
Optical stimulation for restoration of motor function following 
spinal cord injury

Grant W. Mallory, M.D.1, Peter J. Grahn, B.A.2, Jan T. Hachmann3, J. Luis Lujan, Ph.D.1,4, 
and Kendall H. Lee, M.D., Ph.D.1,4

1 Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA

2 Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA

3 School of Medicine, Heidelberg University, Neuenheimer Feld, Bergheim, Germany

4 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA

Abstract

Spinal cord injury (SCI) can be defined as a loss of communication between the brain and the 

body due to disrupted pathways within the spinal cord. While many promising molecular 

strategies have emerged to reduce secondary injury and promote axonal regrowth, there is still no 

effective cure and recovery of function remains limited. Functional electrical stimulation (FES) 

represents a strategy developed to restore motor function without the need for regenerating 

severed spinal pathways. Despite its technological success, however, FES has not been widely 

integrated into the lives of spinal cord injury survivors. In this review, we briefly discuss the 

limitations of existing FES technologies. Additionally, we discuss how optogenetics, a rapidly 

evolving technique used primarily to investigate select neuronal populations within the brain, may 

eventually be used to replace FES as a form of therapy for functional restoration following SCI.
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Spinal cord injury

Despite efforts to elucidate the pathophysiology of spinal cord injury (SCI) in the last few 

decades, the search for a cure continues 1-3. Currently, the gold standard of care is to provide 

intense physical rehabilitation following the acute injury phase, in an attempt to maximize 
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any spontaneous recovery of respiratory, hand, arm, leg, bowel, bladder and sexual 

function 4. While this paradigm increases the possibility of some degree of recovery, 

particularly in patients with incomplete injuries, most patients do not experience a full 

recovery and have only limited gains with current rehabilitation therapy 4-7.

The poor chance of recovery following SCI has inspired a significant amount of research 

aimed at restoring lost function in SCI survivors. From a biological standpoint, these efforts 

have primarily focused on molecular manipulations to lessen the degree of secondary injury 

that occurs via ischemia and excitotoxicity 5,8-14, replacement of lost neurons and glia via 

stem cell transplantation 15,16, and remyelination or axonal regeneration by either reducing 

glial scar formation 17 or by inserting biomaterial substrates 18 that promote neural 

regrowth 19-23. Unfortunately, these approaches have been met with limited success due to 

the complexity involved with degrading glial scarring while regenerating neural tissue and 

directing appropriate neural connections required to restore severed spinal pathways 24.

An alternative to molecular manipulations is to activate remaining neuromuscular 

components, which, despite the loss of descending input, can still be activated via external 

stimuli. Historically, the most common form of stimuli has been electricity. Namely, 

functional electrical stimulation (FES) has been successfully used to restore breathing 25,26, 

lower 27-29 and upper extremity function 30,31, and bladder and bowel control 32-35.

Presently, FES systems can restore lost function, however, they have a narrow scope of 

application and generally only restore one previously lost function at a time. For example, 

phrenic pacing has allowed for individuals with high cervical injuries and intact phrenic 

nerves to successfully wean from mechanical ventilation, leading to increased survival rates 

and improved quality of life 36,37. Additionally, Parastep ®, a commercially available device 

that relies on surface stimulation of the quadriceps, gluteal muscles, and peroneal nerves, 

permits individuals with lower SCI to ambulate for distances over a quarter of a mile 38. 

Furthermore, Vocare ® utilizes anterior sacral root stimulation to restore micturition 39,40.

Despite the proven effectiveness of the systems described above, technological 

shortcomings and practical limitations such as inadequate activation control strategies 41, 

electrical current spillover 42-44, and muscle fatigue 45 have led to a limited integration of 

FES systems into the daily lives of SCI survivors 41. Optogenetics, a novel stimulation 

modality that uses light to either excite or inhibit genetically modified neurons, has the 

potential to overcome some of the limitations facing current FES strategies 1,46,47.

Optogenetics

Optogenetics is a rapidly evolving technique originally developed to study neural activity in 

select neuronal populations 48. The genetic material of specific cell populations is modified 

via viral vectors to express a trans-membrane protein reactive to light (opsins). These trans-

membrane proteins undergo a conformational change when light of a specific wavelength 

(390–700 nm) is directly applied to the cells, resulting in selective ionic current flow across 

the cell membrane. In turn, positively-charged (cations) or negatively-charged (anions) ionic 

movement will lead to cell depolarization or hyperpolarization, respectively. Therefore, 

specific viral vectors can be chosen and modified to transduce specific neuronal populations 
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allowing for selective modulation with light. Excitatory responses can be achieved by 

activating Channelrhodopsin-2 (ChR-2) cation channels (responsive to 470 nm wavelength 

blue light), which allow entry of positively-charged sodium and calcium ions into the cell 

(Figure 1A) 50,51. In contrast, inhibitory responses can be evoked by activating 

Halorhodopsin (HR), a trans membrane ion-pump, using 580 nm yellow light, which 

facilitates the movement of negatively-charged chloride ions (Figure 1B) 5,47.

The use of optogenetics has previously focused on characterization of neuronal mechanisms 

of excitation and inhibition within the brain 5,8,10,12-14,52. However, increased interest in 

translational applications of optogenetics technology has resulted in the pursuit of novel 

clinical avenues for restoration of vision, seizure control, and treatment of cardiac 

arrhythmias 19,53,54. Light offers clear advantages for modulating neuronal behavior. 

Specifically, optical stimulation can provide real-time, selective control of cellular 

activity 51. Additionally, efforts to expand the toolbox for controlling neurons via light have 

led to an increased variety of ChR-2s that are altered to respond to various light wavelengths 

with enhanced ion channel kinetics and selectivity 55. More recent efforts have led to the 

first light-gated chloride channel, engineered from the ChR-2 trans membrane family of 

proteins, which is designed to decrease the latency between light activation and cell 

inhibiton that is observed with HR ion pumps 56,57. Furthermore, optical control of muscle 

function has been achieved by controlling murine stem cells, previously engineered to 

express ChR-2, followed by implantation distal to a nerve ligation in an attempt to establish 

a possible regenerative medicine therapeutic intervention 58. Moreover, the combination of 

genes that express ChR-2 with genes that express the light-generating protein luciferase 

demonstrated that it is possible to activate neurons by exogenous application of the 

luciferase substrate, leading to cell luminescence and light-driven auto-activation in vitro 59. 

Finally, computational modeling evidence has shown that optogenetic activation of axons 

follows a physiologic, small-to-large diameter axon recruitment order 60, which could prove 

invaluable for restoring motor function following SCI.

Restoration of motor function following SCI via optical stimulation

Applications of optogenetic technology for restoring function following SCI are already 

underway in small animal models. In fact, optogenetics has recently been used to dissect 

select spinal cord circuitry responsible for evoking both rhythmic, and stimulation-triggered 

limb movements 46,47,61. Specifically, Towne and colleagues demonstrated the ability of 

using optical stimulation to selectively activate hind limb muscles in a rodent model of SCI 

using retrograde transduction of motor neurons with ChR-2 via intramuscular inoculation 

with an adeno-associated virus (AAV) 50. Similarly, Alilain and colleagues showed that it is 

possible to restore motor activity in the diaphragm muscle of rodents that sustained a 

cervical SCI using optical stimulation of the spinal cord at cervical vertebral levels 3-6 62. 

Additionally, Hagglund and colleagues showed rhythmic activation of selective muscles 

necessary for locomotion using optical stimulation in a transgenic mouse line expressing 

ChR-2 channels in spinal interneurons 47.

The continued development of optogenetic technology promises to overcome several 

limitations of electrical stimulation techniques for restoring motor function following SCI. 
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First, optical stimulation allows selective muscle activation and fine motor control due to 

increased specificity associated with viral transduction of select motor neurons 61, as well as 

the theoretical possibility of direct transduction and control of skeletal itself 63. Second, 

optogenetics may restore function in a more physiologic manner particularly for functions 

that involve complex patterns of excitation and inhibition of different neuronal populations. 

An example is micturition, which requires activation of parasympathetic neural circuitry to 

initiate bladder emptying and simultaneous inhibition of sphincter contraction. While 

electrical stimulation can be used to achieve bladder emptying, 53,64,65 it occurs in a 

suboptimal tetanic fashion. Third, muscle fatigue associated with existing electrical 

stimulation technologies 66-68 can be delayed by activating slow twitch, fatigue-resistant 

fibers before any fast fatigable fibers are activated (Figure 2) 61,69,70. Despite the significant 

advantages of optical stimulation over electrical stimulation, multiple limitations have to be 

addressed before optogenetics can be clinically used to restore function in SCI survivors.

Limitations of optogenetic applications

Numerous studies using direct administration of AAV vectors with different serotypes in 

small animal models have demonstrated robust transduction rates 71-74. Additionally, gene 

therapy using viral vectors has been successfully translated to clinical practice, however, its 

use has uncovered multiple issues that need to be addressed before viral delivery of 

optogenetics can be used clinically in humans. First, efforts to reproduce efficient 

transduction in large animal models have been largely unsuccessful in the past. More 

recently, improvements in transduction efficiency have been reported in both the brain and 

spinal cord in swine 75-77 and nonhuman primate models 76,78,79. Second, integration of 

foreign genomic material can also result in numerous adverse events including expression of 

proto-oncogenes 80, silencing of tumor-suppressor genes 81,82 which could lead to neoplastic 

transformation or protein mutations, leading to undesired changes in downstream cellular 

functions 81,82. Third, peripherally-administered vectors can initiate immune responses 

leading to inhibition of vector function, decreased expression duration, and cytotoxic 

effects 83-85. Current strategies to lessen immune responses include altering the capsid of the 

viral vector, modifying the vector delivery route, or applying techniques to inhibitor or 

modulate immune system activity 86,87. Alternatively, non-viral techniques could be used 

along with biomaterial and molecular strategies to systemically deliver genetic material into 

target locations 20,88,89.

Further work is also needed to identify optimal vectors (viral or nonviral) and specific 

administration routes for targeting specific neuronal populations. For example, efficient and 

selective transduction of alpha motor neurons within the ventral spinal cord will likely 

require intraparenchymal or intrathecal vector injection into the spinal gray matter. 

Alternatively, this could be achieved by retrograde transport from intraneural or 

intramuscular injection sites.

Finally, multiple barriers must be overcome before chronically implantable optical systems 

can be developed. Some of these barriers include 1) minimizing glial responses to the 

implanted light guides, similar to the glial scarring observed with other chronic neural 

interface systems such as deep brain stimulation and intracortical recording systems; 2) 
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optimizing light delivery paradigms to enhance temporal and spatial activation of target 

neurons while improving light penetration through tissue surrounding the light source 90; 

and 3) reducing heating effects on tissue surrounding the light source.

Future directions

Small animal studies suggest that optogenetics offers multiple advantages over electrical 

stimulation techniques. However, multiple steps need to be taken before optogenetics can be 

clinically used to restore function in SCI survivors. First, it is necessary to devise 

appropriate strategies for safe transgene delivery to target cell types in vivo. These strategies 

will require controlled transduction (via appropriate vectors and serotypes) and expression 

(via appropriate gene regulation promoters). Second, it is paramount to extend the 

expression lifetime to allow for single (or minimally repeated) administration of viral 

vectors and promoters. Third, stimulation systems need to be developed that optimize light 

delivery paradigms in a tissue specific manner while reducing glial responses to light 

delivery devices. Finally, stimulation will need to be controlled in a natural manner by the 

user while also allowing for real-time adjustment to account for perturbations within the 

user's environment 41,91.

Conclusions

While there is still no cure for SCI, advances in stimulation and neural interfacing 

technology show promise for restoring neurologic function. Optogenetics offers to improve 

upon existing FES technology by better following physiologic muscle activation, increasing 

selectivity, and providing simultaneous control of excitatory and inhibitory responses. In 

turn, advances in optogenetics technology could provide an avenue for optimal restoration of 

function following SCI, thereby improving the quality of life for those living with paralysis.
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Figure 1. Mechanisms of neuromodulation via optogenetics
A) Application of blue light (470 nm wavelength) leads to a conformational change of the 

trans membrane ion channel protein, channelrhodopsin, allowing a flow of positively 

charged ions into the cytoplasm, ultimately leading to neuron depolarization.

B) Yellow light application (580 nm wavelength) changes the conformation of the trans 

membrane ion pump protein, halorhodopsin, allowing negatively charged ions to move into 

the cytoplasm, leading to neuron hyperpolarization.

C) Schematic comparing the non-specific activation characteristic of electrical activation, 

leading to both desired and undesired effects, and optical activation of only targeted 

neurons, leading to only desired effects.

Ca2+ = calcium ion; ChR-2 = channelrhodopsin; Cl- = chloride ion; H+ = hydrogen ion; HR 

= halorhodopsin; K+ = potassium ion; Na+ = sodium ion

Adapted with permission from Macmillan Publishers Ltd: [Nature Reviews 

Neuroscience], 49 copyright 2007.
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Figure 2. Fatigue resistance comparison between optical and electrical stimulation
A) Average tetanic muscle tension during 2 min stimulation with 250 ms trains of 

stimulation at 1 Hz using electrical and optical stimulation (n=7, shaded region is standard 

error of the mean, average body weight = 0.258 ± 0.01 N).

B) Average fatigue index measured as decline in tetanic muscle tension over 2 min (n=7).

C) Tetanic tension from a single mouse during optical and electrical stimulation in the hind 

limbs over 20 minutes.

BW = average body weight

Adapted with permission from Macmillan Publishers Ltd: [Nature Medicine], 61 copyright 

2010.
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