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Brief Communications

Shared Neural Markers of Decision Confidence and Error
Detection

Annika Boldt and Nick Yeung
Department of Experimental Psychology, University of Oxford, Oxford 0X1 3UD, United Kingdom

Empirical evidence indicates that people can provide accurate evaluations of their own thoughts and actions by means of both error
detection and confidence judgments. This study investigates the foundations of these metacognitive abilities, specifically focusing on the
relationship between confidence and error judgments in human perceptual decision making. Electroencephalography studies have
identified the error positivity (Pe)—an event-related component observed following incorrect choices—as a robust neural index of
participants’ awareness of their errors in simple decision tasks. Here we assessed whether the Pe also varies in a graded way with
participants’ subjective ratings of decision confidence, as expressed on a 6-point scale after each trial of a dot count perceptual decision
task. We observed clear, graded modulation of the Pe by confidence, with monotonic reduction in Pe amplitude associated with increas-
ing confidence in the preceding choice. This effect was independent of objective accuracy. Multivariate decoding analyses indicated that
neural markers of error detection were predictive of varying levels of confidence in correct decisions, including subtle shifts in high-
confidence trials. These results suggest that shared mechanisms underlie two forms of metacognitive evaluation that are often treated

separately, with consequent implications for current theories of their neurocognitive basis.
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Introduction
Human observers are capable of finely calibrated evaluations of
their performance. In perceptual decision tasks, for example, par-
ticipants reliably detect their errors (Rabbitt et al., 1978) and
report graded judgments of confidence that correlate closely with
objective performance (Fleming et al., 2012). There is growing
interest in the neurocomputational basis of these metacognitive
evaluations (Fleming and Frith, 2014), fueled by recognition that
they are crucial to the effective regulation of behavior (Fernandez-
Dugque et al., 2000), that they support optimal group decision mak-
ing (Bahrami et al., 2010), and that their nature may place crucial
constraints on models of underlying decision processes (Zylberberg
et al., 2012). Here we investigate the relationship between two key
metacognitive evaluations—error detection and confidence judg-
ments—that have separately been studied in detail but that are rarely
compared directly.

Similar methodological approaches have been used in prior
work on errors and confidence: the participant makes a first-

Received Feb. 25, 2014; revised Dec. 12, 2014; accepted Dec. 15, 2014.

Author contributions: A.B.and N.Y. designed research; A.B. performed research; A.B. and N.Y. analyzed data; A.B.
and N.Y. wrote the paper.

A.B. was supported by an Advanced Quantitative Methods Doctoral Fellowship from the Economic and Social
Research Council.

The authors declare no competing financial interests.

This article is freely available online through the J Neurosci Author Open Choice option.

Correspondence should be addressed to Annika Boldt, University of Oxford, Department of Experimental Psy-
chology, 9 South Parks Road, Oxford 0X1 3UD, UK. E-mail: annika.boldt@univ.ox.ac.uk.

DOI:10.1523/JNEUR0SCI.0797-14.2015
Copyright © 2015 Boldt and Yeung

This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any
medium provided that the original work is properly attributed.

order perceptual decision and is then asked to evaluate this just-
made choice (either “how confident are you that you were
correct?” or “did you make an error?”). Despite this similarity in
approach, there is little compatibility between current theories of
confidence and error detection (Yeung and Summerfield, 2012).
For example, popular models of confidence, such as the balance-
of-evidence hypothesis (Vickers and Packer, 1982), explain
graded confidence judgments but not why participants some-
times state with certainty that an earlier response was incorrect.
Conversely, many theories propose error detection to be all or
nothing (Falkenstein et al., 1991; Gehring et al., 1993) and there-
fore struggle to explain graded judgments of confidence.

Empirical findings are similarly discrepant. For example,
Scheffers and Coles (2000) found that error-related electroen-
cephalography (EEG) activity varies in a graded way with subjec-
tive confidence, implying that confidence and error detection are
two sides of the same coin. However, Charles et al. (2013) recently
observed dissociations between graded confidence and binary
error judgments. Whereas subjective confidence ratings were
predictive of objective performance even when stimuli remained
subliminal due to visual masking, error-related EEG activity was
evident only on conscious trials.

The present study tested the hypothesis that error detection
and confidence are fundamentally related, using multivariate
EEG classification to assess whether they share a neural basis. In
contrast to prior work focusing on the error-related negativity
(ERN), a frontocentral component observed immediately fol-
lowing errors, we focus on the subsequent parietal focused error
positivity (Pe) because of its established link to subjective error
awareness (Overbeek et al., 2005; Steinhauser and Yeung, 2010).
Our core rationale is that if error detection and confidence judg-
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ments share underlying mechanisms, then well characterized
neural correlates of error awareness should be predictive of par-
ticipants” decision confidence on a trial-by-trial basis. Specifi-
cally, we assessed whether a multivariate classifier trained to
distinguish correct versus error trials generalizes to predict subtle
variations in correct-trial confidence.

Materials and Methods

Participants. Sixteen right-handed participants (8 female), 21-30 years
old, all with normal or corrected-to-normal vision, gave informed con-
sent and were paid for participation. All procedures were approved by the
local ethics committee.

Task and procedure. The experiment comprised a series of trials on
which participants first performed a perceptual decision task under time
pressure, then rated their subjective confidence in this decision (Fig. 1).
The perceptual task required participants to judge which of two briefly
flashed (160 ms) fields contained more dots by pressing a left-hand or
right-hand button. One field contained 45 dots arrayed in a 10-by-10
matrix; the other one contained 55 dots. Within this constraint of a
10-dot difference between the two fields, the displays were randomly
generated anew for each trial and each subject. The difficulty level was set
through the piloting of the task, aiming for ~15% errors. There was a
1520 ms deadline for this decision, and participants were encouraged
verbally and through written feedback to respond quickly, with no ex-
plicit incentives. Speed was stressed so that participants made sufficient
numbers of errors to permit planned contrasts of neural activity on cor-
rect versus error trials. After participants’ responses, the screen cleared
for 600 ms, then a 6-point confidence scale appeared with values of
“certainly wrong,” “probably wrong,” “maybe wrong,” “maybe correct,”
“probably correct,” and “certainly correct.” Our hypothesis is that this
scale maps onto a continuum of metacognitive evaluation that encom-
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Summary of the task procedure. Participants first pressed a key according to the field containing more dots, then rated their confidence in their decision on a 6-point scale. RSI,

passes both error detection and correct-trial confidence, rather than a
two-dimensional space in which error and confidence judgments are at
least partly independent (akin to separate coding of valence and salience
in reinforcement learning; Matsumoto and Hikosaka, 2009). Partici-
pants had unlimited time to indicate their confidence by pressing one of
six keys. The screen then cleared for a 1 s intertrial interval.

Participants completed 18 experimental blocks of 48 trials in the main
experiment. After each block, participants received feedback indicating their
mean correct reaction time and error rate in the block. Before experimental
blocks, participants first completed two blocks, also 48 trials long, to practice
the perceptual task and confidence rating scale, respectively. Participants
were encouraged to use the entire 6-point confidence scale.

Stimuli were presented on a 20 inch CRT (Trinitron, Dell) monitor
with a 75 Hz refresh rate using the MATLAB toolbox Psychtoolbox3.
Stimuli were 4.7 X 12.3 cm large, resulting in a visual angle of 10.0° X
3.8° when viewed from ~70 cm. Responses were made on a Cedrus
RB-830 response pad. Eight participants saw the confidence scale ranging
from “certainly wrong” on the left to “certainly correct” on the right;
eight saw the reverse orientation.

EEG recording. Participants sat in a dimly lit, electrically shielded
room. EEG data were recorded using the following Ag-AgCl electrodes in
a fabric cap (QuikCap, Neuroscan) with 32 channels: FP1, FPz, FP2, F7,
F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4, T8, TP7, CP3,
CPz, CP4, TPS, P7, P3, Pz, P4, P8, POz, O1, Oz, 02, as well as the left
mastoid, all referenced to the right mastoid on-line and re-referenced to
linked mastoids off-line. We measured vertical and horizontal electro-
oculogram from above and below the left eye and the outer canthi of the
two eyes. Electrode impedances were kept at <50 k(). The data were
continuously recorded using SynAmps2 amplifiers (Neuroscan), sam-
pled at 1000 Hz and bandpass filtered at 0.1-200 Hz, with gain of 2816
and 29.8 nV resolution.
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Figure 2. A, Objective accuracy as a function of subjective confidence. B, Distribution of confi-
dence levelsasafunction of objective accuracy. Error barsindicate within-subject confidence intervals.

Data analysis. Behavioral data analysis focused on the degree to which
subjective confidence ratings were predictive of objective accuracy (i.e.,
calibration). These ratings were treated as varying continuously on a
6-point scale, with 1 reflecting the least confident response (“certainly
wrong”) and 6 reflecting the most confident response (“certainly
correct”).

EEG data were preprocessed using SCAN software (version 4.4, Neu-
roscan). Ocular artifacts were corrected using a regression-based ap-
proach. Response-locked epochs were extracted from the continuous
data, baseline corrected to — 100 to 0 ms preresponse. Trials were rejected for
artifacts if the signal exceeded —100 to 100 uV in the electrodes Fz, FCz, Cz,
CPz, and Pz. The data were then low-pass filtered offline at 12 Hz (with
essentially identical results using higher filter cutoffs).

EEG analysis focused on the 600 ms interval between participants’
perceptual decisions and subsequent appearance of the confidence scale.
Errors in speeded decision tasks are associated with characteristic event-
related brain potentials, as follows: a frontocentral negativity (i.e., ERN)
peaking within 100 ms of incorrect responses, followed by a more ex-
tended centroparietal positivity (i.e., Pe; Falkenstein et al., 1991). Our
analyses focused on the Pe, which has previously been shown to vary
robustly with participants’ self-reported awareness of their errors (Nieu-
wenhuis et al., 2001; Overbeek et al., 2005). There is no standard method
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for calculating Pe amplitude. We adopted parameters from our prior
work (Steinhauser and Yeung, 2010), which proved appropriate to the
morphology of the waveforms observed. Specifically, Pe amplitude was
calculated as the difference between error and correct-trial waveforms in
an interval of 250 to 350 ms postresponse. We also contrasted the
response-locked Pe with the stimulus-locked P3 component, which has
previously been reported to vary with subjective confidence (Hillyard et
al., 1971). We quantified the P3 as the average voltage in a window from
350 to 500 ms poststimulus.

Of critical interest was the relationship between the Pe and partici-
pants’ confidence judgments. We predicted that variation in the error-
related Pe, as measured in the period after participants’ responses but
before their confidence ratings, would be predictive of fine-grained
changes in confidence— consistent with the hypothesis that error detec-
tion and confidence lie on a single continuum. To quantify Pe amplitude
robustly on single trials, we trained a classifier based on spatial linear
integration to distinguish between objectively correct and incorrect re-
sponses, using a subset of the data from each participant (a matched-size
sample of correct and incorrect responses). This method has been de-
scribed in detail previously (Parra et al., 2002), including in its applica-
tion to quantifying error-related EEG activity (Steinhauser and Yeung,
2010). In brief, the method identifies the spatial event-related potential
(ERP) component (i.e., topography) that maximally discriminates be-
tween two conditions of interest (e.g., correct and error trials). Often, as
here, the method effectively isolates the topography of the dominant ERP
component at a given latency. The identified classifying topography can
then be used to provide a robust estimate of component amplitude on
single trials: improvement in signal-to-noise ratio is achieved in single
trials by (weighted) combination of data across electrodes, much as
signal-to-noise ratio is improved in conventional ERP analyses by aver-
aging across trials.

Previous research has shown that this approach can robustly index
single-trial Pe amplitude to distinguish objectively correct and incorrect
responses (Steinhauser and Yeung, 2010). The novel question addressed
here was whether a classifier trained in this way would similarly predict
variations in confidence on a single-trial level. Specifically, we assessed
whether a classifier trained to discriminate errors versus a matched sub-
set of correct trials would be predictive of varying levels of confidence on
the remaining set of untrained correct responses. If the classifier gener-
alizes in this way—in particular, to predict subtle variation in correct-
trial confidence—this would provide evidence for shared neural
correlates of error detection (as studied extensively in past research on
the Pe) and subjective confidence (as assessed here). Such evidence
would run counter to the suggestion that error detection and confidence
judgments are separate dimensions of metacognitive evaluation. For
completeness, we ran analyses in which a subset of untrained error trials
was also included in the test set. The results were essentially identical to
those reported below; however, variation in Pe amplitude here could
reflect changing proportions of correct versus error trials across condi-
tions of interest in the test set, whereas our critical question is whether Pe
amplitude distinguishes effectively among trials that are objectively cor-
rect and judged as such by participants.

Results

Behavioral data

Participants made perceptual decisions with a mean reaction
time of 427 ms (SE = 19 ms) and a mean error rate of 17.5%
(SE = 1.7%). They were more confident (on the 6-point scale) for
trials with correct responses (5.0) than for error trials (2.7; t,5) =
14.4, p < 0.01). Accuracy varied monotonically as a function of
subjectively rated confidence with high calibration (Fig. 2). Par-
ticipants made errors on 97.1% of trials judged “certainly
wrong”, compared with an error rate of 1.4% on trials judged
“certainly correct”. Error rates differed significantly over levels of
confidence (F(s5,5, = 208.8, p < 0.01), with a reliable linear
within-subject contrast (F, ;5, = 1351.9, p < 0.01).
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Figure 3. A, Pe at electrode Pz, conditioned on level of confidence for errors and correct trials; response-locked ERP and
topography for the difference between “certainly wrong” and “certainly correct” conditions from 250 to 350 ms; the topographic plot
indicates voltages s colors from blue (—8 V) tored (+8 V). B, Stimulus-locked P3 and response-locked Pe at electrode Pz, conditioned
onlevel of confidence for errors and correct trials with a prestimulus baseline for both potentials. €, Time course and spatial projection of the
discriminating component identified by the dlassification analysis of errors versus correct responses, coded in arbitrary units.
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linear within-subject contrast, F(, s, =
14.3, p < 0.01; for the Pe: F(5 ;5 = 16.7,
p < 0.01; with a significant linear within-
subject contrast, F(, ;5) = 32.3, p < 0.01).
Pairwise comparisons of trials classified as
correct revealed significant differences
in Pe amplitude between the categories
“maybe correct” and “probably correct”,
as well as “maybe correct” and “certainly
correct” (t values =3.9, p values =0.01).
Thus, the amplitude of both components
was largest (i.e., most negative for the
ERN and most positive for the Pe) on tri-
als rated “certainly wrong”, and was grad-
ually reduced as subjective confidence
increased. In contrast, the stimulus-
locked P3 exhibited precisely the opposite
relationship (Fig. 3B), increasing in am-
plitude as confidence increased (F, ; 40.1)
= 5.1, p < 0.01), with a reliable linear
within-subject contrast (F,,5 = 11.2,
p < 0.01). These results demonstrate a
clear functional dissociation between the
P3 and Pe. In additional analyses, we con-
firmed that the inverse relationship be-
tween Pe amplitude and confidence was
replicated using prestimulus rather than
preresponse baseline, thus ruling out any
potential baseline contamination artifact
from the stimulus-locked P3 effect.

These results extend previous ERN
analyses (Scheffers and Coles, 2000) to
demonstrate a clear association between
Pe amplitude and confidence. However,
averaged ERPs are inherently ambiguous
about the precise relationship between
error-related neural activity and confi-
dence. It could be that amplitude reflects
graded variation in confidence, as we hy-
pothesize, but it could also be that error-
related neural activity is all or none
(Charles et al., 2013), with amplitude
changes across confidence bins reflecting
variation in proportions of trials on which
this activity is triggered (i.e., from rarely,
when participants feel “certainly correct”,
to almost always, when they feel “certainly
wrong”).

Single-trial EEG data

To distinguish between these alternative
interpretations—which suggest funda-
mentally different models of the relation-
ship between error detection and
confidence—we next used multivariate
classification to robustly index Pe ampli-
tude on individual trials. In analyses not
reported here, we found that classification

ERP data based on the ERN failed to demonstrate consistent association
In the grand-averaged ERP data (Fig. 3A), collapsed across all ~ with single-trial decision confidence (see Discussion).
trials and participants, amplitudes of both ERN (—40 to 60 ms) To quantify the Pe on single trials, we used linear integration

and Pe (250-350 ms) were modulated as a function of decision  to derive a discriminating component that maximally distin-
confidence (for the ERN: F5 ,5) = 5.3, p < 0.01; with a significant ~ guishes correct-trial and error-trial waveforms. The classifier
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Figure 4. A, Moving average confidence (window width, 51 ms) for quintiles of discriminating components; correct trials only (response locked); classifier trained on objective accuracy. B,
Averaged over a time window ranging from 250 to 350 ms poststimulus. Error bars indicate within-subject confidence intervals.

was trained on all error trials and a matched-sized set of cor-
rect response trials (mean = 296 of error and correct re-
sponses combined; range 102-514). Replicating previous
findings (Steinhauser and Yeung, 2010), we found optimal
classification performance using a training window of 250—
350 ms postresponse. For this window, the mean single-trial
discrimination performance for the 16 participants was ro-
bust: A, = 0.83 (range 0.74—0.91), where A, is the area under
the ROC curve. The time course and spatial topography of this
discriminating component indicated that the extracted com-
ponent corresponded closely to the Pe (Fig. 3C).

Our primary question was whether this classifier, trained to
predict objective accuracy, would also predict variation in
correct-trial confidence. We therefore applied the classifying
component to the response-locked EEG data from the subset of
correct trials not used in classifier training (mean = 553 trials
across participants; range 344—757), yielding an estimate of Pe
amplitude for each time point on each of these trials. The
resulting values were averaged across a moving window of 51
ms, and for each time point were then split into quintiles
(smallest to largest Pe amplitude). We then calculated the
mean confidence within each quintile. The results (Fig. 4)
indicated that correct-trial confidence indeed covaried with
the amplitude of the discriminating component (F, ¢y = 6.1,
p < 0.01), with a significant linear within-subject contrast for
confidence (F(, 5y = 7.0, p = 0.02). Confidence varied in-
versely, and monotonically, as a function of Pe amplitude.
Pairwise comparisons of adjacent quintile bins with Bonfer-
roni correction revealed a reliable difference only between
quintiles four and five (¢,5, = 3.5, p < 0.01).

Thus, even on trials matched for objective accuracy, Pe
amplitude varied in a manner predictive of confidence. More-
over, the resulting gradations in confidence were observed
around a high mean value (5 = “probably correct”), with most
of the data points lying on the upper half of the confidence
scale and therefore reflecting high confidence. This result sug-
gests that the information reflected in the Pe not only reflects
graded certainty about having made an error (Steinhauser and
Yeung, 2010) but also reflects the graded certainty of having
made a correct response—evidence that these judgments lie

on a common continuum. Moreover, inspection of the distri-
bution of single-trial Pe amplitudes for each participant indi-
vidually revealed unimodal rather than bimodal histograms,
providing further support for the hypothesis that differences
in Pe amplitude reflect graded changes (in confidence) rather
than changes in the underlying proportions of qualitatively
different neural patterns (reflecting binary error/correct
judgments).

Our final analysis of the Pe—confidence association specifi-
cally aimed to rule out the possibility that this association is
driven by changes in the proportion of false error detections—
rather than true gradations in correct-trial confidence—across
Pe-classifier amplitude quintiles. The analysis paralleled the pre-
vious one, but now mean confidence was calculated only for trials
that were both objectively correct and subjectively rated as such.
Yet, we predicted that variation in the level of confidence on
these trials would follow Pe amplitude. Consistent with this
prediction, mean confidence varied significantly over Pe-
classifier quintiles for these trials (F, o) = 3.1, p = 0.02), with
a marginally significant linear within-subject contrast (F(, 5
= 3.1, p = 0.10). Thus, changes in Pe amplitude are associated
with subtle shifts in confidence, with increased amplitude as-
sociated with a change in the balance from “certainly correct”
judgments to evaluations that responses are only “probably
correct” or “maybe correct”.

Discussion

The present study provides new insight into the neural mecha-
nisms of metacognition and the relationship between error mon-
itoring and confidence. We find that the Pe, an EEG index of
error processing, also varies with decision confidence on correct
trials. Thus, a Pe-classifier trained to discriminate between objec-
tively correct and incorrect trials was predictive of fine-grained
differences in correct-trial confidence. Crucially, this association
did not reflect changing proportions of trials classified as errors
across confidence ratings, but rather reflected truly graded
changes in correct-trial confidence: Pe amplitude was predictive
of subtle shifts in confidence (e.g., from “certainly” to “maybe”)
on trials that were objectively correct and accurately judged so by
participants.
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The observed association of Pe amplitude with both error
detection and decision confidence indicates that these two meta-
cognitive evaluations reflect similar underlying mechanisms
(Yeung and Summerfield, 2012). In prior work on error detec-
tion, binary error judgments have been studied, often with
concurrent EEG recording; in the memory and perceptual
decision-making literatures, the focus has typically been on
graded judgments of correctness or certainty. These lines of re-
search address similar questions with similar methods, but have
rarely been linked. Our findings suggest a strong link between
error awareness and decision confidence, with substantive impli-
cations for current theories in the respective fields. First, linking
decision confidence to well characterized EEG correlates of error
processing should place useful constraints on emerging theories
of the neural basis of metacognitive monitoring (Fleming and
Frith, 2014). Moreover, associations between confidence and er-
rors present a significant challenge to many current models of
decision confidence, which propose that confidence judgments
are formed at the time of the primary decision—yet error judg-
ments are known to depend on continued processing of stimulus
and response information after the initial decision (Yeung and
Summerfield, 2012).

Meanwhile, in error monitoring research there has been de-
bate over whether error detection is all-or-none (Falkenstein et
al., 1991; Wessel, 2012) or graded (Scheffers and Coles, 2000;
Steinhauser and Yeung, 2010). Our findings strongly support the
latter hypothesis, and extend it to show that the continuum of
error certainty is continuous with fine-grained judgments of cer-
tainty that a response is correct: on the 6-point confidence scale
used in our study, confidence on correct trials varied around a
high mean value (5.0) with low SD (0.8). Correspondingly, we
observed very fine-grained variations in correct-trial confidence
as a function of Pe amplitude, spanning a relatively narrow range
of values clustered around high confidence judgments (quintile
range, 4.9-5.1).

As such, the present findings bear on the question of whether
neural correlates of error processing vary discretely or continu-
ously, and help to resolve ambiguities in prior research on this
question. Thus, whereas Wessel (2012) suggests that the late Pe
reflects all-or-none error awareness, and Charles et al. (2013)
have made a corresponding argument for the ERN, Scheffers and
Coles (2000) reported systematic variation in ERN amplitude
with confidence. In this context, it is noteworthy that we found
both the ERN and Pe to vary in amplitude with subjective confi-
dence, but only the Pe was predictive of a graded change in con-
fidence across trials in our multivariate analysis. This difference
between ERN and Pe might simply reflect greater signal-to-noise
ratio for the latter component (although we note that the ERN is
robustly measurable on individual trials; Parra et al., 2002). How-
ever, a more intriguing possibility is that ERN amplitude fails to
predict the variation in confidence on single trials because it is an
all-or-none signal (Charles et al., 2013), and that the observed
association with confidence seen in averaged ERPs (Fig. 3A;
Scheffers and Coles, 2000) reflects variation in the probability of
this all-or-none signal being triggered across trials with differing
levels of confidence. If correct, this interpretation suggests a rec-
onciliation of previously contradictory findings. Regardless, our
findings indicate that the Pe is a stronger correlate of error aware-
ness and can simultaneously index associated variation in deci-
sion confidence.

Our findings also have practical implications in showing
that Pe amplitude provides a robust “noninvasive” index of
confidence. Metacognitive evaluations are an important com-
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ponent of decision making; they vary with objective perfor-
mance and usefully support adaptation to an ever-changing
environment—for example, participants slow down after de-
tecting errors to prevent further mistakes (Laming, 1979).
Measures of confidence therefore provide an important index
of how participants exert cognitive control. But assessing them
can be difficult. In particular, requiring participants to make
repeated confidence judgments is time consuming, imposes a
cognitive burden that alters underlying decision processes
(Baranski and Petrusic, 1998), and may even change the na-
ture of metacognitive evaluations (Griitzmann et al., 2014).
EEG provides a robust, nondisruptive index of confidence that
circumvents these problems, enabling researchers to assess
subjective confidence without requiring participants to make
explicit judgments.

In conclusion, the present study examined neural corre-
lates of metacognition in perceptual decision making. Our
findings indicate that well characterized neural correlates of
error awareness are predictive of graded changes in decision
confidence. We propose that the Pe provides a generic index of
decision confidence and is not limited to binary error detec-
tion, suggesting that shared mechanisms underlie error mon-
itoring and confidence judgments. As such, EEG measures of
the Pe promise to provide a useful noninvasive and robust
index of metacognitive evaluation that might be leveraged in
future research to assess levels of confidence whenever direct
measurement is impossible or inconvenient, and hence used
to shed further light on the underlying mechanisms of meta-
cognition in decision making.
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