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Abstract

important tool for pharmaceutical research.

Molecular dynamics simulations hold the promise to be an important tool for biological research and drug discovery.
Historically, however, there were several obstacles for it to become a practical research tool. Limitations in computer
hardware had previously made it difficult to simulate for long enough to see interesting biological processes. Recent
improvements in hardware and algorithms have largely removed this issue, leaving data analysis as the main obstacle.
Advances in Markov state modeling appear to be on the way to remove this obstacle. We outline these advances here
and discuss numerous recent studies that demonstrate that molecular dynamics simulations will start to be an
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Review

Drug discovery is an iterative process that relies on vari-
ous computational tools to help both lead experiments
and understand data. High throughput virtual screening,
docking, and hit development based on structure-activity
relationships, are among many tools routinely used to
identify or improve potential drug compounds (Jorgensen
2004; Sliwoski et al 2014). Still, most such methods rely
on simplified assumptions that come with fundamental
limitations. While such simplifications are needed at
early stages, as development progresses and the chem-
ical space begins to be narrowed down, methods with
more accuracy should be employed (Rastelli et al 2009;
Harvey et al 2009).

Molecular dynamics (MD) simulation is one such
method. MD simulations combine Newtonian physics
and an all-atom, flexible representation of proteins,
water and other molecules to understand the dynamic
interactions between them. They can provide important
qualitative information, such as where and how a drug
binds, but also quantitative information like the binding
affinities and kinetics of such interactions (Buch et al
2011). This atomic-level description, combined with the
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ability to compare it quantitatively with experiments
has long made MD a very promising method.

Several substantial obstacles have traditionally pre-
vented this from becoming a reality. Even the most basic
biological events like side chain flipping or loop motions
in a protein take hundreds of nanoseconds or longer
(Zwier and Chong 2010). Therefore, many orders of
magnitude in simulated time must be resolved in order
to see even simple events in a single simulation. It is
computationally costly to span so much time, and this
has traditionally been what has kept MD from being
practically useful for biological research and drug discov-
ery. Enhanced sampling techniques were developed to
speed up MD, but they require biasing along a reaction
coordinate or prior knowledge of the system, which is
many times unknown.

Further specialized supercomputers, such as the Anton
supercomputer (Shaw et al 2007; Shaw et al 2014) or the
MD-GRAPE (Ohmura et al 2014), have been developed
that can run single simulations on very long timescales,
up to a millisecond. A more practical way to approach
this problem is to take advantage of recent hardware
advances in GPU devices (Harvey et al 2009; Harvey and
De Fabritiis 2012). A single GPU can now produce a
microsecond simulation in a few days for a small system
(~25,000 atoms). Running multiple parallel simulations
on a small cluster of GPUs, one can reach millisecond
aggregate sampling, a timescale needed to adequately
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sample many biological processes, including binding of
many small molecules (Buch et al 2010). We call this
approach high-throughput molecular dynamics, or HTMD
(Harvey and De Fabritiis 2012) (Figure 1). Accessibility to
such hardware has never been easier to obtain thanks to
commodity cloud services like Amazon AWS, so the
barrier to entry to employing MD as a standard tool in
the drug discovery process has been drastically lowered.

All this increased computational power results in a
large amount of data, at which point analysis becomes a
major concern. The copious and disjointed nature of the
data produced by HTMD studies means that making
sense of it is a significant challenge. Clustering methods
to understand the data have trouble properly assigning
weight and relevance to the data. Further, it is often not
clear to newcomers that running multiple parallel simu-
lations can allow one to investigate events that are much
slower than the length of each individual simulation.
This is indeed possible thanks to Markov state models
(MSM), which allow one to take advantage of the statis-
tical probability of events. The basics of MSMs have
been covered at length, and we direct the reader to
several publications for a more detailed look (Noé and
Fischer 2008; Pande et al 2010; Prinz et al 2011). For the
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remainder of this review, we focus mainly on our experi-
ence with these tools and proof-of-concept studies
employing them.

One of the first studies to successfully use HTMD for
ligand binding was Buch et al. (Buch et al 2011). Using
just 50 ps of simulation time, it was possible to repro-
duce the crystal binding pose, kinetics, and affinity of
the binding of benzamidine to trypsin. However, while it
was a critical proof-of-concept work, there were several
aspects of the methods in that work which made it diffi-
cult to generalize to other systems. Others who worked
on using MSMs for protein folding encountered similar
successes and limitations, such as Bowman et al. found
when studying Villin headpiece folding (Bowman et al
2009). While they could accurately approximate folding
times, the found that RMSD based clustering was lim-
ited in part because structures that were close in RMSD
may not interconvert rapidly, resulting in large hetero-
geneity inside clusters and hindering granularity of the
MSM. Other clustering based on inter-atom contacts or
distances, for example, has proved to be much more
effective than spatial clustering.

Studies of folding and the motions of intrinsically
disordered proteins provided additional difficulties. A
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Figure 1 A high-throughput molecular dynamics workflow. A protein of interest is selected for study along with potential ligands (if any),
and are simulated across multiple parallel runs using GPU devices (top). Additional rounds of simulation are performed, and new simulations may
be respawned manually or automatically from previous runs to enhance sampling (middle). In the case of a fragment screen, for example, the
result is a series of binding poses which can be compared and contrasted with other methods or used as a basis for lead development (bottom).
Affinity and kinetic data are available for each interaction thanks to Markov state modelling.




Stanley and De Fabiritiis In Silico Pharmacology (2015) 3:3

critical problem in this case was that clusters can be far
away geometrically (different conformations), but kinet-
ically very close. This would result in too many confor-
mations which are kinetically close for the MSM to
identify. A projection method known as time-sensitive
Independent Component Analysis (tICA) (Schwantes
and Pande 2013; Pérez-Herndndez et al 2013) was there-
fore incorporated into the process before clustering in
order to alleviate this problem. tICA projects the data
along its slowest varying coordinates, which can then be
fed to the clustering algorithms. This almost universally
improves the accuracy of the results.

With all these improvements, several studies have
been able to show that HTMD can now be incorporated
into a drug discovery pipeline. In an as yet unpublished
work, we have recently measured affinity and kinetics
for 42-fragment screen targeting Factor Xa, identifying
crystal structures as well as secondary happy poses
which are key to properly interpret experimental data on
fragments. Expanding these methods to a full fragment
library, typically on the order of 700 fragments, would
be a simple question of cost and therefore time, consid-
ering the ever increase power of computing resources.
Whether that is practical and cheaper than current best
practices like X-ray and NMR spectroscopy remains to
be answered.

Studies of binding in membrane proteins are also pos-
sible, even in difficult cases where the ligand is a lipid
itself. In two studies by our group, we were able to show
the binding pathway of lipid ligands binding to target
proteins. In one work, we simulated the binding of the
lipid anandamide to the enzyme FAAH (Dainese et al
2014). We also demonstrated how cholesterol interacts
with and modulates the enzyme. In another, still unpub-
lished work, we demonstrated the mechanism of binding
of al lipid inhibitor, MLO56, to sphingosine-1-phosphate
receptor 1 (S1PR1). In that work, we were able to repro-
duce the crystallographic binding pose of the inhibitor,
as well as characterize several important conformational
changes along the pathway to binding. These studies
were computationally intensive, requiring 250 ps and
800 ps of simulation respectively, and would be effect-
ively impossible without a HTMD paradigm using stand-
ard hardware.

Drug design is more than just molecular recognition
and binding. Often some fundamental activity of the
protein remains to be understood before a drug discov-
ery initiative can even start. MD has also been used to
demonstrate that a postulated mechanism for HIV pro-
tease to cleave itself out of a long protein chain was
indeed correct (Sadiq et al 2012). Novel behavior in the
KID disordered protein (Stanley et al 2014) was also
unveiled by a massive use of HTMD simulations.
Accurately assessing the kinetic properties of both these
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systems was important and required 335 ps and 1.7 ms of
simulation, respectively. And as a further example of how
simulations can be important for therapeutic discovery,
Shan et al. have used them to explain how mutations to
EGER lead to cancers (Shan et al 2012; Shan et al 2013).

Conclusion

Computational tools are incorporated into the drug dis-
covery pipeline because they speed up or corroborate ex-
perimental tests along the iterative cycle towards a drug.
Molecular dynamics simulations are now accurate and
fast enough that they can be used to help guide design
choices of potential drugs. HTMD studies allow the full
binding process of a compound to be sampled, giving
important details on transient interactions, kinetics,
affinity, and final resting pose. It can be used to test and
rank an array of fragment compounds or analyze the
binding of a lead compound. Further, they can be used
to understand basic biophysical behavior that may be
important before drug design even begins. As the raw
power of individual GPUs increases and cloud services
become ever cheaper and more routinely accessible,
such studies will become even more commonplace.
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