)
- A(obs.)]2 are determined for a sequence of values of R,
and the standard deviation is plotted against R, curves with
very sharp minima are obtained for the high dielectric con-
stant range. But as dielectric constant decreases, the minima
rapidly become shallower; that is, a broad band of paired
values of R and KA will fit the data within about the same
tolerance. This simply means that KA in solvents of lower di-
electric constant is primarily determined by the dominating
exponential peak near r = a, and becomes insensitive to the
upper limit R in the integral [24]. This pattern of behavior ap-
pears to be general, and suggests that for systems for which
b > 4, the 3-parameter Eq. [151 can for all practical purposes
be reduced to the 2-parameter equation

A = A(c; AO, KA) [26]

by setting R = (3/2. If u(a) = 0, the equation for the associa-
tion constant becomes the classical

/2
KA = (4TrN/1000) J r2 exp((3/r) dr [27]

for solvents of low dielectric constant. i\Iore generally,
r6/2

KA = 4rN exp[u(a)/kT] f r2 exp((3/r) dr [28]

where u(a) includes the ion-solvent energy of interaction pro-
posed by Gilkerson (12), ion-ion attraction due to induced
dipoles, short range covalent "forces," and whatever else
might be present in any particular case.
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APPENDIX
The relaxation field AX is obtained by integrating the Poisson
equation

A4= -(47r/D)32if'jiei/nj [Al]
where 4'j is the asymmetry potential produced by the perturba-
tion f'ji in the pair distribution function [131. The distribution
function fji = (f'ji + f'ji) satisfies the equation of continuity

4494 Chemistry: Fuoss
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(ref. 13, Eq. 1.2)

div1 (fijvij) + div2 (fjivji) = 0 [A2]

where vji is the velocity of an ion of species i at a distance ri from
a reference ion of species j. The equations of motion (ref. 13,
Eqs. 1.9 and 1.10) give the velocity in terms of the external field
X and the internal forces. Substitution of these in [A2], solution
of the latter and substitution of the result into [Al] gives the
fourth order differential equation

A (A - K2,p'j/2) = ZkTk [A3]

to determine ik'j; here
K2 = 87rnye2/DckT [A4]

where -y is the fraction of cations that have no unpaired anionic
neighbors at distances r < R. The summation on the right repre-
sents a group of functions, the first of which is explicit; the others
involve ik'j and f'ji (ref. 13, Eq. 1.8). Four boundary conditions
are needed: the first three are electrostatic, requiring that Vik',
(o ) = 0, and that field and potential be continuous at r = R
(analogs of Eqs. 3.1-3.3, ref. 13). The fourth boundary condition
is the requirement that the ratio (f'ji/n2) remain finite in the limit
of zero concentration. The only system-specific parameters that
appear are the charges on the ions (subject to the neutrality
condition 2inici = 0) and the macroscopic dielectric constant
and viscosity of the solvent for r > R. All short range effects are
contained in the association constant. The explicit inhomogeneous
term of XkTk gives the leading term of the relaxation field

AX1/X = -fl[exp(1- q)t - 1]/3R(1 + t) [AS]

where q2 = 1/2 and t = KR. For low concentrations, this reduces
to the Onsager limit

AX0/X = -r/3(1 + q) [A6]

with r = SK/2. In the above calculation, the Boltzmann factor
exp(- Eiq&j/kT) = er was approximated by the truncated series
(1 + ¢ + ¢2/2) for r > R; the terms corresponding to (r + p2/2)
in ZkTk give an exponential integral term in AX, which has as its
leading term

AXL/X = (r2/3,42) ln t [A7]

where 1/, = et/(1 + t). The other higher terms are obtained by
recycling the first approximations to Vl'j and f'ji in the inhomo-
geneous terms of [A3]. They add up to a long and complicated
function, much too long for reproduction here or for practical
computations even on the electronic computer. Consequently,
they were calculated explicitly as functions of t, summed, and
then coefficients of interpolating polynomials were derived by the
usual methods. The higher electrostatic terms in the relaxation
field are

DB2 = 4r2 (FB2) [A8]

DB3 = (4f3r2/R) (FB3) [A9]

where

FB2 = 0.0755 - 0.1089t + 0.0705t2
- 0.0569t3, 0 < t < 0.8 [AlO]

FB3 = -0.08038 + 0.4760t - 1.232t2

+ 1.505t3, 0 < t < 0.22 [All]
= -0.07101 + 0.3388t 0_5533t2

+ 0.3752t3, 0.22 < t < 0.4 [A12]

= 0.0.110 + 0. 1940t - 0. 1962tI

+ 0.0766t3, 0.4 < t < 0.8 [A131

These functions reproduce the explicit functions within 0.01% of
A; their tipper limit of validity (t - 0.8) corresponds to concen-
trations above which the linearization of the basic Poisson-
Boltzmann equation is no longer justifiable. This concentration is
about 2 X 10-7 D3 eq/l. The relaxation field is then

RX = AXI/X + AXL/X + DB2 + DB3 [A141

The electrophoresis term AA, is obtained by substituting the
total force e(X + VO0 + Vik') into the Oseen equation (ref. 14,
Eq. 7) and integrating. The leading term is

AA1 = -.80C1/2-y1/2/(1 + t) [AI51

where g3o = 82.5/n7(DT)'/2 is the Onsager coefficient; a logarithmic
term also appears, which when combined with the hydrodynamic
part of the relaxation field gives

AAL = ,o60C /2 y /2[(T/2/L2) ln t] [A16]
Interpolating polynomials were also computed for the algebraic
terms of order c and higher; they are

HI = t(0.1248 - 0.10295t + 0.07925t2
- 0.03031t3), 0 < t < 0.8 [A17]

H2 = 2r(-0.0944 + 0.1174t- 0.215.5t2), 0 < t < 0.4 [A18]

= 2T(-0.08885 + 0.08461t - 0.16796t2),
0.4 < t < 0.8 [A19]

giving for the total hydrodynamic terms

HY = -#%oc/2yl/°[1/(1 + t)
+ (r/2,u2) ln t + Hi + H2] [A20]

Conductance is then calculable by combining [A14] and [A20]
with y from the mass action Eq. [3] to give

A(c) = y[Ao (1 + RX) + HY] [A211
A FORTRAN IV program (15) has been written for the following
problem statement: Given, a set of conductance data (c;, Aj,
j = 1,.., N), Eqs. [3], [41, and [A211; find the values of the
parameters Ao, KA and R which give a least-squares best fit to the
data.
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